
Name: Sample Solutions Student #: Sample Solutions

Engineering 9874
Software Design & Specification

Final Exam
Dr. D. K. Peters
April 13, 2005

Instructions: Answer all questions. Write your answers to all questions except question 8
in the space provided on this paper. Write your answer to question 8 in the answer books
provided.

This is a closed book test, no textbooks, notes, calculators or other aides are permitted.
A formula sheet is provided.

Write your name and student number in the space provided on this sheet. Write your
student number only in the space provided on other sheets of this paper. Please ensure that
your answer book is clearly identified as indicated on the front cover and that you follow the
rules listed there.

Q2 / 10

Q3 / 6

Q4 / 7

Q5 / 7

Q6 / 10

Q7 / 5

Q8 / 45

Total / 90

1. [0 points, but an answer is required] For the project component of this course, please
enter in the table below the percentage of the work done by each student on the team,
including yourself. The total must be 100%. This information will be kept strictly con-
fidential.

Name % of work

Total: 100

9874 Final Exam 1 of 7 Revised: 2006.04.06 08 : 44



Student #: Sample Solutions

2. [10 points] In the following table enter “T” (true) or “F” (false), as appropriate, for each
statement.

Statement T/F

In incremental development, increments are defined by the subset of the system
components that will be implemented in each increment.

F

In a traditional software development process, the output of each stage is a
product that can be verified against the output of the previous stage.

T

“Validation” is another name for software testing. F
In incremental development, the design documents are updated only after the
development is finished.

F

In incremental development it is normal for the team to be working on several
increments at the same time.

F

The output of each increment in an incremental development process should
be a tested and working system.

T

When using an incremental development process you must work hard to ensure
that you have a complete detailed design of the system early because it will be
difficult to modify the design at later stages.

F

If class A has a method m1, and class B extends class A overriding m1, the
principle of substitutability states that the post-conditions for B::m1 can be
stronger than those for A::m1.

T

It is possible to show that a system is correct by testing it. F
A pattern is a collection of classes and interfaces that can be used as part of
an application implementation.

F

3. [6 points] Give brief definitions of each of the following terms as they were used in this
course:

a) Interface
The set of assumptions that designer/implementers of other components can make
about a particular component. In classes this is represented by the set of public
methods and attributes of the class together with their signature (syntactic interface)
and behaviour (semantic interface).

b) Verification
Any activity that is undertaken to determine if a system meets its objectives or not.
This may include testing, static analysis, symbolic analysis and model checking.

c) Class
A specification for a set of objects. It consists of a name, a set of attributes and a set
of operations. A class represents a concept in the problem or solution domain.

9874 Final Exam 2 of 7 Revised: 2006.04.06 08 : 44



Student #: Sample Solutions

4. [7 points]

a) [4 points] The model-view structure was used repeatedly as an example in this course
since it illustrates many useful design patterns. Name two design patterns that typi-
cally are used in a model-view system structure and briefly explain how they are used
in m-v.

Observer – Views register as observers on with the model. They are notified when-
ever the model changes so that they can be updated.

Façade – A model uses a Façade class to isolate the view from internal class structure
in the model.

Composite – A UI window is a composite of components (panel, button etc.).

Command – UI actions are passed as commands to methods that implement the
appropriate behaviour (controller).

b) [3 points] Briefly explain why design patterns are seen to benefit the software devel-
opment community.
DP are a means for experienced designers to communicate their repertoire of general
solutions to problems that occur repeatedly. They can highlight pitfalls and good
solution structures. DP are reusable solutions.

9874 Final Exam 3 of 7 Revised: 2006.04.06 08 : 44



Student #: Sample Solutions

5. [7 points]

For the statechart above, give the reaction(s) and the new active state(s) that result from
the each trigger in the given sequence.

Trigger Reaction(s) New state(s)

B f2, f5 S2
C f3, f5 S2
A f1 S1
C f4 S3,S4
B f7 S3, S5, S6, S8
A f9, f11 S3, S5, S7, S10
B f12, S3, S5, S7, S9
A f18, f17 S3, S5, S7, S9
E f10, f18, f15 S3, S5, S6, S8
D f7 S1
C f4 S3, S5, S6, S8
C f8 S3, S11
A f6 S3, S4
B f7 S3, S5, S6, S8

9874 Final Exam 4 of 7 Revised: 2006.04.06 08 : 44



Student #: Sample Solutions

6. [10 points]
Express the following constraints using OCL, with respect to the above model.

a) [2 points] A Course should have no prerequisites that are higher level courses.

context: Course

inv: prerequisite->forAll(c | c.level <= self.level)

b) [2 points] All instructors for a Section must be able to teach (canTeach) the Course.

context: Section

inv: instructor->forAll(p | p.canTeach->includes(self.Course))

c) [2 points] A GradStudent cannot be a TA for a Course in which s/he is enrolled.

context: GradStudent

inv: self.TA.Course->excludesAll(self.enrolled.Course)

d) [4 points] The requirements for the method Section::enroll(s:Student) : Boolean,
as follows: The method will assume that the Student has Credits for the required pre-
requisites and is not already enrolled in the Section. It will add the given Student
to those enrolled in the Section only if there is room (i.e., the number of Students
enrolled in the section is less than the capacity). The returned value is true iff the
Student is enrolled in the Section when the operation completes.

context: Section::enroll(s:Student) : Boolean

pre : s.Credit.Section.Course->includesAll(self.Course.prerequisite)

pre : self.enrolled->excludes(s)

post: result = self.enrolled->includes(s)

post: self.enrolled@pre->size() < self.capacity implies

self.enrolled->includes(s)

post: self.enrolled->includesAll(self.enrolled@pre)

9874 Final Exam 5 of 7 Revised: 2006.04.06 08 : 44



Student #: Sample Solutions

7. [5 points]

Express the following constraints using OCL, with respect to the above model.

a) [2 points] All crew on a Flight must be qualifiedFor the Airplane.

context: Flight

inv: crew->forAll(c : Person | c.qualifiedFor->includes(self.Airplane))

b) [3 points] All Airports that a Flight is scheduled to land at have sufficient run-
wayLength for the Airplane.

context: Flight

inv: let rl : Integer = self.Airplane.requiredRunwayLength

in schedule->forAll(s : FlightSegment | s.destination.runwayLength >= rl)

9874 Final Exam 6 of 7 Revised: 2006.04.06 08 : 44



Student #: Sample Solutions

8. [45 points] (Note: Answer this question in the answer books provided.) In this question
you are to design a software system to allow two players using different computers on
the internet to play the game of “dots”, as described below. In your answer you may
include any diagrams or text that you feel helps to clearly specify your design, but at
a minimum you should include the following. (Points give the approximate weight that
will be applied to each.)

a) [20 points] UML class diagram(s) for the system, including public operations and
public attributes for all classes and all class associations.

b) [10 points] UML sequence diagram(s) illustrating the interactions involved in a player’s
turn.

c) [15 points] A CRC description of each class, containing:

1. the class name,

2. a brief description of its role in the system, and

3. a list of its responsibilities and the other classes that it collaborates with in order
to accomplish each responsibility.

Note that points will be awarded based on how well your design reflects the principles
taught in this course.

Game Rules for “Dots”

This is a two-player game played on a rectangular grid of dots. The size of the grid
is chosen by the player who initiates the game. Players take turns selecting a pair of
horizontally or vertically adjacent dots to be connected with a line segment, as illustrated
below. The object of the game is to be the player who connects the dots to form the
fourth segment to close a square, which results in a point for that player, the enclosed
square is coloured that player’s colour and s/he is awarded another turn.

The game ends when there are no pairs of unconnected dots available on the board. The
winner is the player with the most points.

9874 Final Exam 7 of 7 Revised: 2006.04.06 08 : 44


