
USING TEST ORACLES AND FORMAL SPECIFICATIONS

WITH TEST-DRIVEN DEVELOPMENT

SHADI G. ALAWNEH* and DENNIS K. PETERS†

Faculty of Engineering and Applied Science

Memorial University, St. John's NL, Canada A1B 3X5
*shadi.alawneh@mun.ca, http://www.engr.mun.ca/�alawneh

†dpeters@mun.ca, http://www.engr.mun.ca/�dpeters

Received 27 April 2012

Accepted 10 December 2012

This paper illustrates how Test Oracles and Formal Speci¯cations, with appropriate tool sup-

port, can be used with Test-Driven Development (TDD). In TDD, the test code is a formal
documentation of the required behavior of the component or system that is being developed, but

this documentation is necessarily incomplete and often over-speci¯c. We describe an alternative

approach to TDD that is to develop the speci¯cation of the required behavior in a formal

notation as a part of the TDD process and to generate test oracles from that speci¯cation. We
present the results of using this approach to develop programs used in a project at the Faculty of

Engineering and Applied Science at Memorial University.

Keywords: Test driven development; extreme programming; open mathematical documents;

test oracle.

1. Introduction

Based on [7], TDD is an iteration based development approach where the developer

writes a test before he writes enough code to full¯ll that test. The steps of TDD are

illustrated in the UML activity diagram of Fig. 1. TDD is one of the core practices

of Extreme Programming (XP)[7, 19]. Two key principles of TDD are (1) that no

implementation code is written without ¯rst having a test case that fails with the

current implementation, and (2) that we stop writing the implementation as soon as

all of the existing test cases pass. Although not all developers agree with all of the XP

practices, the ideas of TDD have started to gain wide acceptance.

In TDD, the test code is a formal documentation that describes the required

behavior for the component or the system that is being developed for the particular

test cases included. However, tests alone describe the properties of a program only

in terms of examples and thus, they are not su±cient to completely describe the

International Journal of Software Engineering

and Knowledge Engineering

Vol. 23, No. 3 (2013) 361�385

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194013500113

361

http://dx.doi.org/10.1142/S0218194013500113


behavior of a program. Consequently, this documentation is necessarily incomplete

and often over-speci¯c. To solve this problem we propose an alternative approach to

TDD, which is to develop a formal speci¯cation of the required behavior as a part of

the TDD process and then generate test oracles from that speci¯cation. We thus

propose a variation on the key TDD principles listed above: (1) No implementation

code is written without ¯rst having a speci¯cation for the behavior that is not

satis¯ed by the current implementation, and (2) we stop writing the implementation

as soon as the implementation satis¯es the current speci¯cation. By generating

oracles directly from the speci¯cation, we are able to quickly and accurately check if

the speci¯cation is satis¯ed by the implementation for the selected test cases. One of

the most important goals of this approach is to develop the internal design docu-

ments and module interface speci¯cations.

The work reported in this paper is an extension of the work reported in [3, 2].

In [3], we presented our approach but in this paper we evaluted our approach by

applying it into real application. In [2], the test oracle generator supports generating

Fig. 1. The steps of test-driven development (TDD) [4].

362 S. G. Alawneh & D. K. Peters



test oracles from methods but in this work we extended the test oracle generator to

allow the users to generate test oracles from module (class) speci¯cations, which are

based on the externally observable behavior of the class. This will allow the use of

oracles in class testing.

In this paper, we applied our approach for TDD to methods and classes which are

the basic components for any software application. Our methods are applicable for

programs written in di®erent programming languages, but the prototype tools that

we have implemented to describe and explain these techniques only work for those

written in Java.

Section 2 presents the related work. Formal software speci¯cations are described

in Sec. 3. Section 4 presents the tool support that we have used in this work. Section 5

describes the oracle design. Section 6 describes our new approach for TDD. And,

¯nally Secs. 7 and 8 concludes with the ongoing research and future plans.

2. Related Work

2.1. Oracle generation

Most previous research aimed at improving the e±ciency of software testing falls into

two categories: one is focused on the test case selection [15, 14, 25, 26], the other has

concentrated on developing tools to help generate, maintain and track the testing

documentation or run tests in simulated environments [9, 16, 27, 28]. This previous

research is supportive to, but di®erent from the work that is reported in this paper.

Several researchers have developed tools that give the user the ability to deter-

mine if the results of a test is correct or not. In [27], Panzl explained three di®erent

kinds of automatic software test drivers that can be used to automate the veri¯cation

of test results. In [16], Hamlet described another automatic testing system based on

¯nite test-data sets, implemented by modifying a compiler. The disadvantages of

these testing systems are: (1) The user should specify the expected result, which may

be hard to acquire, and (2) Relational speci¯cations, which may accept more than

one acceptable result for a given input, can't be used because these systems only

compare the expected and actual result.

The last disadvantage is partly solved by Chapman in [9], which describes the

design and implementation of a program testing assistant which aids a programmer

in the de¯nition, execution, and modi¯cation of test cases during incremental pro-

gram development. Moreover, it gives the programmer the ability to set the success

criteria for a test case or use the default criterion equal, which checks for simple

equality of a result and its correct value. Examples of other success criteria are

set-equal, which checks two sets to see that they contain the same elements and

isomorphic, which checks that arbitrary structures, possibly including pointer cycles,

are topologically identical.

In [33], Peters and Parnas discussed the use of test oracles generated from program

documentation. They described an algorithm that can be used to generate a test oracle

Using Test Oracles and Formal Speci¯cations with Test-Driven Development 363



from program documentation, and presented the results of using a tool based on it to

help test part of a commercial network management application. The results dem-

onstrated that these methods can be e®ective at detecting errors and greatly increase

the speed and accuracy of test evaluation when compared with manual evaluation.

The design of the prototype test oracle generator they described allows using only the

C programming language. If there is a need to choose among several programming

languages, one must add several additional sub modules, one for each language.

Other systems, such as JML [21], ANNA [22] and APP [36], give the user the

ability to write a code annotated with assertions that are evaluated while the code is

executed. These assertions can be used as an oracle if they are completely speci¯ed and

accurately placed so that they de¯ne the program speci¯cation. In [10], Cheon and

Leavens described a new approach for generating test oracles from formal speci¯ca-

tions. In their work, they used JML which is based on pre/postcondition approaches

to write the speci¯cations. In our work, we used relational speci¯cation to describe the

behavior of the program. Based on the study in [12], pre/postcondition approaches

have limited abilities for specifying program behaviors since they don't consider

liveness properties or non-terminating behaviors. Relational speci¯cation methods can

handle both deterministic and non-deterministic programs. Moreover, they have

powerful expressive abilities that enable speci¯ers to deal with all three kinds of

terminating behaviors of programs. In addition, relational speci¯cation methods are

capable of specifying both partial and total correctness. Pre/Postcondition approa-

ches have to ignore some complicated programming issues (e.g. pointers, aliasing

problems, parameter passing and scope rules) otherwise the complexity of the for-

mulae will increase considerably. Relational approaches do not have this problem.

Also, in our work we use tabular expressions which are a powerful means for con-

structing and presenting program documents.

In [38], Stocks and Carrington described a Test Template Framework (TTF) which

is a structured strategy and a formal framework for Speci¯cation-based Testing (SBT)

which is using the Z notation. In [35], Richardson et al. encourage the process of

generating test oracles from formal speci¯cations. In [23], they described an approach

for generating C++ test oracle classes from Object-Z speci¯cations.

Other researchers have explained the process of generating test oracles for ab-

stract data types (ADTs) that are de¯ned using algebraic speci¯cations, e.g. [5, 8, 13]

or \trace" speci¯cations [39]. These kinds of speci¯cation approaches discuss how to

specify the desired properties of an ADT which is implemented by a group of pro-

grams. The speci¯cation approaches that are used in this work are used to specify the

e®ect of a single program on some data structure also can be used to specify the

desired properties of an ADT which is implemented by a group of programs.

The work reported in this paper is similar to the work in [33] but our approach for

generating test oracles has the following characteristics that make it unique:

. We are using OMDoc as a standardized storage and communications format for

our speci¯cations, and so we can take advantage of other tools.

364 S. G. Alawneh & D. K. Peters



. The semantics of tabular expressions have been generalized to allow more precise

de¯nition of a broader range of tabular expression types.

. The test oracle generator can generate test oracles from module (class) speci¯ca-

tions, which are based on the externally observable behavior of the class. This will

allow the use of oracles in class testing.

. The test oracle generator is implemented using Java. This makes it easy to inte-

grate with the Eclipse platform.

. The oracle generator has a \graphical user interface" which is shown in Fig. 3. This

interface gives the user the ability to select any program speci¯cation and generate

the oracle from it. This has the advantage of enabling the user to interact easily

with the speci¯cations.

. The generated test code integrates smoothly with test frameworks (e.g. JUnit) and

hence, it can be directly used to test the behavior of the program.

2.2. Test driven development

Recently, there are studies to analyze the e±ciency of the TDD approach. Muller and

Hagner [24] report an experiment to compare TDD with traditional programming.

The experiment, done with 19 graduate students as subjects who were divided into

two groups, TDD and control, evaluated the e±ciency of TDD in terms of (1)

programming speed, (2) program reliability and (3) program understanding. They

found no di®erence between the groups in overall development time. The TDD group

had lower reliability after the implementation phase and higher reliability after the

acceptance-test phase. However, the TDD groups had statistically signi¯cant fewer

errors when the code was reused. Based on these results the researchers concluded

that writing programs in test-¯rst manner neither leads to quicker development nor

provides an increase in quality. However, the understandability of the program

increases, measured in terms of proper reuse of existing interfaces.

There are some researchers who have described tools that can be used to combine

formal speci¯cations with test-driven development without loosing the agility of test-

driven development. In [6], Baumeister describes a tool that provides support to

combine formal speci¯cations with test driven development. This is done by using

the tests that drive the development of the code to also drive the development of the

formal speci¯cation. By generating runtime assertions from the speci¯cation it is

possible to check for inconsistencies between code, speci¯cations, and tests. Each of

the three artifacts improves the quality of the other two, yielding better code quality

and better program documentation in the form of a validated formal speci¯cation of

the program. This method is exempli¯ed by using the primes example with Java as

the programming language, JUnit as the testing framework, and the Java Modeling

Language (JML) [21] for the formulation of class invariants and pre- and post-

conditions for methods. They use JML since JML speci¯cations are easily understood

by programmers, and because it comes with a runtime assertion checker [11], which

allows them to check invariants and pre- and postconditions of methods at runtime.

Using Test Oracles and Formal Speci¯cations with Test-Driven Development 365



Our work is di®erent from the work above in the sense that we use relations for the

speci¯cations, which characterize the acceptable set of outcomes for a given input. In

addition, we use test oracles that are generated automatically from the program

speci¯cations to determine if the software behavior is correct or not for a given test

input and output. Hence, by generating oracles directly from the speci¯cation, we are

able to quickly and accurately check if the speci¯cation is satis¯ed by the imple-

mentation for the selected test cases.

In [37], Sta® proposes that developer testing frameworks should support, as ¯rst

order constructs alongside traditional tests, partial speci¯cations over large or in¯-

nite sets of values, called Theories. Theories look like test methods, but are univer-

sally quanti¯ed: all assertions must hold for any possible parameter values that pass

the assumptions. They used the theories as speci¯cations of the behavior.

In [17], Herranz and Moreno-Navarro have studied how the technology of Formal

Methods (FM) can interact with an agile process in general and with Extreme

Programming (XP) in particular. They have presented how some XP practices can

admit the integration of Formal Methods and declarative technology (functional and

logic programming).

3. Formal Software Speci¯cations

Formal Speci¯cations are documentation methods that use a mathematical des-

cription of software or hardware, which may be used to develop an implementation

and to drive automated testing. The emphasis is on what the system should do, not

necessarily how the system should do it. Moreover, formal software speci¯cations

are expressed in a language whose vocabulary, syntax and semantics are formally

de¯ned. Examples of such languages (or notations) are VDM, Z, and B.

With reference to the set of documents described in [31], in this work, we focus on

deriving test oracles from the module internal design document [32] and module

interface speci¯cation [34]. These two types of documents can be used to verify the

workability of the design. Additionally, they describe the module's data structure,

state the intended interpretation of that data structure (in terms of the external

interface), and specify the e®ect of each access-program on the module's data

structure.

The nature of computer system behavior often is that the system must react to

changes in its environment and behave di®erently under di®erent circumstances. The

result is that the mathematics describing this behavior consists of a large number of

conditions and cases that must be described. It has been recognized for some time

that tables can be used to help in the e®ective presentation of such mathematics [30,

1, 29, 18]. In our work, we show such tabular representation of relations and func-

tions as a signi¯cant factor in making the documentation more readable, and so we

have specialized our tools to support them.

A complete discussion of tabular expressions is beyond the scope of this paper, so

interested readers are referred to the cited publications. In their most basic form,

366 S. G. Alawneh & D. K. Peters



tabular expressions represent conditional expressions. For example, the function

de¯nition on the left below, could be represented by the tabular expression on the

right.

fðx; yÞ¼df

xþ y if x > 1 ^ y < 0

x� y if x � 1 ^ y < 0

x if x > 1 ^ y ¼ 0

xy if x � 1 ^ y ¼ 0

y if x > 1 ^ y > 0

x=y if x � 1 ^ y > 0

8>>>>>>><
>>>>>>>:

Although this function is clearly a nonsensical example, it is representative of the

kind of conditional expressions that often occur in the documentation of software-

based systems. We have found that the tabular form of expressions is not only easier

to read but most importantly, the expressions are also easier to write correctly. Of

particular importance is the fact that they make it very clear what the cases are, and

that all cases are considered.

Modern general purpose documentation tools obviously have support for tables as

part of the documents, but they are often not very good at dealing with tables as part

of mathematical expressions. These tools also encourage authors to focus e®orts on

the wrong things: authors will work very hard to try to get the appearance of the

table right, sometimes even to the detriment of readability (e.g. shortening variable

names so that expressions ¯t in the columns).

In this work, a program speci¯cation describes the required behavior of a program

either in terms of the internal data structure and the e®ect of each program access on

it, or in terms of the externally observable behavior of the module. It consists of these

components: constants, variables, auxiliary function and predicate de¯nitions, the

program invocation, which gives the name and type of the program and lists all its

actual argument program variables, and an expression that gives the semantics of the

program. For more details about these components see [3, 2].

3.1. Sample program speci¯cation

Figure 2, speci¯es a program \ggcd" which compares an integer value \i" with

another integer value \j", returns the greatest common divisor of them if \i > 0 ^
j > 0", otherwise returns 0. Additionally, it indicates if the two integers are positive

by using the returned value, which is represented by a boolean variable \result".

Using Test Oracles and Formal Speci¯cations with Test-Driven Development 367



4. Tool Support

The goal of this project is to develop techniques and tools to facilitate the production

of software design documentation that is (1) readable and understandable by the

users, (2) complete and accurate enough to allow analysis, both manually and me-

chanically and (3) suitable for use as a speci¯cation from which an acceptable program

can be produced. We cannot get these bene¯ts with general purpose word processors.

4.1. OMDoc document model

As described in [20], the OMDoc (Open Mathematical Documents) format is a

content markup scheme for (collections of) mathematical documents including

articles, textbooks, interactive books, and courses. OMDoc also serves as the content

language for the communication of mathematical software. OMDoc is an extension of

the OpenMath and (content) MathML standards and concentrates on representing

the meaning of mathematical formulae instead of their appearance. OpenMath and

MathML are formats for individual mathematical expressions and OMDoc is a for-

mat for documents that include mathematics. The speci¯cations in our work consists

of program speci¯cations, which, in OMDoc terms, are symbol de¯nitions contained

within theories. Also, each symbol has a type and possibly other information. For

more details about our speci¯cation model see [2].

4.2. The Eclipse framework

Eclipse is a software platform that consists of extensible application frameworks, tools

and a runtime library for software development and management. It is written pri-

marily in Java to provide software developers and administrators with an integrated

development environment (IDE). Using this framework to develop our tool provides

signi¯cant advantages over developing a stand-alone tool including its widespread use

Fig. 2. ggcd program speci¯cation.

368 S. G. Alawneh & D. K. Peters



in the user community, its facilities for tight integration of documents with other

software artifacts, and provision of support for software development tasks.

4.3. Speci¯cation editor

As a part of our tools, we are developing a speci¯cation editor to support production

of software documents, which is illustrated in Fig. 3. This Editor provides a \multi-

page editor" (which provides di®erent views of the same source ¯le) for \.tts" ¯les,

which are OMDoc ¯les. One page of the editor is a structured view of the document,

another one shows the raw XML representation, and another gives a detailed view of

the document, giving the user the ability to view and edit the mathematical

expressions. The support libraries in Eclipse provide techniques to ensure that the

views of the document are consistent. This editor is built using several open source

libraries including the RIACA OpenMath Library.a

This editor is seen as a primary means for the human users to interact with

speci¯cation documents.

Fig. 3. Screenshot of editor.

ahttp://www.mathdox.org/projects/openmath/lib/2.0/index.html

Using Test Oracles and Formal Speci¯cations with Test-Driven Development 369



5. Oracle Design

The oracle is implemented using Java. This decision should not be seen as a signif-

icant feature of the design ��� if the intended application were di®erent, the oracle

design could be translated with some changes.

5.1. Internal design overview

The oracle can be viewed as a \compiled" version of the speci¯cation in the sense that

it is generated by translating the \source" speci¯cation into an executable form (Java

code). The oracle can be executed without reference to the speci¯cation from which

it was derived. Therefore, it can be integrated smoothly with test frameworks (e.g.

JUnit). This design has an advantage in the sense that it reduces the time required

for oracle execution by giving the user the ability to use optimization techniques.

An alternative approach to designing the oracle is to build it as an \interpreter"

which would represent the speci¯cation by data and evaluate it directly. This kind of

design has the advantage of making the oracle generation process relatively simple

and, since there is no generated code involved in the oracle, the oracle programs will

be the same for any speci¯cation, except for the fact that the data used is dependent

on the speci¯cation. A disadvantage of this design is that the oracle will need to

interpret the semantics of the documentation during evaluation, and hence, it would

probably be comparatively slower to execute.

5.1.1. Expression implementation

Any expression consists of one or more sub-expressions, the complexity of imple-

menting this expression is managed by decomposing each expression into its sub-

expressions and implementing each sub-expression individually. The oracle code thus

consists of a set of internal functions and objects, each of which implements a sub-

expression and may call other internal functions or object methods.

All programming languages in general, and Java in particular, provide support for

basic logical and relational operators (i.e. ^;_;:; >;<;¼ etc:). Where the operators in

the speci¯cation expression are directly representable using Java logical and relational

operators, they are implemented as such.

Each expression is implemented by instantiating a Java object, which includes

references to objects implementing the sub-expressions. This helps to simplify the

oracle generation process for expressions that have complex semantics such as tab-

ular expressions. Consequently, the test oracle generator only need to translate the

expression into the suitable object constructor.

5.1.2. Quanti¯cation

Quanti¯er expressions are implemented by using loops that call the suitable proce-

dures to enumerate the elements of the (¯nite) set over which the quanti¯cation is

bounded. In the example below, the set is the integer interval bounded by 0 and 10.

One distinction between the work reported in this paper and that in [33] is that the

370 S. G. Alawneh & D. K. Peters



previous work used Inductively De¯ned Predicate to specify the range for the

quanti¯cation but we used a Java collection.

The quanti¯cation \ð8i : f0::10g:p B½i� ¼ p xÞ", can be implemented as follows.

5.1.3. Tabular expressions

Tabular expressions are implemented by instantiating an object of one of several

classes of (Java) table objects which implement the various types of tabular

expressions (normal, inverted and vector). These table objects contain all knowledge

of the semantics of tabular expressions, hence there is no need for this knowledge to

be in the TOG. The expression in each cell of the table is implemented as a Java class

that extends a CellBase class and therefore contains a procedure, eval, which eval-

uates the expression in the cell.

Table objects have the following method, which is used to evaluate the table:

evaluateTable ¯nds the index for the main cell that should be evaluated and returns

the contents of that cell.

The expression \i > 0 ^ j > 0", which is in the ¯rst cell of the column header of

the ggcd tabular expression in Fig. 2, is implemented as follows.

The other cells in each table are implemented in a similar fashion.

Using Test Oracles and Formal Speci¯cations with Test-Driven Development 371



5.1.4. Auxiliary functions

An auxiliary function is implemented as a procedure, with the expression, imple-

mented as described above, forming the body of the procedure.

Suitable calls to this procedure are used in the code that implements expressions

using the auxiliary function.

5.2. Compilation and execution

The oracle in our approach consists of two kinds of code: that generated by the Test

Oracle Generator (TOG), and object classes (e.g. Integer Interval.java, Inverted-

Table.java, NormalTable.java and VectorTable.java), previously manually imple-

mented and used by the TOG generated code. These table classes contain all

knowledge of the semantics of tabular expressions and provide several methods

(addHeaderCell, addMainCell, getMainCell, evaluateTable) which give the user the

ability to create and evaluate the tabular expressions. The Integer Interval class is a

Java collection used to implement the ¯nite set containing the integers in a speci¯ed

range for the quanti¯cations.

The code below shows the implementation of the root class for the oracle

(ggcdOracle.java) for the sample program speci¯cation described in Sec. 3.1.

372 S. G. Alawneh & D. K. Peters



Using the oracle involves implementing test code that calls the program under

test and then calls the oracle procedures. In this work, the JUnit framework is used

since it has a number of advantages. One important advantage of JUnit is that it is

widely used, which will make it easier for others to understand the test cases and

write new ones. In addition, it provides a graphical user interface (GUI) which makes

it easier to write and test the program quickly and easily. JUnit shows test progress

in a bar that is green if testing is going ¯ne and it turns red when a test fails. This is

makes it easy for the software developer to quickly identify failing test cases as they

are found. The code below shows how to run the oracle generated from the sample

program speci¯cation in Sec. 3.1 with JUnit:

The previous code contains one test case to test if the program correctly ¯nds the

greatest common divisor of (25, 20) which is 5. The greatest common divisor is

computed by the static method GCD.gcd(int,int) which is meant to implement the

speci¯cation. The user can add any number of test cases. The result for the previous

code is shown in Fig. 4.

Using Test Oracles and Formal Speci¯cations with Test-Driven Development 373



6. Test Driven Development with Oracles

This section describes our new approach for TDD. It also describes a real problem in

a real-world development environment which shows how to apply this approach.

The process is as described below:

. Write the speci¯cation for some required behavior.

. Generate the test oracle from the speci¯cation and select test inputs.

. Run the program under test in the test framework (e.g. JUnit) using the test oracle

to verify if it passes or fails.

. If the test fails, write code until this test passes.

. If the test passes and the speci¯cation is not completed yet, add to or re¯ne the

speci¯cation and redo the process again.

. We keep doing this process until the speci¯cation is complete.

6.1. Trial application

We have applied our TDD approach to build programs used in a project at Memorial

University called Sustainable Technology for Polar Ships & Structures (STePS2)b

which supports sustainable development of polar regions by developing direct design

tools for polar ships and o®shore structures. Direct design improves on traditional

design methods by calculating loads and responses against de¯ned performance

criteria. The software used in our test are to analyze particle interactions for the

purpose of developing ice-structure models. We hope that this application will help

bhttp://www.engr.mun.ca/steps2/index.php

Fig. 4. Test result.

374 S. G. Alawneh & D. K. Peters



us to demonstrate the practicality and e®ectiveness of this approach, and to gain

appreciation of its strengths and weaknesses.

Now, we will work through the example to show the whole process for speci¯ca-

tion supported TDD. According to our approach, the ¯rst step is to write a speci-

¯cation for some required behavior. Consequently, we have initiated this

speci¯cation as:

The above speci¯cation consists of the de¯nition for newPosition(p,v,delta

Time) function which represents the program function. We have used the convention

that result represents the value returned by the function. The required behavior

that is represented by this speci¯cation is to ¯nd the position for a particle after

certain amount of time based on its old position and velocity.

After writing the speci¯cation, we generate the test oracle from it and run the test

oracle to make sure that the program behavior is consistent with the required be-

havior. Following the TDD approach, the test cases should initially fail since we

haven't implemented the program yet. We then implement enough of the program to

make the cases pass.

The previous speci¯cation only de¯nes the calculation of the particle position in

one dimension but in this work, we are concerned with the position in three

dimensions. Therefore, we need to add a speci¯cation for a Vector3D class. We can

rewrite the previous speci¯cation as follows:

Using Test Oracles and Formal Speci¯cations with Test-Driven Development 375



376 S. G. Alawneh & D. K. Peters



Note that the above functions return a new instance of the Vector3D. Now, the

speci¯cation de¯nes the calculation of the position in three dimensions. After we have

re¯ned the initial speci¯cation, we repeat the same steps as in the previous one.

Again, we re¯ne the implementation until the behavior is consistent with the spec-

i¯cation. As we have seen the previous speci¯cation doesnot encapsulate the particle

properties e.g. position and velocity in a class. To do that, we need to add a speci-

¯cation for the Particle class and then revise the previous speci¯cation as follows:

Using Test Oracles and Formal Speci¯cations with Test-Driven Development 377



The above speci¯cation encapsulates the particle properties in one class. Again,

we generate the test oracle and implement a test case. The particle code is then

developed until the test case passes, and so it implements the speci¯ed behavior.

Continuing the development, we add the speci¯cation for newVelocity function:

Continuing in this manner, we eventually reach the full speci¯cation of the pro-

grams, which is shown in the appendix, and we have simultaneously developed a full

implementation and a full suite of test cases.

We have used the test oracles generated from speci¯cations such as those above to

test the software that we are developing in the simulation project. Such simulation

software typically requires a lot of calculations so manual oracles are quite cum-

bersome to develop because the tester is required to spend a lot of time on doing the

calculations, which are also prone to human errors. Specifying the behavior of the

software formally and using the generated test oracles to test the software solves

these problems.

Using this approach of TDD helped us to build full speci¯cation of the programs,

as shown above, and to develop a full implementation and a full suite of test cases.

But if we apply the traditional TDD to the same application, we will end up with

only a full implementation and a full suite of test cases. The traditional TDD has

disadvantages of lack of documentation and over-speci¯c test cases. Therefore, using

this approach of TDD will overcome these two disadvantages by assoicating the

formal speci¯cation and test oracles in the TDD process.

While this small trial is clearly not a su±cient empirical study to draw conclusions

about the impact of these techniques on software development cost or quality, we are

convinced that using this approach has helped us to improve the quality of the

software that we are developing.

378 S. G. Alawneh & D. K. Peters



7. Conclusion

The problems mentioned in this work are central to software testing. The use of

formal speci¯cation techniques has been shown to improve the quality of software

but the industrial community has been slow to accept them because they are seen as

greatly increasing the up-front cost of system development without signi¯cant

measurable bene¯t. The ability to test a program using its speci¯cation as an oracle

will greatly increase the value of such formal speci¯cation by reducing the cost of

testing and helping to ensure that errors that occur during testing are detected. The

test oracle generator can also be used to ensure that speci¯cation is kept up to date:

if a program is always tested against the speci¯cation then everyone is assured that

the speci¯cation is consistent with the program behavior.

In test-driven development, tests are used to specify the behavior of the program,

and the tests are additionally used as a documentation of the program. However,

tests are not su±cient to completely de¯ne the behavior of a program because they

only de¯ne the program behavior by example and they do not state general prop-

erties. Therefore, the latter can be achieved by using our TDD approach, which uses

a formal speci¯cation to specify the behavior of the program and supports testing

directly against that speci¯cation by generating oracles. The outcome of this tech-

nique is that, at the end of the development period, the developer has produced not

only a working implementation, but also a complete speci¯cation and a full set of test

cases.

We are convinced that using this approach in large industry projects will help to

improve the quality of the software.

8. Future Work

Clearly a next step in this research and tool development will be to support test case

generation from the speci¯cation as well, which will further reduce the amount

of \manual" test code development e®ort. Also, applying this approach in a large

industry projects.

Other possible improvements in the tool set (e.g. better visual editing, etc.) could

be done in the future development of these tools. In addition to that, part of the

future work is using these tools to do analysis of the test cases (e.g. coverage of the

speci¯cation).

Acknowledgments

This research was supported by the School of Graduate Studies and the Faculty of

Engineering and Applied Science at Memorial University of Newfoundland (MUN)

and the Government of Canada through the Natural Sciences and Engineering Re-

search Council (NSERC).

Using Test Oracles and Formal Speci¯cations with Test-Driven Development 379



Appendix A. Full Speci¯cation of the Programs

380 S. G. Alawneh & D. K. Peters



Using Test Oracles and Formal Speci¯cations with Test-Driven Development 381



382 S. G. Alawneh & D. K. Peters



Using Test Oracles and Formal Speci¯cations with Test-Driven Development 383



References

1. R. F. Abraham, Evaluating generalized tabular expressions in software documentation,
M. Eng. thesis, McMaster University, Dept. of Electrical and Computer Engineering,
Hamilton, ON, Feb. 1997.

2. S. Alawneh and D. Peters, Speci¯cation-based test oracles with JUnit, in Canadian
Conference on Electrical and Computer Engineering (CCECE), Canada, May, 2010.

3. S. Alawneh and D. Peters, Test driven development with oracles and formal speci¯ca-
tions, in Proc. IFIP International Conference on Testing Software and Systems (ICTSS),
Natal, Brazil, Nov. 2010.

4. S. Ambler, Agile Database Techniques: E®ective Strategies for the Agile Software De-
veloper (Wiley, 2003).

5. S. Antoy and D. Hamlet, Self-checking against formal speci¯cations, in W.W. Koczkodaj,
P. E. Lauer and A. A. Toptsis (editors), Proc. Int'l Conf. Computing and Information
(1992), pp. 355�360.

6. H. Baumeister, Combining formal speci¯cations with test driven development, in Extreme
Programming and Agile Methods��� XP/Agile Universe 2004, 4th Conference on Extreme
Programming and Agile Methods, Lecture Notes in Computer Science, Vol. 3134, 2001,
pp. 1�12.

7. K. Beck, Extreme Programming Explained: Embrace Change (Addison-Wesley, 2000).
8. G. Bernot, M. Gaudel and B. Marre, Software testing based on formal speci¯cations:

A theory and a tool, Software Engineering Journal 6 (1990) 387�405.
9. D. Chapman, A program testing assistant, Communications ACM 25(9) (1982) 625�634.
10. Y. Cheon and G. T. Leavens, A simple and practical approach to unit testing: The jml

and junit way, ECOOP 2002, pp. 231�255.
11. Y. Cheon and G. T. Leavens, A runtime assertion checker for the Java modeling

language (JML), in H. R. Arabnia and Y. Mun (editors), International Conference on
Software Engineering Research and Practice (SERP-02), CSREA Press, Las Vegas, 2002,
pp. 322�328.

12. H. Duan, A comparative study of pre/post condition and relational approaches to
program development, Master of Science thesis, McMaster University, Hamilton, ON,
Dec. 2004.

13. J. Gannon, P. McMullin and R. Hamlet, Data-abstraction implementation, speci¯cation,
and testing, ACM Trans. Programming Languages and Systems 3(3) (1981) 211�223.

14. D. Gelperin and B. Hetzel, The growth of software testing, Communications ACM 31(6)
(1988) 687�695.

15. J. B. Goodenough and S. L. Gerhart, Toward a theory of test data selection, IEEE Trans.
Software Engineering 1(2) (1975) 156�173.

16. R. Hamlet, Testing programs with the aid of a compiler, IEEE Trans. Software Engi-
neering 3(4) (1977) 279�290.

17. A. Herranz and J. J. Moreno-Navarro, Formal extreme (and extremely formal) pro-
gramming, in Extreme Programming and Agile Processes in Software Engineering,
4th International Conference, XP 2003, LNCS, Vol. 2675, 2003, pp. 88�98.

18. R. Janicki, On a formal semantics of tabular expressions, CRL Report 355, Commu-
nications Research Laboratory, Hamilton, Ontario, Canada, Oct. 1997.

19. R. Je®ries, A. Anderson and C. Hendrickson, Extreme Programming Installed (Addison-
Wesley, 2001).

20. M. Kohlhase, OMDoc: An Open Markup Format for Mathematical Documents (Version
1.2), Lecture Notes in Arti¯cial Intelligence, Vol. 4180, 2006.

384 S. G. Alawneh & D. K. Peters



21. G. T. Leavens, A. L. Baker and C. Ruby, JML: A notation for detailed design, in H. Kilov,
B. Rumpe and I. Simmonds (editors), Behavioral Speci¯cations for Businesses and
Systems, Chapter 12, 1999, pp. 175�188.

22. D. Luckham, F. von Henke, B. Krieg-Brückner and O. Owe, ANNA A Language for
Annotating Ada Programs Reference Manual, Lecture Notes in Computer Science,
Vol. 260, 1987.

23. J. McDonald, L. Murray and P. Strooper, Translating object-z speci¯cations to object-
oriented test oracles, 4th Asia-Paci¯c Software Engineering and International Computer
Science Conference (APSEC '97/ICSC '97), 2�5 December 1997, Clear Water Bay,
Hong Kong.

24. M. Muller and O. Hagner, Experiment about test-¯rst programming, IEEE Software,
October 2002.

25. G. J. Myers, The Art of Software Testing (John Wiley & Sons, 1979).
26. T. J. Ostrand and M. J. Balcer, The category-partition method for specifying and gen-

erating functional tests, Communications ACM 31(6) (1988) 676�686.
27. D. Panzl, Automatic software test drivers, Computer, 1978, pp. 44�50.
28. D. J. Panzl, A language for specifying software tests, in S. P. Ghosh and L. Y. Liu

(editors), Proc. National Computer Conf., 1978, pp. 609�619.
29. D. L. Parnas, Tabular representation of relations, CRL Report 260, Communications

Research Laboratory, Hamilton, Ontario, Canada, Nov. 1992.
30. D. L. Parnas, Inspection of safety critical software using function tables, in Proc. IFIP

Congress, Vol. I, 1994, pp. 270�277.
31. D. L. Parnas and J. Madey, Functional documentation for computer systems, Science of

Computer Programming 25(1) (1995) 41�61.
32. D. L. Parnas, J. Madey and M. Iglewski, Precise documentation of well-structured pro-

grams, IEEE Trans. Software Engineering 20(12) (1994) 948�976.
33. D. K. Peters and D. L. Parnas, Using test oracles generated from program documenta-

tion, IEEE Trans. Software Engineering 24(3) (1998) 161�173.
34. C. Quinn, S. Vilkomir, D. Parnas and S. Kostic, Speci¯cation of software component

requirements using the trace function method, in Int'l Conf. on Software Engineering
Advances, 2006, p. 50.

35. D. J. Richardson, S. L. Aha and T. O. O'Malley, Speci¯cation-based test oracles for
reactive systems, in Proc. Int'l Conf. Software Eng. (ICSE), 1992, pp. 105�118.

36. D. S. Rosenblum, A practical approach to programming with assertions, IEEE Trans.
Software Engineering 21(1) (1995) 19�31.

37. D. Sa®, Theory-infected: Or how I learned to stop worrying and love universal quanti-
¯cation, in Companion to Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA 2007), 2007, pp. 846�847.

38. P. A. Stocks and D. A. Carrington, Test templates: A speci¯cation-based testing frame-
work, in E. Straub (editor), Proc. Int'l Conf. Software Eng. (ICSE), 1993, pp. 405�414.

39. Y. Wang, Specifying and Simulating the Externally Observable Behavior of Modules, PhD
thesis, Dept. of Computing and Information Science, Queen's University, Kingston,
Ontario, Canada, 1994.

Using Test Oracles and Formal Speci¯cations with Test-Driven Development 385


	USING TEST ORACLES AND FORMAL SPECIFICATIONS WITH TEST-DRIVEN DEVELOPMENT
	1. Introduction
	2. Related Work
	2.1. Oracle generation
	2.2. Test driven development

	3. Formal Software Specifications
	3.1. Sample program specification

	4. Tool Support
	4.1. OMDoc document model
	4.2. The Eclipse framework
	4.3. Specification editor

	5. Oracle Design
	5.1. Internal design overview
	5.1.1. Expression implementation
	5.1.2. Quantification
	5.1.3. Tabular expressions
	5.1.4. Auxiliary functions

	5.2. Compilation and execution

	6. Test Driven Development with Oracles
	6.1. Trial application

	7. Conclusion
	8. Future Work
	Acknowledgments
	Appendix A. Full Specification of the Programs
	References


