c->count(o) Number of occurrences of o in c

\(a < b\)
\(a > b\)
\(a <= b\)
\(a >= b\)

\(a + b\)
\(a - b\)
\(a * b\)
\(a / b\)

\(a \mod(b)\)
\(a \div(b)\)
\(a.\abs()\)
\(a.\size()\)
\(a.\max(b)\)
\(a.\min(b)\)
\(a.\round()\)
\(s1.\concat(s2)\)
\(s1.\size()\)
\(s1.\toLower()\)
\(s1.\toUpper()\)
\(s1.\substring(s, f)\)

if bool expr then expr
else expr endif

\(c->count(o)\) Number of occurrences of o in c
\(c->excludes(o)\) True iff o is not an element of c
\(c->excludesAll(c2)\) True iff all of c2 are not in c
\(c->includes(o)\) True iff o is an element of c
\(c->includesAll(c2)\) True iff all of c2 are in c
\(c->isEmpty()\) True iff c contains no elements.
\(c->size()\) number of elements in c
\(c->sum()\) Addition of all elements in c
\(cl - c2\) Remove elements in c2 from cl if present
\(c->flatten()\) Merge collection of collection into ‘flat’ collection.
\(c->excluding(o)\) Remove all occurrences of o from c.
\(c->inclusing(o)\) Add o to c.
\(c1->union(c2)\) Merge collections.
\(c1->intersection(c2)\) Only elements in both c1 and c2.
\(c1->symmetricDifference(c2)\) Gives collection of elements in exactly one of c1 or c2.
\(c->asBag()\) Convert to bag (order is lost)
\(c->asOrderedSet()\) Convert to ordered set
\(c->asSequence()\) Convert to sequence.
\(c->asSet()\) Convert to set.
\(c->append(o)\) Append to end.
\(c->prepend(o)\) Insert at beginning.
\(c->at(i)\) \(i^{th}\) element.
\(c->first()\) first element.
\(c->last()\) last element.
\(c->indexOf(o)\) Index of first occurrence of o (indexed from 1)
\(c->insertAt(i, o)\) Insert o at index i.
\(c->subOrderedSet(l, u)\) OrderedSet only.
\(c->subSequence(l, u)\) Sequence only.
\(c->exists(exp)\) True iff at least one element in c makes exp true.
\(c->forAll(exp)\) True iff exp is true for every element in c.
\(c->isUnique(exp)\) True iff exp has a unique value for every element in c.
\(c->one(exp)\) True iff there is exactly one element in c for which exp is true.
\(c->any(exp)\) A random element for which exp is true.
\(c->collect(exp)\) All objects resulting from exp on elements of c.
\(c->collectNested(exp)\) Collection of collections resulting from exp on elements of c.
\(c->reject(exp)\) Subcollection of c containing elements for which exp is false.
\(c->select(exp)\) Subcollection of c containing elements for which exp is true.
\(c->sortedBy(exp)\) Ordered Subcollection of c with elements ordered according to increasing exp.

\(a^@pre\) The value of a at the start of execution of the operation.
\(result\) The value returned by the operation.
\(v->oclIsNew()\) True iff v is constructed during execution of the operation.
\(a^@op(arg)\) \(\text{isSent}:\) True iff the operation has sent (called) op(arg) on a during its execution.
\(a^"\op(arg)\) \(\text{message operator}:\) The sequence of messages sent that match op(arg) during the execution of the operation.
\(m->hasReturned()\) True iff m has finished executing
\(m->result()\) Return value of m.
\(m->isSignalSent()\) True iff m is a signal.
\(m->isOperationCall()\) True iff m is an operation call.
\(o->oclIsUndefined()\) True iff o is undefined.
\(o->oclIsTypeOf(<Type>)\) True iff o of type <Type>.
\(o->oclIsKindOf(<Type>)\) True iff ooclIsTypeOf(<Type>) or o is an instance of a subtype of <Type>.
\(o->oclInState(<sname>)\) True iff o is in the state named <sname>. o must have associated state chart.
\(type::allInstances()\) The set of all instances of type. (usage discouraged)