
Name: Solutions Student #:

Engineering 9874
Software Design & Specification

Final Exam
Dr. D. K. Peters
April 17, 2006

Instructions: Answer all questions. Write your answers to all questions except question 7
in the space provided on this paper. Write your answer to question 7 in the answer books
provided.

This is a closed book test, no textbooks, notes, calculators or other aides are permitted.
A formula sheet is provided.

Write your name and student number in the space provided on this sheet. Write your
student number only in the space provided on other sheets of this paper. Please ensure that
your answer book is clearly identified as indicated on the front cover and that you follow the
rules listed there.

If you find a question to be ambiguous or feel that you must make assumptions in order
to complete your answer, please clearly state those assumptions on your paper.

Q1 / 10

Q2 / 6

Q3 / 9

Q4 / 15

Q5 / 9

Q6 / 6

Q7 / 45

Total / 100

9874 Final Exam 1 of 7 Revised: 2006.04.19 21 : 59



Student #:

1. [10 points] In the following table enter “T” (true) or “F” (false), as appropriate, for each
statement.

Statement T/F

A “traditional” software development process is better suited to projects with
large teams and stable, well defined, requirements.

T

In incremental development, the easy use cases should be in the early incre-
ments.

F

Stepwise refinement is another term for incremental development. F
The invariant for a derived class can be weaker than for the base class. F
It is the duty of the calling code to ensure that the pre-conditions for the
methods being called are true.

T

Dynamic aspects of a system design can be represented in class diagrams. F
If done well, UML Diagrams are sufficient for a designer to give to a programmer
as a complete specification of the system behaviour.

F

An Application Framework may include a complete working application. T
Verification will always result in a yes or no answer. F
Exhaustive testing is not possible for realistic systems. T

2. [6 points] Give brief definitions of each of the following terms as they were used in this
course:

a) Object
An (run-time) instance of a class. Contains attributes and methods that represent
some concept in the system.

b) Design Pattern
A named problem-solution pair that can be applied in new contexts.

c) Black-box Testing
Method of selecting test cases based on the externally observable behaviour of the
system under test.

9874 Final Exam 2 of 7 Revised: 2006.04.19 21 : 59



Student #:

3. [9 points]

a) [2 points] What are the essential components of a design pattern description? Why
are they essential?

Name Allows us to communicate concisely with other designers.

Problem Describes the kind of situations where this pattern is applicable.

Solution Describes how the problem can be solved.

Consequences Discussion of pros and cons of this pattern. Highlights some potential
pitfalls.

b) [2 points] The LayoutManager in Java AWT is a good example of what pattern?
Explain.
Strategy (also accept Delegation).
The strategy for organizing components in a container is determined by the choice of
LayoutManager. Each container has a LM, and new LM can be added without old
containers needing to know about it.

c) [5 points] The observer pattern was used frequently in this course. Briefly discuss
some of the positive and negative consequences, implementation issues and variations
of this pattern.
Observer Consequences

+ ConcreteSubject may be reused without reusing observers.

+ Observer classes may be added or removed without modifying ConcreteSubject
or other observer classes.

+ Observers may belong to higher level in a layered system.

+ Supports broadcast to many observers

- Cost of update is hidden from subject.

- No indication of how subject has changed — may lead to costly unneeded updates.

- Subject must be consistent when it calls notify.

- Too many notifications — every change causes notify.

Implementation Issues and Variations

Dangling references Deleting either a subject or observer may leave dangling ref-
erences — need to ensure that referring objects are informed of delete (de-register
self before delete).

Update triggering Whose responsibility is it to call update?

• state-setting methods in subject — may lead to too many updates.

• clients — error prone.

Observing more than one subject — update needs a parameter to identify itself
to the observer.

Update protocols How is the information about he change communicated to the
observer?

• Push model — subject sends observers detailed information about the change.
Subject needs to know more about observers.

• Pull model — subject sends minimal information, observer goes and gets it.
May be less efficient.

Specifying changes of interest explicitly Observers register as being interested
in specific kinds of changes.

Change manager Encapsulates particularly complex update semantics (example of
Mediator pattern).

9874 Final Exam 3 of 7 Revised: 2006.04.19 21 : 59



Student #:

4. [15 points] In the space below, draw a statechart diagram to describe the behaviour of
a simple microwave oven controller. The events that the controller must react to are as
follows:
Name Description Effect

Add1Sec User pressed the button labeled
“+1sec” on the oven keypad.

Adds 1 second to the cook time.

Add10Sec User pressed the button labeled
“+10sec” on the oven keypad.

Adds 10 seconds to the cook time.

StartStop User pressed the “Start/Stop” button
on the oven keypad.

Starts cooking if there is a cook time set
and the oven is not cooking. If the oven
is cooking it pauses the cooking.

Reset User pressed the “Reset” button on the
oven keypad.

Clears the cook time and stops any
cooking.

Power User pressed the “Power Level” button
on the oven keypad.

Only effective when a cook time is set
and the oven is not cooking. Causes
the cook power level to be decreased by
10%.

Tick Occurs once per second.
DoorOpen The oven door is opened. The oven should not cook with the door

open.
DoorClosed The door is closed.

The following sequence of events would start the oven cooking for 13 seconds at 80%
power, assuming that the door is closed: Add10Sec, Add1Sec, Add1Sec, Add1Sec, Power,
Power, StartStop.

The following outputs are to be controlled:

Cook(pl) Causes the oven to cook at power level pl.

Stop Causes the oven to stop cooking.

Display(val) Displays the string val on the display.

9874 Final Exam 4 of 7 Revised: 2006.04.19 21 : 59



Student #:

5. [9 points]
Express the following constraints using OCL, with respect to the above model.

a) [2 points] The requirements for the deposit method of a DepositAccount. The account
balance must be increased by the deposit amount (amt), which must be positive.

context DepositAccount::deposit(amt: Integer)

pre: amt >= 0

post: balance = balance@pre + amt

b) [3 points] The requirements for the withdraw method of a DepositAccount. If there
are sufficient funds in the account then the balance must be decreased by the withdraw
amount (amt), which must be positive, and the returned value is true. If there are
insufficient funds then there is no change to the account balance and false is returned.

context DepositAccount::withdraw(amt: Integer) : Boolean

pre: amt >= 0

post: if (balance@pre >= amt) then

result = true and balance = balance@pre - amt

else result = false and balance = balance@pre

endif

c) [2 points] All the Securities for a Loan are owned by borrowers of the Loan.

context Loan

inv: Security->forAll(s : Security | borrowers->includes(s.owner))

d) [2 points] The total value of the Securities associated with a Loan is at least as much
as the Loan principle.

context: Loan

inv: principle <= Security.value->sum()

9874 Final Exam 5 of 7 Revised: 2006.04.19 21 : 59



Student #:

6. [6 points]

Express the following constraints using OCL, with respect to the above model.

a) [2 points] The origin of a FlightSegment in a schedule must be the same Airport as
the destination of the previous FlightSegment in that schedule.

context: Flight

inv: Sequence{ 1..schedule->size()-1 }->forAll(i |

schedule->at(i+1).origin = schedule->at(i).destination)

b) [2 points] A flight’s stopover time at each airport (the difference between arrival on
a FlightSegment and departure on the following FlightSegment) must be at least 30
minutes. Assume that DateTime is based on a fixed time zone (e.g., GMT).

context: Flight

inv: Sequence{ 1..schedule->size()-1 }->forAll(i |

schedule->at(i+1).depart.differenceMinutes(schedule->at(i).arrive) >= 30)

c) [2 points] All Airports that a Flight is scheduled to land at have sufficient run-
wayLength for the Airplane.

context: Flight

inv: inv: schedule->forAll(s : FlightSegment |

s.destination.runwayLength >= Airplane.requiredRunwayLength)

9874 Final Exam 6 of 7 Revised: 2006.04.19 21 : 59



Student #:

7. [45 points] (Note: Answer this question in the answer books provided.) In this question
you are to design a software system to allow two players using different computers on
the internet to play the game of “Othello”, as described below. In your answer you may
include any diagrams or text that you feel helps to clearly specify your design, but at
a minimum you should include the following. (Points give the approximate weight that
will be applied to each.)

a) [20 points] UML class diagram(s) for the system, including public operations and
public attributes for all classes and all class associations.

b) [10 points] UML sequence diagram(s) illustrating the interactions involved in a player’s
turn.

c) [15 points] A CRC description of each class, containing:

1. the class name,

2. a brief description of its role in the system, and

3. a list of its responsibilities and the other classes that it collaborates with in order
to accomplish each responsibility.

Note that points will be awarded based on how well your design reflects the principles
taught in this course.

Game Rules for “Othello”

The playing space consists of a 8 by 8 board of possible positions, which is presented
to the players in a graphical display. At the start of the game the board is laid out as
illustrated in Figure 1(a). Two players, randomly designated ”White” and ”Black”, play
the game by alternately taking turns selecting (by mouse click) an unmarked position in
the game space on which to place a marker (a white disc for ”White” or a black disk
for ”Black”). A marker can only be placed such that it becomes an endpoint of at least
one straight line (horizontal, vertical or diagonal) terminated by another marker of the
same colour and containing at least one marker of the opposite colour (i.e., a sandwich)
as illustrated in Figure 1(b). For every such line formed by placing the marker, all of the
opposite coloured markers in the sandwich are changed to the same colour as the newly
laid marker (see Figure 1(c)). If a player cannot place a marker then she must skip a
turn (pass). If a player can place a marker then she must do so. Figure 2 shows other
sample moves. The game ends when neither player can place a marker. The winner is
the player with the most markers of their colour on the board.

Figure 1: Game Layout

Figure 2: Sample Moves

9874 Final Exam 7 of 7 Revised: 2006.04.19 21 : 59


