
Detecting Concern Interactions
in Aspect-Oriented Designs

By

Pouria Shaker, B. Eng.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements
for the Degree of

Master of Engineering

Memorial University of Newfoundland

c© Copyright by Pouria Shaker, November 2006

ii

Master of Engineering (2006) Memorial University of Newfoundland
(Electrical and Computer Engineering) St. John’s, Newfoundland

Title: Detecting Concern Interactions in Aspect-Oriented Designs

Author: Pouria Shaker, B. Eng. (Memorial University of Newfoundland)

Supervisor: Dr. Dennis K. Peters

Number of pages: x, 113

Abstract

Aspect-Oriented Software Development (AOSD) is an emerging paradigm that ad-

dresses the limitation of Object-Oriented (OO) technology in localizing crosscutting

concerns (e.g. logging, tracing, etc.) by introducing a new modularization mechanism:

the aspect. Aspects localize the behaviour of crosscutting concerns (called advice)

and specify points in the structure or execution trace of the core system (called join

points) where advice applies. A weaving mechanism interleaves the execution of the

aspects and the core. The behaviour of an Aspect-Oriented (AO) system is the woven

behaviour of the aspects and the core; this woven behaviour may reveal conflicts in

the goals of system concerns (core or crosscutting): such conflicts are called concern

interactions. In this thesis, we present a process for detecting concern interactions

in AO designs expressed in the UML and our weaving rule specification language

(WRL). The process consists of two tasks: 1) a light-weight syntactic analysis of the

AO model to reveal advice overlaps (e.g. instances where multiple advice applies to

the same join point) as potential sources of interaction and 2) verification of desired

i

0. Abstract ii

model properties before and after weaving to confirm/reject findings of task 1 and/or

to reveal new interactions. At the heart of task 2 is a weaving process that maps an

unwoven AO model to a behaviourally equivalent woven OO model.

Acknowledgements

I sincerely thank my supervisor, Dr. Dennis K. Peters for accepting me as a student,

for his patience in and availability for discussing cumbersome details of my thesis, for

his constant encouragements in my hours of despair, and for supporting my atten-

dance in the Aspects, Dependencies, and Interactions (ADI) workshop at the 2006

edition of the European Conference on Object-Oriented Programming (ECOOP), as

well as the 2005 and 2006 editions of the Newfoundland Electrical and Computer

Engineering Conference (NECEC) to present our work.

The financial support received from the Natural Sciences and Engineering Re-

search Council (NSERC), the Faculty of Engineering and Applied Science, and the

School of Graduate Studies (SGS) of Memorial University of Newfoundland is grate-

fully acknowledged.

I am also grateful to Dr. Theodore S. Norvell for his insightful comments on the

presentation of the weaving process, and Dr. Ramachadran Venkatesan, Associate

Dean of Graduate Studies and Research, and Ms. Moya Crocker, Secretary to the

iii

0. Acknowledgements iv

Associate Dean of Graduate Studies and Research, for their superb administrative

support.

Last but not least, I wish to thank my family and friends for their love and support.

Contents

Abstract i

Acknowledgements iii

List of Acronyms x

1 Introduction 1
1.1 The Aspect-Oriented Paradigm . 1

1.1.1 Objects and Separation of Concerns 1
1.1.2 Aspect-Oriented Programming 4
1.1.3 Aspect-Oriented Software Development 9

1.2 Concern Interactions . 10
1.3 Research Objective and Overview . 13

2 Related Work 16
2.1 Feature Interactions . 17
2.2 Classification of Concern Interactions 20
2.3 Event-Based AOP . 22
2.4 Applying Formal Methods to AO systems 24
2.5 Modular Reasoning on AO systems 28

3 Process 31
3.1 A Restricted UML Formalism . 31
3.2 The Aspect-Oriented Model . 36
3.3 Syntactic Analysis of the AO model 43
3.4 The Weaving Process . 45
3.5 An Optimized Weaving Process . 60

3.5.1 Optimized Weaving without Concurrent Regions 67

v

CONTENTS vi

4 Case Studies 71
4.1 Feature Interactions in Telephony Systems 71

4.1.1 AO model . 72
4.1.2 Woven OO model . 79
4.1.3 Reports . 87

4.2 Interactions in an Electronic Commerce Shop 88
4.2.1 AO model . 89
4.2.2 Woven OO model . 92
4.2.3 Reports . 99

5 Discussion 102

6 Conclusion 106
6.1 Future Work . 107

List of Figures

1.1 Crosscutting in OO models . 3
1.2 Mapping a multi-dimensional concern space onto a single-dimensional

implementation space . 4
1.3 Use of quantified statements in the figure editing example 6
1.4 Display updating aspect . 9
1.5 Design-level concern interaction detection process overview 14

3.1 Alternative WRL syntax . 42

4.1 FITEL OO model class names and data 73
4.2 FITEL OO model statecharts for Control1, Control2, and Control3 . 74
4.3 FITEL OO model statecharts for CF, User Caller, User Callee, OCS,

and Switch . 75
4.4 FITEL OO model events . 76
4.5 FITEL OO model initial instantiation 77
4.6 FITEL WRL . 78
4.7 FITEL WRL in alternative syntax 78
4.8 FITEL woven OO model (using WP1) data 80
4.9 FITEL woven OO model (using WP1) statechart for PControl1 (proxy

of Control1) . 81
4.10 FITEL woven OO model (using WP1) statechart for PControl2 (proxy

of Control2) . 82
4.11 FITEL woven OO model (using WP1) events 83
4.12 FITEL woven OO model (using WP1) initial instantiation 83
4.13 FITEL woven OO model (using WP2) data 84
4.14 FITEL woven OO model (using WP2) statechart for Control 84
4.15 FITEL woven OO model (using WP2) statechart for Control2 85
4.16 FITEL woven OO model (using WP2) initial instantiation 85
4.17 FITEL woven OO model (using WP2.1) statechart for Control1 . . . 86
4.18 FITEL woven OO model (using WP2.1) statechart for Control2 . . . 86

vii

LIST OF FIGURES viii

4.19 Propocs observer class behaviour . 88
4.20 ECOMM OO model class names and data 90
4.21 FITEL OO model statecharts (with action labels) 90
4.22 ECOMM OO model events . 91
4.23 ECOMM OO model initial instantiation 91
4.24 ECOMM WRL . 93
4.25 ECOMM WRL in alternative syntax 94
4.26 ECOMM woven OO model (using WP1) data 95
4.27 ECOMM woven OO model (using WP1) statecharts for PShop (proxy

of Shop), Discount, and Bingo . 96
4.28 ECOMM woven OO model (using WP1) events 96
4.29 ECOMM woven OO model (using WP1) initial instantiation 97
4.30 ECOMM woven OO model (using WP2) data 98
4.31 ECOMM woven OO model (using WP2) statechart for Shop 98
4.32 ECOMM woven OO model (using WP2) initial instantiation 98
4.33 ECOMM woven OO model (using WP2.1) statechart for Shop 99
4.34 PRL observer class data and behaviour 101

List of Tables

4.1 FITEL verification results using IFx 88
4.2 ECOMM verification results using IFx 100

ix

List of Acronyms

Acronym Description Page (definition)

SOC Separation of Concerns 1
OO Object-Oriented 2
POP Post-Object Programming 4
AOP Aspect-Oriented Programming 4
AO Aspect-Oriented 7

AOSD Aspect-Oriented Software Development 10
CW Call Waiting 11
CFB Call Forward when Busy 11
CI Concurrency Interceptor 12
PI Priority Interceptor 12

UML Unified Modeling Language 13
WRL Weaving Rule Language 13
EAOP Event-based AOP 16
FSM Finite State Machine 19
BISL Behavioural Interface Specification Language 25
JML Java Modeling Language 26
LTS Labeled Transition System 26
RTC Run To Completion 34
WP1 Unoptimized Weaving Process 46
WP2 Optimized Weaving Process 60

WP2.1 WP2 without Concurrent Regions 67
FITEL Feature Interactions in Telephony Systems case study 72
PRL Price Reduction Limit 89

ECOMM Electronic Commerce case study 89

x

Chapter 1

Introduction

1.1 The Aspect-Oriented Paradigm

1.1.1 Objects and Separation of Concerns

Over the years, computer hardware and software have evolved hand in hand. In

the early days, due to hardware limitations, the problems solved by computers were

simple and so was the software written to solve them. Demands for using computers to

solve more complex problems led to advancements in hardware technology; software

technology grew as a result to support the complex software solutions required for such

problems. Traditional engineering disciplines manage the complexity of systems by

separation of concerns (SOC); that is, identifying the system’s concerns and dealing

with each concern separately. With ideal SOC one can develop, test, and modify

1

1. Introduction 2

system concerns in isolation and evolve systems to handle new concerns without

changing their existing parts. In 1972, Paras called for the application of SOC to

software development to cope with the increasing complexity of software systems, and

suggested that ideal SOC can be approached through the technique of modularization

[36]. Over the years, programming paradigms have emerged to help developers achieve

better SOC by providing better modularization mechanisms. The Object-Oriented

(OO) paradigm is currently the most popular; its primary unit of modularity, the

class, improves SOC by grouping together data and behaviour related to a single

concern; however not all concerns of a system can be simultaneously localized in

classes. Consider the example (from [12]) of a typical OO model for a simplistic figure

editing program shown in Figure 1.1. The concerns of representing the display screen

and the figures, points, and lines on the screen (i.e., the core concerns) are localized by

the concrete classes Display, Figure, Point, and Line respectively. Now consider the

concern of updating the display screen each time points or lines move. This concern

cannot be localized in a single module in this model. Its implementation cross-cuts the

Point and Line modules as invocations of Display.update() in each of the modifier

methods of Point and Line. In this model, display updating is a crosscutting concern.

What if we try a different modularization that localizes the display updating concern?

We will sadly discover that this will leave other concerns scattered across the new

model. The crosscutting nature of concerns is an inherent property of many real

1. Introduction 3

Display

update()

Point

getX()
getY()
setX(int)
setY(int)

Line

getP1()
getP2()
setP1(Point)
setP2(Point)

Figure FigureElement

2

*

DisplayUpdating

Figure 1.1: Crosscutting in OO models

problems and OO technology falls short in localizing all concerns in such problems.

As shown in Figure 1.2 (adopted from [24]), the concern space of many problems

is multi-dimensional. An OO system is modularized across a single dimension. All

concerns along this dimension are neatly localized in the OO model, while the remain-

ing concerns crosscut the model. This is the result of mapping a multi-dimensional

concern space onto a single-dimensional implementation space.

The inability of OO technology to simultaneously localize orthogonal concerns has

its consequences: crosscutting concerns are implemented in several modules (scatter-

ing) and a single module implements more than one concern (tangling). These are

signs of poor modularity: scattering leads to poor traceability from crosscutting con-

cerns to their implementation, and tangling hinders ease of module implementation

1. Introduction 4

Display element representation

Display updating

Logging

Display element representation

Display updating

Logging

Mapping

Concern space Implementation space

Figure 1.2: Mapping a multi-dimensional concern space onto a single-dimensional
implementation space

(one has to focus on multiple concerns while implementing a module), comprehension,

and reuse (the implementation of one concern comes with the baggage of other con-

cerns). It also becomes hard to evolve the system since implementing an additional

crosscutting concern involves modifying multiple modules.

1.1.2 Aspect-Oriented Programming

Several post-object programming (POP) technologies emerged to address the limi-

tation of OO technology in achieving SOC across more than one dimension. These

include adaptive methods [26], subject-oriented programming [44], composition filters

[3], and aspect-oriented programming [21]. These related research paths converged

under the title of aspect-oriented programming (AOP).

Despite ongoing and productive dialogue amongst the AOP community, a com-

1. Introduction 5

mon consensus on what constitutes an AOP approach is yet to be reached (though

significant efforts have been made including [29], [31], and [14]). Perhaps the most

widely cited endeavour to characterize AOP is that of Filman [14]: that AOP is

quantification and obliviousness. Quantification means that programs can include

quantified statements (i.e. statements that apply to more than one place) of the form

In programs P, whenever condition C arises, perform action A.

Obliviousness means that authors of a program P need not be aware of quantified

statements that reference them. How do quantified statements help? Figure 1.3

illustrates how the display updating concern from the figure editing example of Sec-

tion 1.1.1 can be localized in a quantified statement (another quantified statement

could localize the logging concern). Notice how the authors of the Point and Line

classes can be oblivious of the display updating concern (or other cross-cutting con-

cerns such as logging) and focus on implementing the concerns of representing points

and lines. In general given an N-dimensional concern space and an M-dimensional

implementation space where M ¡ N, crosscutting concerns can be localized in quan-

tified statements in an AOP system (this supports the notion that AOP does not

replace existing technologies, rather it complements them); this improves modularity

with the following implications:

• Improved traceability : Crosscutting concerns can be easily traced to quantified

statements.

1. Introduction 6

class Point {
 private int x, y;
 …
 public void setX(int x) {
 this.x = x;

Display.update();
 }
 public void setY(int y) {
 this.y = y;

Display.update();
 }
}

class Line {
 private Point p1, p2;
 …
 public void setP1(Point p1) {
 this.p1 = p1;

Display.update();
 }
 public void setP2(Point p2) {
 this.p2 = p2;

Display.update();
 }
}

In the figure editing program,
 program P
after execution of methods Point.setX(int), Point.setY(int), Line.setP1(Point), Line.setP2(Point)
 condition C
invoke Display.update()
 action A

Display updating quantified statement

Figure 1.3: Use of quantified statements in the figure editing example

• Ease of implementation and comprehension: Authors/readers of modules can

focus on implementing/understanding one concern and can be oblivious of cross-

cutting concerns.

• Module reusability : Modules implement a single concern and do not come with

the baggage of other concern implementations.

• Improved evolvability : Adding a crosscutting concern is simply a matter of

adding a quantified statement.

According to [14], to implement an AOP language (i.e., a language that allows

quantified statements over oblivious programs) one must consider three issues:

• Quantification: What conditions can we use in quantified statements? In other

1. Introduction 7

words, to what points in the execution of programs can actions be tied? Two

broad types are:

– Points that can be specified by elements of the static structure of programs

(e.g. method calls which can be specified by method signatures)

– Points that depend on run-time behaviour (e.g. size of the call stack)

• Interface: How do quantified statements communicate with programs and with

other quantified statements?

• Weaving : What mechanism interleaves the execution of actions in quantified

statements with the execution of affected programs?

AspectJ [19] is a general purpose aspect-oriented (AO) extension to Java developed

by the AOP group at Xerox Palo Alto Research Center (PARC) and is perhaps the

most popular existing AOP language. AspectJ allows writing quantified statements

over conventional Java programs. Quantified statements are specified by class-like

constructs called aspects (note that the term aspect-oriented programming was coined

by Gregor Kiczales of Xerox PARC). Let us see how AspectJ addresses the three

implementation issues listed above:

• Quantification: Conditions are specified by pointcuts, which are expressions

that match a set of points in the execution of programs (i.e., join points). The

kinds of join points supported (i.e., the join point model) include method or

1. Introduction 8

constructor calls and executions, advice executions, static class initializations,

object or aspect initializations, field read or write accesses, and exception han-

dler executions.

• Interface: Aspect actions are specified by method like constructs called advice,

which can be specified to execute before, after, or around join points. Aspects

can gain contextual information from join points and use it in advice; this is done

using parameterized pointcut expressions. Additionally, aspects can introduce

fields and methods into types in the core through the inter-type declaration

mechanism.

• Weaving : the AspectJ compiler (ajc), combines core and aspect source files and

jar files into woven class files or jar files.

AspectJ terminology (e.g. aspect, join point, join point model, and advice) is widely

used in AO literature, and will also be adopted in this document. Figure 1.4 shows

an AspectJ aspect written for the display updating concern.

Other AOP languages such as the DJ library [26], Hyper/J [44], and composition

filters [3] use different approaches to address the three implementation issues. The

interested reader is referred to the cited sources for details.

1. Introduction 9

aspect DisplayUpdating {
 pointcut move():
 execution(public void Point.setX(int)) ||
 execution(public void Point.setY(int)) ||
 execution(public void Point.setP1(Point))||
 execution(public void Point.setP2(Point));

 after(): move() {
 Display.update
 }
}

advice

Pointcut
expression

Figure 1.4: Display updating aspect

1.1.3 Aspect-Oriented Software Development

Software development has evolved from a programming activity to a full-blown engi-

neering process. Modern software engineering constructs systems using processes that

progressively refine higher-level abstractions of the system to lower-level abstractions

starting from requirements and stopping at executable code. Preserving two impor-

tant properties across this refinement process helps a great deal in producing high-

quality software: modularity and traceability. Both modularity and traceability are

crucial in managing change in systems. When the system changes at a given level of

abstraction, modularity ensures that the change is localized, and traceability ensures

that the change can be propagated naturally and easily to other levels of abstraction.

In Section 1.1.2, AOP was described as a technique that improves modularity at

the code level. The benefit of applying the AO paradigm to earlier stages of the soft-

ware development cycle is two-fold: first it ensures improved modularity at all stages

1. Introduction 10

of the development process; secondly, preserving the notion of aspects throughout the

development process ensures traceability. These ideas launched the field of aspect-

oriented software development (AOSD) with an active research community. As stated

in [13], the same way that AOP extends conventional programming technology, AOSD

extends conventional software development practices. An excellent survey of research

aimed at applying AO techniques to various stages of the development process includ-

ing requirements engineering, specification, design, implementation, and evolution is

given in [4].

1.2 Concern Interactions

By untangling cross-cutting behaviour from core behaviour, the AO paradigm makes

it easier to reason about individual concern behaviour. Reasoning about overall sys-

tem behaviour however, becomes a challenge as it requires examining the woven be-

haviour of the core and the aspects, which may or may not be explicitly available to

the developer in a comprehensible form (this depends on the workings of the weaving

mechanism). This situation can give rise to unanticipated anomalies in the behaviour

of the woven system. The desired properties of the woven behaviour of two concerns

(possibly compound, i.e. the result of weaving two or more primitive concerns) are

(1) existing critical correctness properties of the behaviour of each individual concern

and (2) new correctness properties of the woven system; if this set of properties is

1. Introduction 11

inconsistent, we say that two or more of the concerns involved undesirably interact.

In (1) we say critical correctness properties, to distinguish between desired and un-

desired interactions. The very purpose of weaving an additional concern may be to

violate existing properties of constituent concerns in favor of achieving new properties

for the woven system. In the remainder of this thesis the term interaction will be

used to mean undesired interaction. A simple example of concern interactions from

[10] is the interaction between logging and encryption aspects applied to some core

system. The encryption aspect encrypts the content of messages passed within the

core, while the logging aspect logs the messages for debugging purposes. If logging

precedes encryption, encryption is compromised by a plain log file; and if encryption

precedes logging, logging is compromised by an encrypted log file that is not very

useful for debugging. More sophisticated instances of concern interactions have been

identified in various domains including the following:

• Telephony : In modern telephony systems, users can subscribe to various features

on top of their basic call service. Features subscribed to by one or more users

may interact. As an example, suppose a user subscribed to call waiting (CW)

and call forward when busy (CFB) is engaged in a call and receives a further

call. If the call is forwarded due to CFB, CW is compromised and vice versa.

Feature interactions in telephony systems has been an active research area for

many years. A survey of the state of the art in this area is presented in [7].

1. Introduction 12

• Email : Basic email can also be improved by various features (e.g. spam filter,

auto responder, etc.) that may interact. Suppose an email service equipped

with decryption and forwarding features receives an encrypted message. In

decryption applies before forwarding, then a clear email message is sent over the

internet compromising the encryption/decryption features. Such interactions

have been studied in [16].

• Middleware: Middleware is software that connects software components, and

supports the development and operation of these components by providing

generic (e.g. security, messaging, etc.) and/or domain specific services. As

explained in [27], these services may interact. For example, consider interceptor

services in a J2EE compliant application server. Interceptors are arranged in a

pipeline and process incoming requests from end components in order. Suppose

the concurrency interceptor (CI), which allocates a thread from a limited pool

to each request, comes before the priority interceptor (PI), which schedules re-

quests based on their priority. If CI has no threads left for a new high priority

request, PI is compromised.

• Multimedia: Interactions between Internet-based and multimedia/mobile ser-

vices have been identified in [5]. For example, mechanisms for power adaption

and network bandwidth adaption in a mobile device interact: if the device is

running low on power, power adaptation instructs applications using network

1. Introduction 13

bandwidth to stop; but as a result, network bandwidth adaptation instructs

applications to make use of the bandwidth that has now become available.

1.3 Research Objective and Overview

The sooner an error is found in the software development process the easier it is

to fix. In this document we present a process for detecting concern interactions at

the design stage (see Figure 1.5). The process assumes AO designs expressed in the

Unified Modeling Language (UML) [39] and our weaving rule specification language

(WRL). Here, the data and behaviour of concerns are modeled separately using UML

class and statechart diagrams, and rules for weaving concern behaviour are specified

in WRL. WRL defines a join point model on UML statecharts and supports the

following:

• Before and after advice (before advice can conditionally consume the advised

join point)

• Assignment of aspect instances to core instances

• Aspects of aspects

• Aspect composition by a precedence operator on advice

The process consists of two tasks:

1. Introduction 14

Verification Report Formal Verifier

Analysis Report

Desired Properties
Weaver

Syntactic Analyzer

Developer AO Model UML WRL

OO Model UML

Task 2

Task 1

Figure 1.5: Design-level concern interaction detection process overview

• Task 1: The AO model is syntactically analyzed to reveal advice overlaps; e.g.

instances where multiple advice is applied to the same join point. Such overlaps

can be the source of interactions and can easily be overlooked by the developer.

Examination of the analysis report by the developer may lead to revisions of

the AO model.

• Task 2: A weaving process is applied to the AO model the output of which is a

woven OO model expressed in the UML. Existing UML verification techniques

(such as [41], [34], and [33]) are applied before (on the UML component of the

AO model) and after weaving against desired properties specified by the devel-

oper to detect interactions as defined in Section 1.2. The verification report may

reveal indirect interactions not exposed by task 1, and may be used to determine

whether advice overlaps revealed by task 1 do indeed correspond to interactions.

1. Introduction 15

It should be noted that formal verification of UML is still a research topic; how-

ever, we view it as an available technology and will reasonably assume that such

tools will mature in the not too distant future. In our work, we used IFx [33]

to formally verify UML models. IFx extends the IF toolset, a set of tools for

model-checking and simulating models of communicating extended timed au-

tomata expressed in the IF language. In IF, temporal properties are expressed

using observer automata. Observers monitor the execution of the model and

react to state changes and events (e.g. signal receptions). An observer state

can be designated as an error state, allowing the specification of safety prop-

erties. IFx defines a UML observer formalism, where an observer is modeled

as a class (error states in the class statechart are labeled with stereotypes) and

maps UML models and observers to IF.

The remainder of this document is organized as follows. Chapter 2 gives a survey

of related work. Chapter 3 describes the details of the process: it describes our

AO modeling language, the syntactic analysis of the AO model, and the process of

weaving the AO model into a behaviourally equivalent OO model. Chapter 4 applies

the process to two case studies. Chapter 5 evaluates the process empirically (based

on the case studies) and analytically. Finally, Chapter 6 presents the conclusion and

directions for future work.

Chapter 2

Related Work

In this chapter we present a survey of the state of the art in the area of concern

interactions. Section 2.1 briefly describes research on a well-known and extensively

studied instance of concern interactions: feature interactions in telephony systems,

which we mentioned in Section 1.2. Research on concern interactions in generic AO

systems is more scarce: in Section 2.2 through Section 2.5 we present (what we

deem a reasonable coverage of) relevant published work in AO literature. Section 2.2

presents research on the classification of concern interactions. Section 2.3 describes

event-based AOP (EAOP) a widely cited framework for AOP, with support for the

detection and resolution of aspect interactions. Section 2.4 lists selected research

on the application of formal specification and verification to AO systems. As we

argued in Section 1.3, formal methods can be used to detect concern interactions.

16

2. Related Work 17

Section 2.5 lists research on methods that enable modular reasoning of AO systems.

Modular reasoning eliminates the need for analyzing the entire system to understand

the effect of applying an aspect to the core. Such an understanding will aid developers

in foreseeing and resolving concern interactions.

2.1 Feature Interactions

In [7] research on feature interactions in telephony systems has been categorized into

three trends:

• Software engineering: It is argued that the creation of features is largely a

software development task. Features are software entities that are complex,

real-time, prone to frequent change, and must exhibit a high level of reliability.

It is only natural to apply and adapt software engineering techniques used for

development of software with similar attributes to the development of features.

Such techniques include the use process models and methods for various phases

of the development cycle (e.g. specification, design, testing, deployment, and

maintenance). Software engineering can lessen the probability of unanticipated

feature interactions indirectly by adding rigour, structure, and predictability to

the feature creation process, and can directly aid feature interaction detection,

resolution, and avoidance, with the design of process models with phases dedi-

2. Related Work 18

cated to the application of methods, notations, or techniques used elsewhere in

software engineering to the feature interaction problem.

• Formal methods: Formal description, modeling, and reasoning techniques

(including process algebras, various flavours of automata, petri-nets, SDL,

Promela, Z, and LOTOS) have been used to both detect unanticipated fea-

ture interactions and to validate expected ones at the specification level (i.e.

independent of the implementation), though the latter use applies to most pub-

lished work. The (widely known) benefits of formal methods include having an

unambiguous documentation for features and the ability to perform automated

analyses. The approach for using formal methods is either of the following:

– Modeling features and the basic service with abstract properties, and defin-

ing interactions as inconsistencies in the properties

– Modeling features and the basic service with behavioural models and prop-

erties on the models, and defining interactions as when individual models

satisfy their properties, but the combined model fails to satisfy the con-

joined properties

Our definition of interactions in Section 1.2 resembles the former approach,

while task 2 of our process (defined in Section 1.3) applies the latter. The

operation of combining models in the latter approach is tailored to a known set

2. Related Work 19

of features and basic call service, while we define a weaving process for generic

AO systems.

• Online techniques: Here, interactions are detected (and often resolved) at run-

time. The benefits of using online techniques include operating on the real

system and not its model, and support for detecting interactions between fea-

tures developed by multiple vendors (where specification level information is

not available) and features in legacy systems (where detailed documentation

for features is not available). Online approaches require information about fea-

tures that can be collected a-priori at design-time or during run-time. Also

the control of monitoring feature communications can be localized in a feature

manager or distributed amongst features. Our approach is clearly an offline

technique.

Using AO technology to detect feature interactions has also been studied [30],

where AspectJ [19] is used to encode the control software as a finite state machine

(FSM) and features as aspects that change the FSM (or core). Program slicing [47]

is used to identify the part (slice) of the core affected by each aspect. Overlaps in

aspect slices are reported as interactions between features encoded by the aspects.

A program slice, is an executable portion of the program that manipulates variables

referenced by a set of program points called the slicing criterion. To extract the

core slice affected by an AspectJ aspect, pointcut expressions are used as the slicing

2. Related Work 20

criterion.

2.2 Classification of Concern Interactions

An approach for classifying and documenting aspect interactions is presented in [40].

It is argued that classification helps identify common patterns of interaction and

their response type, and documentation makes interactions explicit providing useful

knowledge that can used throughout the system life cycle. The classification defines

four types of interactions:

• Mutual exclusion: An undesired interaction that occurs when two aspects im-

plement mutually exclusive concerns such as alternative algorithms or policies.

For this type of interaction, no mediation is possible and only one of the aspects

can be used

• Dependency: An undesired interaction that occurs when the correct operation of

aspect A depends on the presence and an expected mode of operation of aspect

B (e.g. an authorization aspect that depends on an authentication aspect), and

aspect B is not present or does not operate as expected

• Reinforcement: A desired interaction that occurs when one aspect positively in-

fluences the correct operation of another aspect (e.g. extends its functionality).

Suppose that in an auction system we have authorization aspect. Adding an

2. Related Work 21

aspect that monitors the location of users allows us to extend the authorization

aspect to implement a more sophisticated authorization procedure that takes

the user’s location into account.

• Conflict: An undesired interaction that occurs when aspects semantically in-

terfere; that is, when one aspect works correctly alone, but fails to do so when

composed with other aspects. The logging vs. security example of Section 1.2

illustrates this kind of interaction. Conflict interactions can often be resolved

by mediation.

Our definition of concern interactions is closest to the conflict category, though we

also consider core/aspect interactions. Mutual exclusion and dependency categories

as defined in [40] deal with dependent aspects. Such interactions can be captured

at a higher level (e.g. the requirements phase). Nevertheless our pre/post weaving

verification approach can potentially be used to capture such interactions as well.

An analysis of AO programs that classifies interactions between aspect advice and

core methods is presented in [38] (interactions between aspects are not considered).

Advice can interact with a method directly by augmenting, narrowing, or replacing

its execution, or indirectly by using object fields also used by the method. Direct

interactions can be found by task 1 of our process: before advice that does not

consume, and after advice are augmenting advice; before advice that may consume is

narrowing advice; and before advice that always consumes is replacement advice (see

2. Related Work 22

Section 3.2 for a definition of consumes in before advice). Indirect interactions can

be found by task 2.

2.3 Event-Based AOP

EAOP is perhaps the most explicit treatment of the problem of detecting and resolving

aspect interactions in AO literature. EAOP defines a formal framework for AOP: the

core is modeled by its execution trace, i.e. a sequence of join points emitted by the

core in the course of its execution. Primitive aspects (C .I) are defined by a crosscut

(C), which is a regular expression that matches a sequence of events in the execution

trace, and an insert (I), which is the action to be performed when the crosscut is

matched. Aspects can be composed by several operators:

• Repetition (µa.A): Repeats the behaviour of an aspect after it matches a join

point sequence, where A is an aspect and a is the repetition variable.

• Sequence (A1−C → A2): Behaves like A1 until C matches a join point sequence,

at which point it behaves like A2.

• Choice (A1�A2): Behaves like the first aspect to match a join point sequence

(e.g. if A1 matches a join point first, the choice aspect behaves like A1 and A2

behaviour is dropped). Behaves like A1 if both match a join point sequence.

2. Related Work 23

Compound aspects are essentially state machines that evolve from one aspect to

another in response to join points.

Weaving is implemented by a monitor that observes the execution trace and prop-

agates join points one at a time to a parallel composition of aspects (A1|| . . . ||An). In

response to each join point, the parallel composition evolves into the parallel compo-

sition of each constituent aspect evolved in response to the join point. The parallel

composition of two aspects can be adapted to, for instance:

• Propagate the join point to the first aspect and then to the second aspect

• Propagate the join point to the aspects in an arbitrary order

• Propagate the join point to the first aspect, and then only if the first aspect did

(not) match a crosscut, to the second aspect

In EAOP, two aspects are said to interact when they match the same join point.

A static analysis is introduced to detect such interactions. In Section 3.3 we use

the term advice overlap for this definition, and explain that it may fail to capture

important interactions in a system. We illustrate via case studies in Chapter 4 how

task 2 of our process can detect such interactions. Composition operators, including

(adapted) parallel composition, serve as linguistic support to resolve interactions (i.e.

advice overlaps). In Chapter 5 we point out that our approach falls short of EAOP in

linguistic support for interaction resolution, due to less aspect composition operators.

2. Related Work 24

Other features of EAOP include:

• Aspects of aspects: Aspects themselves can contribute join points to the execu-

tion trace; that is, they can be advised by other aspects.

• Aspect variables: Variables in compound aspects allow information sharing

amongst constituent aspects.

• Requirement aspects: These are special aspects that specify conditions that the

core must satisfy in order for a normal aspect to be applicable.

2.4 Applying Formal Methods to AO systems

The following summarizes publications we came across that apply formal methods to

AO systems, and in some instances explicitly state the applicability of their approach

to the detection of interactions. Additional references on the subject can be found in

[4].

• A process-algebraic foundation for AOP is presented in [2].

• A technique to verify properties of AspectJ [19] aspects is presented in [6]. It is

argued that it is sufficient to analyze the aspect itself and the portion of the core

program that it affects. Program slicing [47] is used to compute this portion

(slice) as in [30]. Core slices are used to build useful models using tools such

2. Related Work 25

as Bandera [9] (a tool that extracts FSMs from Java source code), that can be

used to prove properties such as absence of aspect interactions at the code level.

In a related work [45], model extraction and model-checking is applied to woven

AspectJ.

• The AOP language SuperJ is introduced in [42]. In SuperJ crosscutting concerns

are implemented in superimpositions, which are collections of generic aspects

and new (singleton) classes. Generic aspects do not reference program units

(e.g. method names) of a particular core. Instead, they reference parameters

that are later bound to a particular core. The new singleton classes provide

services that are used in methods and advice of generic aspects. A preprocessor

applies a superimposition to a particular core by turning generic aspects to

concrete AspectJ aspects. This is done by binding program units of the core

to parameters of generic aspects. Additionally, the new singleton classes are

added to the bound program. A superimposition includes a specification of its

applicability conditions to core programs, and desired properties of the bound

program. This specification allows proofs on the correctness of superimpositions

and the legality of combining them (i.e. detecting interactions) independent of

a particular core.

• Pipa, a behavioural interface specification language (BISL) for AspectJ, is intro-

duced in [48]. A BISL specification describes how to use a module by detailing

2. Related Work 26

a module’s interface (i.e. static information such as method signatures) and its

behaviour from a client’s point of view. BISLs are language dependent. Pipa is

an extension to the Java modeling language (JML) [25], a BISL for Java, and

enables the formal specification of AspectJ modules. A process for transform-

ing an AspectJ program with its Pipa specification into a corresponding Java

program with its JML specification is described in [48]. This allows the use of

JML-based tools to formally verify properties of AspectJ programs.

While [6], [42], and [48] apply to AO systems at the source code level, the following

research (like ours) targets AO systems at the design and specification level.

• In [32] AO systems are modeled using the role modeling approach [37], where

a system concern is modeled by a set of roles that collaborate to address the

concern. Each role represents an object (that can be involved in one or more

concerns) and describes those properties of the object that are relevant to the

concern. Weaving two concerns involves merging their role models by identi-

fying roles in one concern with roles in the other and merging them into fat

roles. Remaining roles are carried over to the woven model. Role models are

expressed in Alloy [18], a formal object modeling language, and formal analyses

are performed on the Alloy models.

• In [35] the core and aspects are modeled using labeled transition systems (LTS).

The core LTS is stored in a flexible data structure, allowing aspect LTS to be

2. Related Work 27

woven in at run-time. A run-time manager is responsible for the dynamic aspect

integration, and also applies run-time model-checking to detect aspect/aspect

and core/aspect interactions. The run-time model checking only checks for in-

teractions in the current system execution and therefore does not suffer from the

state-space explosion problem. Once an interaction is detected a combination

of resolution strategies that use a-priori knowledge of interactions as well as

generic resolution strategies are applied. The resolution strategies themselves

are adaptive in that they can change based on the result of the detection and

resolution.

• In [23] aspect advice and the core program are modeled as FSMs. A process

is presented that takes the core FSM, pointcut designators (i.e. points where

advice apply), and desired behavioural properties of the core that are to be

satisfied before and after weaving, and automatically generates interfaces that

advice applied to the core can be verified against. The interfaces describe the

model-checker state, at states of the core that lead to and return from advice.

Advice (authored possibly at a different time or place) can be verified against

these interfaces in isolation from the core; the authors term this capability

modular advice verification. This allows for the detection of core/aspect inter-

actions without the need for the computationally expensive verification of the

entire woven system.

2. Related Work 28

Our work differs from these efforts in two respects: First, it uses a practitioner-friendly

AO modeling language made up of a main-stream design language (the UML) and a

simple (and intuitive) domain specific language (WRL). Second, the computationally

expensive formal verification is preceded by a light-weight syntactic analysis. Our

work particularly differs from [35] in that it is an offline process: all tasks (e.g. syn-

tactic analysis, weaving, and formal verification) are performed at design time. In

contrast, [35] presents an online process, where aspects can be woven and interac-

tions detected and resolved at run time. Also, it differs from [23] in that it targets

aspect/aspect interactions as well as core/aspect interactions.

2.5 Modular Reasoning on AO systems

Modular reasoning, as defined in [20], is the ability to reason about a module by ex-

amining its interface, implementation, and the interfaces of other modules referenced

in its implementation. AOP enables modular reasoning on cross-cutting concerns

implemented in aspect modules. It is argued, however, that due to the obliviousness

criterion (see Section 1.1.2), AOP hinders modular reasoning on core modules advised

by aspects, since fully understanding a core module requires examining all aspects

that advise it, references to which are not present in the core’s implementation (i.e. it

requires a global system analysis). The following research aims at enabling modular

reasoning in AO systems:

2. Related Work 29

• In [20] it is argued that regardless of whether AOP is used or not, reasoning

about cross-cutting concerns does indeed require a global analysis of the system

due to the scattering and tangling phenomena (see Section 1.1.2). With AOP,

once the deployment configuration is known, a single pass of global analysis

is sufficient to construct aspect-aware interfaces for modules. In an AspectJ

implementation, the aspect-aware interface of an aspect module includes sig-

natures of advised join points, and that of a core module includes the core

interface augmented with signatures of advice applied to the core. Once aspect-

aware interfaces are constructed, modular reasoning becomes possible in the

AO system.

• Open modules is introduced in [1] as a module system where a module’s interface

is made up of methods and advisable pointcuts. Details of when a pointcut is

matched is hidden in the module’s implementation. Here, aspects can only

advise external calls to methods of a module’s interface and pointcuts in a

module’s interface. It is argued that in AspectJ like languages, an aspect is

tightly coupled with implementation details of a core module (such as method

names and method implementation details). Open modules ensures that the

dependency is restricted to a well-defined interface as in conventional module

systems.

• In [8] it is proposed to divide aspects into two groups: observers and assistants.

2. Related Work 30

Observers do not change the specification of core modules they advise and

as such they preserve modular reasoning, without the need for core modules

to explicitly reference them. Assistants on the other hand can change the

specification of core modules, and therefore, modular reasoning only becomes

possible when core modules explicitly reference assistants. A module is said to

accept assistance when it lists assistants that advise it or modules that it uses.

• In [43], it is argued that the lack of constraints on the core program implied

by obliviousness results in high coupling between aspects and the core. For

example the change of a method name in the core can break many aspects that

advise it (due to pointcuts). Design rules on AO programs is presented as an

alternative to obliviousness. Design rules impose restrictions on 1) the kinds

of exposed join points, 2) join point naming schemes, and 3) behaviour across

join points (e.g. pre and post conditions for advice execution at join points).

These restrictions imply an interface that aspects must adhere to. The first two

restrictions imply that pointcut expressions, once written in compliance with

the design rules, need not be changed, and the third restriction implies absence

of core/aspect interactions.

In our approach we perform analyses to detect concern interactions, which is very

different from the modular reasoning approach. For this reason no direct connection

(other than the fact that both approaches are means to the same end) is described.

Chapter 3

Process

3.1 A Restricted UML Formalism

In this section we semi-formally describe a subset of the UML that is of interest in our

process. The syntax of the UML subset of interest is expressed using sets, relations,

and functions while the semantics of UML statecharts is expressed informally in

English (presenting a formal semantics of UML statecharts is well beyond the scope

of this thesis). In reading this section, the reader is encouraged to refer to Section 4.1.1

and Section 4.2.1 for examples. This formalism is largely based on [46]. An OO UML

model is a set of classes. A class has a name, data, and behaviour. Class data is a

set of variables called attributes. A variable is a tuple (name, type) ∈ Var.

Var = Id× { int, bool, class }

31

3. Process 32

Class behaviour is a statechart. A statechart S is a tuple:

(Stateand, Stateor,↘, ini, Signal, Call, T rans, label) ∈ Statechart

A description of elements of this tuple follows. The set of states State =

Stateand ∪ Stateor and the superstate relation ↘⊆ State × State form a state

tree rooted in root ∈ Stateor with two restrictions:

• Along any path from the root to a leaf, state types alternate between and (i.e.

st ∈ Stateand) and or (i.e. st ∈ Stateor).

• Leafs are necessarily and states.

For every or state st ∈ Stateor, one child, ini(st) ∈ Stateand, is designated as its initial

state. When an and state is entered, the initial state of its children are automatically

entered. Event = Signal ∪ Call is the set of events that statechart S can receive.

Signal events are for asynchronous (non-blocking) communication while call events

are for synchronous (blocking - i.e., sender blocks until event processing completes)

communication. An event is a tuple (name, Args) ∈ Ev: It has a name, and a

sequence of variables called arguments. Trans is the set of transitions of statechart

S. A transition is a tuple (src, e, g, act, dst) ∈ Trans with the equivalent graphical

notation

src
e[g]/act−−−−→ dst

3. Process 33

where src/dst, e, g, and act are the transition’s source/destination state, trigger,

guard, and action respectively.

Trans = Stateand × (Event ∪ { (∗, Args = ∅) })×Guard×Action× Stateand

A transition with trigger ∗ is called a null transition. Guard is the set of logical

formulae over variables in the scope of S (i.e. data of the class with behaviour S) and

Action is generated by the grammar:

Action ::= Assign | Invoke | skip

Assign ::= Id := Expr

Invoke ::= (Id | self) (. | !) InvokeExpr

InvokeExpr ::= Id ([Expr (, Expr)∗])

The action language includes assignment actions (e.g. a := 5) and event invoca-

tion actions (e.g. obj!ev() for sending a signal event and obj.ev() for sending a call

event). Here we assume only simple actions without loss of expressiveness: com-

pound actions such as conditionals and sequences can be realized by combining simple

actions with statechart mechanisms such as guarded and null transitions: a transi-

tion with a compound sequence action src
e[g]/act1;act2−−−−−−−→ dst can be expanded to the

transitions src
e[g]/act1−−−−−→ sti

∗[true]/act2−−−−−−→ dst; and a transition with a conditional action

src
e[g]/if(cond) act1 else act2−−−−−−−−−−−−−−−−→ dst can be expanded to the transitions src

e[g∧cond]/act1−−−−−−−−→ dst

and src
e[g∧!cond]/act2−−−−−−−−→ dst. Actions can have labels. The label of an action act is given

by label(act) ∈ Id if one exists.

3. Process 34

The active configuration σ of statechart S is the set of states in which it resides

(i.e. its active states). The following rules apply:

• root is always active.

• If an and state is active, then so are all of its children.

• If an or state is active then so is exactly one of its children.

• If a state is active, then so are all of its ancestors.

The execution state of S is a tuple 〈σ, ν, q〉 where σ is the active configuration, ν is

a map from variables in the scope of S to their values, and q is the queue for events

received by S. The initial execution state is 〈σ0, ν0, q0〉 where σ0 is given by the

function ini and the state root (defined above) and the above rules on configurations,

ν0 is given by the model’s initial instantiation described later in this section, and

q0 = ∅. An execution state is stable if no state in the active configuration is the

source of a null transition and is transient otherwise. Events in q are processed one-

by-one in FIFO order in a run to completion (RTC) step so long as q is not empty.

The RTC processing of an event e takes s from one stable execution state to the next,

〈σi, νi, qi〉
e−→ 〈σi+1, νi+1, qi+1〉, by the following process (adopted from [17]):

1. All enabled transitions are identified: A transition is enabled if its source state

is in σi, it is triggered by e, and its guard is true with respect to values of

variables in the scope of S described by ν.

3. Process 35

2. Enabled transitions are fired: Firing a transition src
e[g]/act−−−−→ dst causes s to

leave src (i.e. src and its descendants that were in the active configuration

are removed from the active configuration), execute act updating νi (due to

assignment actions) and qi (due to event invocation actions to self), and enter

dst (i.e. dst and a subset of its descendants determined by ini and the rules

governing active configurations described above are added to the active con-

figuration) updating σi. Two enabled transitions are in conflict if their source

states have an ancestry relation, i.e. one is an ancestor of the other (multiple

enabled transitions with the same source state are disallowed). Between con-

flicting transitions, only the transition whose source state is lowest in the state

tree fires. The order of firing of enabled transitions is non-deterministic.

3. Null transitions are handled: If Step 2 lands S in a transient execution state,

∗ is dispatched causing all enabled null transitions to fire as per Step 2. This

loop continues until a stable execution state is reached. Intermediate steps that

occur within an RTC step are called microsteps.

Based on the above definitions, a class c can be defined as a tuple (name,Attr, s) ∈

Class

Class = Id× P(Var)× Statechart

3. Process 36

We will augment the definition of an OO model with a specification of its initial

instantiation: i.e. the set of objects, and initial values of their attributes, in the

model’s initial execution state. An object is a tuple (name, c, iniInst) ∈ Object.

Object = Id×Class× (Var → Value)

Finally we define an OO model as a set of classes and their initial instantiation: i.e.

a tuple (C, O) ∈ OOM where ∀o ∈ O, o.c ∈ C (i.e. all objects in the models are

instances of classes in the model).

OOM = P(Class)× P(Object)

3.2 The Aspect-Oriented Model

This section gives a semi-formal definition of AO models which is an exten-

sion/modification of the AO modeling approach of [28] (our contributions will be

discussed at the end of this section). In reading this section, the reader is encouraged

to refer to Section 4.1.1 and Section 4.2.1 for examples. An AO model has two parts:

a UML part (i.e. an OO model), and a WRL part. The UML models data and

behaviour for each concern (core or aspect) with classes. The WRL specifies how

concerns cross-cut one another. Hence, an AO model is a tuple in the set:

AOM = { (oom, wrl) | oom ∈ OOM ∧ wrl ∈ WRL(oom) }

3. Process 37

The set WRL(oom) is defined in the remainder of this section. The WRL part of an

AO model maps join points in the behaviour of an instance of one class c = (C, Attr, s)

(the core) to advice of instances of other classes (aspects). The WRL join point model

follows:

• Event join point: Is a tuple (σ, e) ∈ JPev(c) and corresponds to the RTC

processing of event e by the core statechart, when it is in a configuration σi just

before the event is processed, where σ ⊆ σi.

JPev(c) = P(c.s.State)× c.s.Event

For σ to be valid, it must be the subset of some configuration of the core:

∀s1, s2 ∈ σ, lca(s1, s2) ∈ c.s.Stateor =⇒ s1 ∈ ancest(s2) ∨ s2 ∈ ancest(s1)

where lca and ancest stand for least common ancestor and ancestor respectively.

• Action join point: Is a label l ∈ JPact(c) and corresponds to the execution of

the action labeled l in the core statechart.

JPact(c) = {l | l ∈ Range(c.s.label)}

The WRL join point model can be extended to include join points for specific

actions (e.g. event invocation).

A join point can expose contextual data from the core that may be used in advice.

The context of event join point (σ, e) is e.Args. By default, action join points have

3. Process 38

no context; however, context can be defined for extensions (e.g. an event invocation

join point can expose parameters of the invocation).

WRL advice is the aspect statechart’s evolution in response to a join point. Several

possible evolutions are described as a tree of evolution steps (or advice nodes), with

each path from the root to a leaf corresponding to one possible evolution. Advice can

be specified to apply before or after the join point. For an aspect (which is a class)

a = (A, Attr, s), advice nodes can take one of two forms:

• Action node: Is a tuple (σ, act) ∈ Nodeact(a)

Nodeact(a) = P(a.s.State)× (InvokeExpr ∪ { Skip })

where act = e(params) or skip. If act = e(params) the node’s action is a single

evolution step of the aspect statechart by the execution of the event invocation

action e(params), which leads to the RTC processing of event e ∈ a.s.Event

with arguments params (expressions over the the advised join point’s context)

by the aspect statechart. If act = skip, the node’s action is to do nothing. The

node’s action is performed only if the node is enabled : i.e., the aspect statechart

is initially in a configuration σi, where σ ⊆ σi. For σ to be valid, it must be the

subset of some configuration of the aspect.

• Consume node: A special node con ∈ Nodecon(a)

Nodecon(a) = { con(a)i | i ∈ N }

3. Process 39

that does not evolve the aspect statechart; rather it halts advice execution and

consumes the advised join point. Here, the label con symbolizes a consume

node and the subscripts i are used to differentiate one consume node in the tree

from another.

We define an advice of aspect a as a tuple (root(a), Nact, Ncon,↘) ∈ Advice(a).

Advice(a) = { root(a) } ×Nodeact(a)×Nodecon(a)× (Node(a)×Node(a)

where Node(a) = { root(a) } ∪ setNodeact(a) ∪ setNodecon(a). The set of nodes

N = { root(a) } ∪ Nact ∪ Ncon and the parent relation ↘ form a tree rooted in

root with the following restrictions:

• Consume nodes must be leaves, cannot have siblings, and can only appear in

before advice

• Sibling action nodes cannot be concurrently enabled for any configuration

∀n1, n2 ∈ Nact, n1 ∈ siblings(n2), ∃s1 ∈ n1.σ, s2 ∈ n2.σ,

lca(s1, s2) ∈ a.s.Stateor ∧ s1 /∈ ancest(s2) ∧ s2 /∈ ancest(s1)

where siblings(n) means the siblings of node n in the advice tree.

Upon occurrence of the advised join point, the aspect statechart evolves through a

sequence of steps described by action nodes of the advice tree along a path that is

traced as follows: starting from the root and until a leaf is reached or the path is

3. Process 40

blocked, the path is extended by the enabled child of its tail and the action described

by the enabled child is performed (note that consume nodes are always enabled). If

the tail has no enabled children, the path is blocked.

Based on the definitions above, we define a WRL specification as a tuple in the

set

WRL(oom) = { (am, om) | am ∈ AdvMap(oom) ∧

om ∈ ObjMap(oom, am) }

The first part of the WRL is an advice map, which is a member of the set:

AdvMap(oom) : CoreJP(oom) → P(AspectAdv(oom))

CoreJP(oom) = { (c, jp) | c ∈ oom.c ∧ jp ∈ JP(c) }

AspectAdv(oom) = { (a, adv) | a ∈ oom.c ∧ adv ∈ Advice(a) }

where JP(c) = JPev(c) ∪ JPact(c). An element [(c, jp) 7→ AS] ∈ AdvMap(oom),

specifies that for OO model oom, the occurrence of join point jp in an instance of the

core class c triggers a set of advice AS that is partitioned into a set of before advice

ASbef and a set of after advice ASaft. Each partition of AS is totally ordered : the

total order (of advice precedence) on AS serves as a composition operator on aspects.

An element (a, adv) ∈ AS specifies advice adv of an instance of the aspect class a.

The above formulation allows a class to be both a core and and an aspect; hence, the

possibility of aspects of aspects. We impose the following restrictions on advice maps:

1) aspect classes cannot receive signal events and 2) two classes may not mutually

3. Process 41

(transitively) advise one another. The reason for these restrictions will be explained

in Section 3.4.

The second part of the WRL is an object map, which is a member of the set:

ObjMap(oom, am) = { (oc, a) 7→ oa | oc ∈ CoreObj(oom, am) ∧

a ∈ Aspect(oom, am, oc.c) ∧

oa ∈ oom.O ∧ oa.c = a }

CoreObjev/act(oom, am) = { o ∈ oom.O | o.c ∈ Coreev/act(oom, am) }

CoreObj(oom, am) = CoreObjev(oom, am) ∪ CoreObjact(oom, am)

Coreev/act(oom, am) = { c ∈ oom.C | ∃jp ∈ JPev/act(c), a, adv,

(c, jp) 7→ (a, adv) ∈ am }

Aspectev/act(oom, am, c) = { a ∈ oom.C | ∃jp ∈ JPev/act(c), adv,

(c, jp) 7→ (a, adv) ∈ am }

Aspect(oom, am, c) = Aspectev(oom, am, c) ∪ Aspectact(oom, am, c)

An element (oc, a) 7→ oa ∈ ObjMap(oom, am) specifies that for OO model oom

with advice map am, the core instance oc is advised by the instance oa of aspect a. We

require that every instance of a core be assigned exactly one instance of every aspect

the core is advised by (this restriction can be can be checked for by a straightforward

analysis of the WRL specification).

3. Process 42

WRL ::= Aspect + Precedence∗
Aspect ::= className Core+
Core ::= className ((advLabel:)? (BeforeAdvice | AfterAdvice)) + ObjectMap
BeforeAdvice ::= before JoinPoint (consume | BeforeAdviceNode+)
AfterAdvice ::= after JoinPoint AfterAdviceNode+
BeforeAdviceNode ::= AdviceAction (consume | BeforeAdviceNode∗)
AfterAdviceNode ::= AdviceAction AfterAdviceNode∗
AdviceAction ::= (StateExp, aspectEvent(Args)) | null
JoinPoint ::= (StateExp, coreEvent) | actionLabel
ObjectMap ::= (coreObject -> aspectObject)+
Precedence ::= coreName JoinPoint: adviceLabel(> adviceLabel)+

Figure 3.1: Alternative WRL syntax

We have presented a mathematical syntax for WRL; however, alternative practi-

tioner friendly syntax such as that shown in Figure 3.1 (which resembles conventional

programming languages) can be developed (StateExp is a regular expression that

matches a set of states). See sections Section 4.1.1 and Section 4.2.1 for a correspon-

dence between the mathematical syntax for WRL and that of Figure 3.1.

At this point it is appropriate to highlight the extensions/modifications of our

AO modeling approach with respect to that presented in [28]. The AO modeling ap-

proach of [28] consists of modeling each concern structurally and behaviourally using

UML class and statechart diagrams. The weaving of aspects with the core is based on

the notion of event interception and reinterpretation: events targeted at the core are

intercepted and reinterpreted to an event of the aspect. Reinterpretation can occur

before/after the core handles the event and may also consume the event. This frame-

3. Process 43

work for specifying the behaviour of AO systems using statecharts is implemented in

Java as event interception and reinterpretation cannot be expressed directly in the

UML. Our approach extends these concepts by introducing an extensible join point

model for UML statecharts that not only captures event interception/reinterpretation

via event join points but also includes action join points which allow aspects to ex-

tend/modify core behaviour in more interesting ways. In addition, the presentation

of advice as a tree as well as advice precedence are new to our approach. But perhaps

more importantly, we separate weaving rule specification from the concern models

(which can be produced with the user’s favourite UML CASE tool) and present a

weaving algorithm in Section 3.4 to produce a woven UML model from the concern

models and the weaving rules. This woven model can be formally verified using UML

verification tools, the process of which is much less expensive than the verification of

Java models produced via the AO statechart framework of [28].

3.3 Syntactic Analysis of the AO model

The syntactic analysis of the AO model reveals the following to the developer:

• When multiple advice applies to the same join point. While this information

is explicit in the WRL syntax of Section 3.2 (as the mapping of join points to

sets of advice), it may be hidden in an alternative WRL syntax such as that

3. Process 44

of Figure 3.1. In the syntax of Figure 3.1, a WRL specification is made up of

a number of aspect declarations (each designates a class as an aspect), each of

which can have any number of core declarations (each designates classes that

the aspect advises). Each core declaration is made up of one or more pieces of

advice that apply to given join points of the core. Detecting instances where

more than one piece of advice applies to the same join point is the straight-

forward process of maintaining a list of advised join points per aspect (which

can easily be done during parsing) and computing the intersection of these lists.

• When one advice consumes a join point preventing other advice from executing.

This could happen in two cases:

– A before advice consumes a join point preventing all before advice (of lower

precedence) and all after advice that apply to the same join point from

executing.

– An advice consumes an event join point preventing all advice on action

join points that may occur within the event join point from executing. For

action join point jpact = l and event join point jpev = (σ, e) of core c,

define tr as:

tr ∈ c.s.T rans, tr.act = c.s.label(l)

Let trans(e, σi, σf) be the set of transitions that fire in the RTC step

3. Process 45

〈σi, νi, qi〉
e−→ 〈σf , νf , qf〉 for some νi, qi, νf , qf , and define Tr as:

Tr =
⋃

σi∈Σi,σf∈Σf (e,σi)
trans(e, σi, σf)

Σi = { σi ∈ valid configurations of c.s | σ ⊆ σi }

Σf (e, σi) = { σf | ∃νi, qi, νf , qf , 〈σi, νi, qi〉
e−→ 〈σf , νf , qf〉 }

We say that jpact may occur within jpev if an only if tr ∈ Tr. The com-

putation of T could be expensive, in particular, due to the computation

of the Σf sets, which requires an (potentially exhaustive) exploration of

the state-space. To make the computation feasible, one could specify a

maximum depth on the exploration, as the goal is to simply alert the user

of possible interactions. An exhaustive exploration of the state-space is

deferred to task 2 of the process as explained in Section 1.3.

As stated in Section 1.3, such advice overlaps are potential sources of aspect inter-

action. However, not all aspect interactions are due to advice overlaps and not all

advice overlaps cause aspect interactions. Additionally, advice overlaps do not point

to aspect/core interactions.

3.4 The Weaving Process

In this section, we present a functional description of the transformation of an AO

model to a (by definition) behaviorally equivalent OO model. The transformation

3. Process 46

serves two purposes:

• It gives an operational semantics for WRL in UML.

• it describes an unoptimized weaving process (WP1).

The highest level description of the transformation is given by the function weave,

which is defined below:

weave :AOM → OOM. Maps an AO model, aom, to an OO model that is a modi-

fication of the AO model’s UML as prescribed by its WRL.

weave(aom)
df
=

(modClasses(aom), modObjects(aom))

modClasses :AOM → P(Class). Maps AO model, aom, to a set of classes that is a

modification of the AO model’s classes as prescribed by its WRL. This involves:

• Adding one proxy class per core class whose event join points are advised

• Modifying core classes whose event join points are advised to enable synchronous

communication with their proxy

• Transferring references to core classes whose event join points are advised to

their proxy counterparts

• Modifying core classes whose action join points are advised

3. Process 47

modClasses(aom)
df
=

modCoreClients(Coreev, aom.oom.C \ Core ∪ Proxy ∪ Core′)

Proxy = { proxy(aom, c) | c ∈ Coreev }

Core′ = { modCore(aom, c) | c ∈ Core }

Coreev/act = Coreev/act(aom.oom, aom.wrl.am)

Core = Coreev ∪ Coreact

Complexity. The number of classes added to aom is |Coreev|.

proxy :AOM×Class → Class. Maps a core class c in AO model aom, whose event

join points are advised, to a proxy class for the core. The purpose of the proxy is

to implement advice on event join points of the core. We describe the proxy class

in parts (partial classes) and obtain a full description by merging the parts: base

describes the proxy name Pc (all names for classes, attributes, and states introduced

by the weaving process are arbitrary and are assumed to be unique in their scope); its

data, which are associations with the core (attrc) and all aspects a that advise event

join points on the core (attra); and its basic behaviour, which is to forward incoming

events that do not correspond to advised event join points, to the core. advSetElems

is merger of a set of partial classes that each describe class elements that implement

a set of advice on an advised event join point.

3. Process 48

proxy(aom, c)
df
=

pc = merge(Pc, { base, advSetElems })

// References to core and aspects, and basic behaviour

base = (Pc, Attr, s)

Attr = { attrc : c } ∪ { attra : a | a ∈ Aspectev }

Aspectev = Aspectev(aom.oom, aom.wrl.am, c)

s = (Stateand = { idle }, Stateor = { root }, ↘= { (root, idle) },

ini = { root 7→ idle }, Signal = c.s.Signal, Call = c.s.Call,

T rans = Tr, label = ∅)

Tr = { idle
e[g(e)]/act(e)−−−−−−−→ idle | e ∈ c.s.Event }

g(e) =

true 6 ∃jp ∈ JPev, jp.e = e

∀jp ∈ JPev, jp.σ 6⊆ attrc.σ else

act(e) =

attrc!e(ergs) e ∈ c.s.Call

attrc.e(e.Args) e ∈ c.s.Signal

// Elements implementing advice on event join points

advSetElems = merge(Pc, { advSetElems(Pc, aom, c, jp, idle, idle) |

jp ∈ JPev })

JPev = { jp | jp ∈ JPev(c) ∧ (c, jp) ∈ Domain(aom.wrl.am)∧

aom.wrl.am(c, jp) 6= ∅ }

3. Process 49

Complexity. The number of attributes, states, and transitions added to pc is 1 +

|Aspectev|, 1, and |c.s.Event|, respectively.

modCore :AOM × Class → Class. Maps a core class c in AO model aom to a

modified version of the core. There are two modification tasks:

• Core data and behaviour are modified to wrap advised action join points in be-

fore and after advice (if present): this involves adding to core data, associations

to aspects that advise action join points of the core (Attr), and replacing core

transitions whose action execution corresponds to an advised action join point,

with states and transitions that describe the join point and its set of advice

(advSetElems).

• If any signal receptions of the core trigger an advised event join point, they

are made into call receptions. This modification, together with the restriction

from Section 3.2 that aspects can only have call event receptions, are neces-

sary to impose order on the evolution of core and aspect statecharts, since call

events correspond to synchronous (blocking) communication. However, for the

same reason, mutual advice between two classes leads to a woven model that

deadlocks ; hence the restriction from Section 3.2 that disallows mutual advice.

modCore(aom, c)
df
=

merge(c.name, { (c.name, c.Attr ∪ Attr, s), advSetElems })

3. Process 50

// References to aspects

Attr = { attra : a | a ∈ Aspectact }

Aspectact = Aspectact(aom.oom, aom.wrl.am, c)

// Signal to call transformation and transition removal

s = (c.Stateand, . . . ,

Signal = c.Signal \ Sig, Call = c.Call ∪ Sig,

T rans = c.T rans \ { tr(jp) | jp ∈ JPact }, c.label)

Sig = { sig ∈ c.s.Signal | ∃jp ∈ JPev, sig = jp.e }

tr(jp) = t ∈ c.s, t.act = c.s.label(jp)

// Elements implementing advice on action join points

advSetElems = merge({ advSetElems(c.name, aom, c, jp,

tr(jp).src, tr(jp).dst) |

jp ∈ JPact })

JPev/act = { jp | jp ∈ JPev/act(c) ∧ (c, jp) ∈ Domain(aom.wrl.am) ∧

aom.wrl.am(c, jp) 6= ∅ }

Complexity. The number of attributes added to c is |Aspectact|.

advSetElems :Id × AOM × Class × JP(c) × Id × Id → Class. Maps a core join

point (c, jp) of AO model aom to a partial class that describes elements of the class

id, that implement the set of advice as on the core join point. The partial class itself

3. Process 51

is described in parts: attrs describes attributes Attre arg that are place-holders for ar-

guments of event e (the event that starts event join point jp or triggers the transition

whose action execution is action join point jp), and an attribute attrjp con that flags

the consumption of the join point by some before advice; advTrees is the merger of

a set of partial classes that each describe a cluster of states and transitions that im-

plement a single advice tree in as (a cluster for advice adv has an initial state stadv i

and a final state stadv f); advTreeLinksbef/aft describes transitions that link the clus-

ters for advice trees in asbef/aft in order of advice precedence (head/tail(asbef/aft) is

the highest/lowest precedence advice in asbef/aft); advSetLinks describes transitions

that link sti (the state id resides in before the join point), lists of before/after advice

tree clusters, and stf (the state id resides in after the join point) so as to implement

the behaviour of wrapping the join point with before and after advice (if present) and

suppressing the join point if some before advice consumes it.

advSetElems(id, aom, c, jp, sti, stf)
df
=

merge(id, { attrs, advTrees, advTreeLinksbef , advTreeLinksaft,

advSetLinks })

// Argument place-holder and consume flag attributes

attrs = (id, Attr = Attre arg ∪ Attrjp con, s∅)

Attre arg = { attre arg : arg.type | arg ∈ e.Args }

3. Process 52

Attrjp con =

{ attrjp con : bool } asbef 6= ∅

∅ asbef = ∅

s∅ = (∅, . . . , ∅)

// Clusters of states and transitions each implementing

// an advice tree

advTrees = merge(id, { advTreeElems(id, c, jp, a, adv, parent(sti)) |

(a, adv) ∈ as })

// Transitions linking clusters that implement advice trees

advTreeLinksbef/aft = advTreeLinksbef/aft(id, aom, c, jp, as, sti)

// Transitions linking the idle state, and cluster sets

// for before and after advice

advSetLinks = (id, Attr = ∅,

s = (∅, . . . , T rans = Trs ∪ Trm ∪ Trf , ∅))

Trs = { sti
e[g]/Attre arg :=e.Args;stm−−−−−−−−−−−−−−−→ stadv i }

stm, adv =

attrjp con := false, head(asbef) asbef 6= ∅

act, head(asaft) asbef = ∅

Trm =

∅ asbef = ∅ ∨ asaft = ∅

{ sttail(asbef) f

[!attrjp con]/acte.Args←Attre args−−−−−−−−−−−−−−−−−−−→ sthead(asaft) i } else

Trf = { stadv f
l−→ stf }

3. Process 53

l, adv =

ε, tail(asaft) asaft 6= ∅

[!attrjp con]/acte.Args←Attre args , tail(asbef) asaft = ∅

e, g, act =

jp.e, jp.σ ⊆ attrc.σ, attrc.e(e.Args) jp ∈ JPev(c)

tr.e, tr.g, tr.act jp ∈ JPact(c)

tr = t ∈ c.s, t.act = c.s.label(jp)

as = aom.wrl.am(c, jp)

Complexity. The number of attributes and transitions added to id is at most 1 +

|e.Args| and at most 3, respectively.

advTreeLinksbef/aft :Id × AOM × Class × JP(c) × P(AspectAdvice)(aom.oom)

×Id → Class. Maps a set of before/after advice as on core join point (c, p) of AO

model aom to a partial class that describes transitions in the statechart of proxy id

that link clusters of statechart elements for each advice in as in order of precedence.

For before advice, the final state of each advice cluster is additionally linked to the idle

state conditional upon the consume flag, attrjp con, to prevent execution of further

advice upon consumption of the join point.

advTreeLinksbef/aft(id, aom, c, jp, as, sti)
df
=

merge(id, { links, advTreeLinksbef/aft(pop(as)) }) |as| ≥ 1

(id, Attr = ∅, s∅) else

3. Process 54

links = (id, Attr = ∅, s = (∅, . . . , T rans = Trbef/aft, ∅)))

Trbef = { sttop(asbef) f

[attrjp con]−−−−−−→ sti } ∪
{ sttop(asbef) f

[!attrjp con]−−−−−−→ sttop(pop(asbef)) i } |as| > 1

∅ else

Traft =

{ sttop(asaft) f −→ sttop(pop(asaft)) i } |as| > 1

∅ else

Complexity. The number of transitions added to id is at most 2|as| − 1

advTreeElems :Id×Class× JPev(c)×Class×Advice(a)× Id → Class. Maps as-

pect advice (a, adv) applied to the event core join point (c, jp), to a partial class that

describes a cluster of statechart elements of class id (under state stp), that implement

the aspect advice. The partial class is described in two parts: terminalStates de-

scribes the initial and final states of the cluster (stadv i and stadv f) and body describes

the internals of the cluster.

advTreeElems(id, c, jp, a, adv, stp)
df
=

merge(id, terminalStates ∪ { body })

// Start and end states of cluster

terminalStates = { (id, Attr = ∅, s = sc)) }

3. Process 55

sc = (Stateand = { stadv i, stadv f }, Stateor = ∅,

↘= { (stp, stadv i), (stp, stadv f) }, ∅, . . . , ∅)

// Cluster body

body = advNodeElems(id, c, jp, a, adv, adv.root, stp)

Complexity. (together with advNodeElems). The number of states and transitions

added to id is 1 + |adv.N | and at most 2|adv.N |, respectively.

advNodeElems :Id×Class×JPev(c)×Class×Advice(a)×a.Node× Id → Class.

Maps aspect advice (a, adv) applied to the event core join point (c, jp), to a partial

class describing statechart elements of the class id (under state stp) that implement

the part of advice tree adv that is rooted in node n (i.e. part of the internals of the

cluster for adv). The partial class has two parts: nodeElems: for a non-leaf node n,

it describes states for children of n and transitions Trchild leading to them from the

state st corresponding to node n (these correspond to choices in selecting the next

evolution step of the aspect statechart), as well as a possible transition Trexit from

st to the final state of the cluster (this corresponds to exiting advice execution when

the execution path is blocked); for a leaf node n, it simply describes a transition

Trleaf from st to the final state of the cluster to mark the end of advice execution.

childElems is the merger of partial classes each describing a part of the cluster for

adv due to subtrees of adv rooted in a child of n.

3. Process 56

advNodeElems(id, c, jp, a, adv, n, stp)
df
=

merge(id, nodeElems ∪ { childElems })

// Child node states, and transitions leaving the state

// corresponding to n

nodeElems = (id, Attr = ∅, s = sc)

sc = (Stateand = { stadv ch | ch ∈ children(n) }, Stateor = ∅,

↘= { (stp, stadv ch) | ch ∈ children(n) }, ∅, . . . , ∅,

T rans = Trchild ∪ Trleaf ∪ Trexist, ∅)

Trchild = { st
l(ch)−−→ stadv ch | ch ∈ children(n) }

l(ch) =

[ch.σ ⊆ attra.σ]/ch.actjp.e.Args←Attre args ch ∈ adv.Nact

/attrjp con := true ch ∈ adv.Ncon

Trleaf =

{ st −→ stadv f } children(n) = ∅

∅ else

Trexit =

∅ children(n) ∩ adv.Ncon 6= ∅

{ st
[∀ch∈children(n), ch.σ 6⊆attra.σ]−−−−−−−−−−−−−−−−−−→ stadv f } else

st =

stadv i n = adv.root

stadv n else

// Cluster parts rooted in children of n

3. Process 57

childElems = merge(id, { advNodeElems(id, c, jp, adv, ch) |

ch ∈ children(n) })

modCoreClients :P(Class) × P(Class) → P(Class). Maps the set of classes Class

to a modified version of the set, where all references to core classes whose event joint

points have been advised (i.e. members of Coreev) are changed to references to proxies

of those core classes.

modCoreClients(Coreev, Class)
df
=

{ (c.name, c.Attr \ Attrcore ∪ Attrproxy, c.s) | c ∈ Class }

Attrproxy = { (name, pc) | (name, c) ∈ Attrcore }

Attrcore = { attr ∈ c.Attr | attr.type ∈ Coreev }

modObjects :AOM → P(Object). Maps AO model, aom, to a set of objects that is

a modification of the AO model’s objects as prescribed by its WRL. This involves:

• Adding a proxy instance per instance of core classes whose event join points are

advised, and transferring initial references to such core instances to their proxy

counterparts.

• Setting initial aspect references of proxy instances and instances of core classes

whose action join points are advised, to the appropriate aspect instance as

prescribed by the object map of the AO model’s WRL.

3. Process 58

modObjects(aom)
df
=

{ (o.name, o.c, o.ini \ inicore ∪ iniproxy) | o ∈ Obj′ }

iniproxy = { attr 7→ opc | attr 7→ oc ∈ inicore }

inicore = { attr 7→ oc ∈ o.ini | attr.type ∈ Coreev }

Obj′ = aom.oom.O \ CoreObj ∪ CoreObj′ ∪ ProxyObj

CoreObj′ = { (oc.name, oc.c, oc.ini ∪ ini′(oc)) | oc ∈ CoreObjact }

ini′(oc) = { attra 7→ oa | a ∈ Aspectact(oc.c) ∧ wrl.om(oc, a) = oa }

ProxyObj = { (opc, pc, p ini(oc)) | (oc, c, ini) ∈ CoreObjev }

p ini(oc) = { attrc 7→ oc } ∪

{ attra 7→ oa | a ∈ Aspectev(oc.c) ∧ wrl.om(oc, a) = oa }

CoreObjev/act = CoreObjev/act(aom.oom, aom.wrl.am)

Coreev/act = Coreev/act(aom.oom, aom.wrl.am)

Aspectev/act(c) = Aspectev/act(aom.oom, aom.wrl.am, c)

Complexity. The number of objects added to aom is |CoreObjev|.

merge :Id × P(Class) → Class. Maps a set of partial descriptions of class id to a

merger of those descriptions.

merge(id, C)
df
=

(id,
⋃

c∈C c.Attr, (
⋃

c∈C c.Stateand, . . . ,
⋃

c∈C c.label))

3. Process 59

If we define the size of an OO model as the sum of the number of classes, objects,

attributes, states, and transitions in the model, we conclude from the above definitions

that the size increase of the woven OO model with respect to the OO component of the

unwoven AO model is in O(|Cev|+ |Cobjev|+stev +stact +attrev +attract + trev + tract)

where

stev/act = |Cev/act| × (jpev/act × adv × n)

attrev/act = |Cev/act| × (aev/act + jpev/act × args)

trev = |Cev| × (ev + jpev × adv2 × n)

tract = |Cact| × (jpact × adv2 × n)

with definitions

• Cev/act : Core classes whose event/action join points are advised

• CObjev : Objects of classes in Cev

• aev/act : Number of aspects advising each core in Cev/act

• jpev/act : Number of advised event/action join points per core in Cev/act

• args : Number of arguments of events of each advised join point

• adv : Number of advice trees per advised join point

• n : Number of nodes per advice tree

• ev : Number of event receptions per class

3. Process 60

3.5 An Optimized Weaving Process

In this section, we present an optimized weaving process (WP2), whose outcome is

a woven OO model better suited to formal verification. The key to the optimization

is to move class elements that implement advice on event join points of a core from

the core proxy to the core itself, removing the need for proxies. In the absence of

proxies, the size of such elements (i.e. stev +attrev + trev defined in Section 3.4) has a

lesser impact on the size of a flat finite state automata that simulates the woven OO

model. This implies lower verification complexity. Unfortunately, the benefits of the

optimization come with a cost: loss of support for after advice on event join points,

since after advice applies after the completion of a join point, and while it is possible

to observe when an advised event join point of a core completes from its proxy (this

is when the call action that triggers the join point completes), it is not possible to do

so from within the core in the presence of concurrency.

We augment the UML statechart action language of Section 3.1 with condition and

sequence compound actions. We will replace states and transitions that implement

an advice set on a core event join point (as introduced by WP1) with an equivalent

compound action. This is necessary, since our optimized weaving process relies on the

atomic execution of advice on event join points with respect to actions of the core.

In the interest of reusing some of the definitions of Section 3.4, we will assume the

unwoven model makes use only of simple actions.

3. Process 61

Action ::= Assign | Invoke | skip | If | Seq

If ::= if(BoolExpr)Action

Seq ::= Action;Action

In the following, we describe WP2 by its differences (function redefinitions and

new functions) with WP1.

modClasses :AOM → P(Class). Maps AO model, aom, to a set of classes that is a

modification of the AO model’s classes as prescribed by its WRL. The modifications

apply only to core classes.

modClasses(aom)
df
=

aom.oom.C \ Core ∪ Core′

Core′ = { modCore(aom, c) | c ∈ Core }

Coreev/act = Coreev/act(aom.oom, aom.wrl.am)

Core = Coreev ∪ Coreact

modCore :AOM × Class → Class. Maps a core class c in AO model aom to a

modified version of the core. Here, core data and behaviour are modified to prepend

advised event join points with before advice, and to wrap action join points in before

and after advice.

modCore(aom, c)
df
=

merge(c.name, { (c.name, c.Attr ∪ Attr, s), advSetElems })

3. Process 62

// Modifications for advice on event join points

c′ = modCoreev(aom, c)

// Modifications for advice on action join points

Attr = { attra : a | a ∈ Aspectact }

Aspectact = Aspectact(aom.oom, aom.wrl.am, c′)

s = (c′.Stateand, . . . , c
′.T rans \ { tr(jp) | jp ∈ JPact }, c′.label)

advSetElems = merge({ advSetElems(c′.name, aom, c′, jp,

tr(jp).src, tr(jp).dst) |

jp ∈ JPact })

tr(jp) = t ∈ c′.s, t.act = c′.s.label(jp)

JPact = { jp | jp ∈ JPact(c) ∧ (c, jp) ∈ Domain(aom.wrl.am) ∧

aom.wrl.am(c, jp) 6= ∅ }

modCoreev :AOM × Class → Class. Maps a core class c in AO model aom to

a modified version of the core. Core data and behaviour are modified to prepend

advised event join points with before advice. The data modification is the addition of

references to aspects that advise event join points of the core, consume flags for the

consumption of advised event join points by some before advice, and place-holders

for arguments of events that trigger an advised event join point. The behavioural

modification is the splitting of the core statechart into two concurrent regions:

• The core region rooted in stcore that contains a modified version of the original

3. Process 63

core statechart, where each transition tr ∈ Tr(jp) that may be triggered upon

occurrence of an advised event join point jp is replaced with a set of transitions

Tr′(jp, tr) that delay jp by a microstep.

• The advice region rooted in stadv that contains a single state stidle with self

transitions tradv(jp), triggered by advised event join points jp, whose actions

implement before advice on the join points. The resulting behaviour is that

upon occurrence of an advised join point, the corresponding self-transition in

the advice region is taken (causing the corresponding before advice to execute)

concurrently with the delay microstep of transitions Tr′ in the core region. In

the next microstep, the join point proceeds if it has not been consumed by some

before advice.

modCoreev(aom, c)
df
=

(c.name, c.Attr ∪ Attr, s)

// References to aspects, join point consume flag,

// and event argument place-holders

Attr = { attra : a | a ∈ Aspectev } ∪

{ attrjp con : bool | jp ∈ JPev } ∪

{ attr ∈ Attre arg | e = jp.e ∧ jp ∈ JPev }

Attre arg = { attre arg : arg.type | arg ∈ e.Args }

3. Process 64

// Concurrent regions

s = (c.s.Stateand ∪ { sttop, stidle } ∪

{ sttr | tr ∈ Tr(jp) ∧ jp ∈ JPev },

c.s.Stateor ∪ { stcore, stadv },

↘′, ini′, c.s.Signal, c.s.Call, T rans′, c.s.label)

↘′= c.s. ↘ \ { (root, st) ∈ c.s. ↘ } ∪

{ (stcore, st) | (root, st) ∈ c.s. ↘ } ∪

{ (root, sttop), (sttop, stcore), (sttop, stadv), (stadv, stidle) } ∪

{ (parent(tr), sttr) | tr ∈ Tr(jp) ∧ jp ∈ JPev }

ini′ = c.s.ini \ { root 7→ st ∈ c.s.ini } ∪

{ stcore 7→ st | root 7→ st ∈ c.s.ini } ∪

{ root 7→ sttop, stadv 7→ stidle }

// Transition replacement/addition

Trans′ = c.s.T rans \ { tr ∈ Tr(jp) | jp ∈ JPev } ∪

{ tr′ ∈ Tr′(jp, tr) | jp ∈ JPev ∧ tr ∈ Tr(jp) } ∪

{ tradv(jp) | jp ∈ JPev }

// To be replaced

Tr(jp) = { tr ∈ c.s.T rans | ∃σ ∈ Σi, tr.src ∈ σ ∧ tr.e = jp.e }

Σi(jp) = { σi ∈ valid configurations of c.s | jp.σ ⊆ σi }

3. Process 65

// Replacement

Tr′(jp, tr) =

{ tr.src
tr.e−−→ sttr,

sttr
[tr.gjp.e.Args←Attre args ∧ !attrjp con]/tr.actjp.e.Args←Attre args−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ tr.dst,

sttr
[!tr.gjp.e.Args←Attre args ∨ attrjp con]
−−−−−−−−−−−−−−−−−−−−−−→ tr.src }

// New advice transition

tradv(jp) = stidle
jp.e[jp.σ⊆this.σ]/act−−−−−−−−−−−−→ stidle

act = attrjp con := false; Attre args := jp.e.Args;

advAction(aom, c, jp)

Aspectev = Aspectev(aom.oom, aom.wrl.am, c′)

JPev = { jp | jp ∈ JPev(c) ∧ (c, jp) ∈ Domain(aom.wrl.am) ∧

aom.wrl.am(c, jp) 6= ∅ }

advAction :AOM×Class×JPev(c) → Action. Maps the set of before advice on the

event core join point (c, jp) of AO model aom to a compound action that implements

the advice set. Note that seq(Act) is the sequential composition of actions in Act.

In Act is ordered, the order is preserved in the sequential composition, and if it is

unordered, the order of composition is arbitrary.

advAction(aom, c, jp)
df
=

seq({ treeAction(a, adv) | (a, adv) ∈ asbef })

treeAction(a, adv)
df
=

3. Process 66

if(!attrjp con) {

seq({ advAction(a, adv, ch) | ch ∈ children(adv.root) })

}

nodeAction(a, adv, n)
df
=

if(n.σ ⊆ attra.σ) {

attra.ch.act; seq({ advAction(a, adv, ch) | ch ∈ children(n) })

} n ∈ adv.Nact

attrjp con := true n ∈ adv.Ncon

as = aom.wrl.am(c, jp)

modObjects :AOM → P(Object). Maps AO model, aom, to a set of objects that

is a modification of the AO model’s objects as prescribed by its WRL. This involves

setting initial aspect references of instances of core classes whose action join points

are advised, to the appropriate aspect instance as prescribed by the object map of the

AO model’s WRL.

modObjects(aom)
df
=

aom.oom.O \ CoreObj ∪ CoreObj′

CoreObj′ = { (oc.name, oc.c, oc.ini ∪ ini′(oc)) | oc ∈ CoreObj }

ini′(oc) = { attra 7→ oa | a ∈ Aspect(oc.c) ∧ wrl.om(oc, a) = oa }

3. Process 67

CoreObj = CoreObj(aom.oom, aom.wrl.am)

Core = Core(aom.oom, aom.wrl.am)

Aspect(c) = Aspect(aom.oom, aom.wrl.am, c)

Based on the above definitions, for the optimized weaving approach, the size

increase of the woven OO model with respect to the OO component of the unwoven

AO model is in O(stev + stact + attrev + attract + trev + tract) with redefinitions

stev = |Cev| × (jpev × adv × n + jpev × trans)

trev = |Cev| × (jpev × adv2 × n + jpev × trans)

where trans is the number of transitions triggered by an event corresponding to an

advised event join point.

3.5.1 Optimized Weaving without Concurrent Regions

To accommodate UML verification tools such as [33] that do not support concurrent

regions in UML statecharts (i.e. and states that have more than one child), we present

a variation on WP2 (WP2.1) described above that does not make use of concurrent

regions. Once again, the compromise comes at a cost: we require that statecharts in

the UML part of the AO model:

• Do not have concurrent regions.

• Do not have conflicting transitions (see Section 3.1).

3. Process 68

The FITEL AO model and many other useful AO models (we believe) satisfy these

conditions. We describe WP2.1 by its difference with the WP2; that is, the modCoreev

function.

modCoreev :AOM × Class → Class. Maps a core class c in AO model aom to

a modified version of the core. Core data and behaviour are modified to prepend

advised event join points with before advice. The data modification is the same as

in WP2, and the behavioural modification is different only in that advice actions

are embedded directly in the one microstep delay of transitions Tr′ rather than in a

separate concurrent region. Restriction 1 above, ensures that exactly one member of

a possible set of conflicting transitions can be triggered upon occurrence of an advised

event join point, and restriction 2 ensures that this set has only one member. So it

is possible to precisely determine the transition in the core statechart that advice

actions should be embedded in.

modCoreev(aom, c)
df
=

(c.name, c.Attr ∪ Attr, s)

// References to aspects, join point consume flag,

// and event argument place-holders

3. Process 69

Attr = { attra : a | a ∈ Aspectev } ∪

{ attrjp con : bool | jp ∈ JPev } ∪

{ attr ∈ Attre arg | e = jp.e ∧ jp ∈ JPev }

Attre arg = { attre arg : arg.type | arg ∈ e.Args }

// Behaviour modifications

s = (c.s.Stateand ∪ { sttr | tr ∈ Tr(jp) ∧ jp ∈ JPev }, c.s.Stateor,

↘′ ∪ { (parent(tr), sttr) | tr ∈ Tr(jp) ∧ jp ∈ JPev },

. . . , T rans′, c.s.label)

// Transition replacement

Trans′ = c.s.T rans \ { tr ∈ Tr(jp) | jp ∈ JPev } ∪

{ tr′ ∈ Tr′(jp, tr) | jp ∈ JPev ∧ tr ∈ Tr(jp) } ∪

{ tradv(jp) | jp ∈ JPev }

// To be replaced

Tr(jp) = { tr ∈ c.s.T rans | ∃σ ∈ Σi, tr.src ∈ σ ∧ tr.e = jp.e }

Σi(jp) = { σi ∈ valid configurations of c.s | jp.σ ⊆ σi }

// Replacement

Tr′(jp, tr) =

{ tr.src
tr.e/act(tr,jp)−−−−−−−−→ sttr,

sttr
[tr.gjp.e.Args←Attre args ∧ !attrjp con]/tr.actjp.e.Args←Attre args−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ tr.dst,

sttr
[!tr.gjp.e.Args←Attre args ∨ attrjp con]
−−−−−−−−−−−−−−−−−−−−−−→ tr.src }

3. Process 70

act(tr, jp) = attrjp con := false; Attre args := jp.e.Args;

advAction(aom, c, jp)

Aspectev = Aspectev(aom.oom, aom.wrl.am, c′)

JPev = { jp | jp ∈ JPev(c) ∧ (c, jp) ∈ Domain(aom.wrl.am) ∧

aom.wrl.am(c, jp) 6= ∅ }

Based on the definition above, for WP2.1, the size increase of the woven OO model

with respect to the OO component of the unwoven AO model is in O(stev + stact +

attrev + attract + trev + tract) with redefinitions:

stev = |Cev| × (jpev × trans× adv × n + jpev × trans)

trev = |Cev| × (jpev × trans× adv2 × n + jpev × trans)

Chapter 4

Case Studies

4.1 Feature Interactions in Telephony Systems

Our first case study is a well-known example from the domain of feature interactions in

telephony systems adopted from [22]. Here, the telephony system is comprised of a set

of users (telephone receivers), a network switch, and a set of control software modules

(one per user). All communication between users and control software modules goes

through the switch. In its basic form, a control software module manages a simple

connection between its user and another party by communicating with its user and

the other party’s control software module. In modern telephony systems, users can

enhance their control software module by subscribing to various features such as call

forwarding (CF), which forwards incoming calls to a third party, and originating call

71

4. Case Studies 72

screening (OCS), which prevents outgoing calls to users on a screening list. In some

instances, features fail to co-exist: i.e. features interfere with one another’s operation

or in other words, they interact. As an example, imagine that user 1 has subscribed

to OCS, with a screen on user 3, and that user 2 has subscribed to CF, with all

calls forwarded to 3. If 1 calls 2, and the call is forwarded to 3 due to 2’s CF, then

1’s OCS is compromised, and if the call is not forwarded due to 1’s OCS, 2’s CF

is compromised. Hence the two features interact. We will show our process can be

used to detect this interaction. The case study will be referred to as FITEL for

feature interactions in telephony systems. Note that in this case study and the next

(Section 4.2) the weaving was performed by hand.

4.1.1 AO model

UML

The UML part of FITEL’s AO model is shown in the following figures:

• Class names and data are shown graphically in Figure 4.1.

• Class statecharts are shown graphically in Figure 4.2 and Figure 4.3 (note that

src
stm1;...;stmn−−−−−−−→ dst is an abbreviation for src

stm1−−→ i1 . . . in−1
stmn−−−→ dst), and

their event receptions are shown in abbreviated notation in Figure 4.4.

• The initial instantiation is shown in Figure 4.5.

4. Case Studies 73

S witch

C ontrol1

id:int
oid:int

c1

x
User_C allee

u2

u3

x

C F

fw:int

x

OC S

screen:int

User_C aller

id:int
call:int

u1

x

C ontrol2

id:int
oid:int

x c2

C ontrol3

id:int
oid:int

x

c3

Figure 4.1: FITEL OO model class names and data

To see the mapping between the set-based notation for classes presented in Sec-

tion 3.1 and the alternative notation used in the figures, compare the set-based rep-

resentation of class CF below, with that of Figure 4.1, Figure 4.2, and Figure 4.4.

cf = (CF, Attr, s)

Attr = { (fw, int), (x, Switch) }

s = ({ idle }, { root }, { (root, idle) }, [root 7→ idle],

{ (iring, { (oid, int) }) }, ∅,

{ idle
iring/x!oring(oid,fw)−−−−−−−−−−−−→ idle }, ∅)

4. Case Studies 74

Control

idle

offhook

off
on

B US Y *

dialeddial/oid := num; x!oring(id,oid)

on/x!os topring(id,oid)

B US Y

owaiton

ibus y/x!bus y(id)

on

B US Y

waitansifree/this .oid := oid

B US Y

connected

iconn/x!conn(id)

idis conn/x!dis conn(id)

on/x!odis conn(id,oid)

B US Y

alterted

is topring/x!s topring(id)

iring/this .oid := oid;
x!ofree(id,oid);x!ring(id)

B US Y

ans weredoff/x!oconn(id,oid)

on/x!odis conn(id,oid)

B US Y

twaiton

on

idis conn/x!dis conn(id)

B US Y

* B U S Y : iring/x!obusy(id,oid)

Figure 4.2: FITEL OO model statecharts for Control1, Control2, and Control3

4. Case Studies 75

idle

iring/x! oring(oid,fw)
CF

idle
on[id=n]/cn! on()

off[id=n]/cn! off(id)

dial[id=n]/cn! dial(num)

ofree[oid=n]/cn! ifree(id)

obusy[oid=n]/cn! ibusy(id)

oconn[oid=n]/cn! iconn(id)

odisconn[oid=n]/cn! idisconn(id)

oring[oid=n]/cn! iring(id)

ostopring[oid=n]/cn! istopring(id)

conn[id=n]/un! conn()

disconn[id=n]/un! disconn()

busy[id=n]/un! busy()

ring[id=n]/un! ring()

stopring[id=n]/un! stopring()

Switch

idle talking
ring/x! off(id)

disconn/x! on(id)

User_Callee

idle waitans

busy/x! on(id)

conn/x! on(id)

toggle/x! off(id);x! dial(id,call)

[call=1]/call := 2

[call=2]/call := 1

User_Caller

idle screencheck
dial

[num ! = screen] [num = screen]

dial
OCS

n = 1, 2, 3

Figure 4.3: FITEL OO model statecharts for CF, User Caller, User Callee, OCS, and
Switch

4. Case Studies 76

Control1− 3

Signal = { on(), off(), dial(num : int) // from user
ifree(oid : int), iconn(oid : int), idisconn(oid : int), ibusy(oid : int),
iring(oid : int), istopring(oid : int) // from control }

Call = ∅

User Caller− Callee

Signal = { conn(), disconn(), busy(), ring(), stopring() }
Call = ∅

CF

Signal = ∅, Call = { ring(oid : int) }

OCS

Signal = ∅, Call = { dial(num : int) }

Switch

Signal =
{ on(id : int), off(id : int), dial(id : int, num : int) // from user

ofree(id : int, oid : int), oconn(id : int, oid : int), odisconn(id : int, oid : int),
obusy(id : int, oid : int), oring(id : int, oid : int)
ostopring(id : int, oid : int) // from control (to control)
conn(id : int), disconn(id : int), busy(id : int),
ring(id : int), stopring(id : int) // from control (to user) }

Call = ∅

Figure 4.4: FITEL OO model events

4. Case Studies 77

(os1, Switch, [c1 7→ oc1, c2 7→ oc2, c3 7→ oc3,
u1 7→ ou1, u2 7→ ou2, u3 7→ ou3]),

(oc1, Control1, [x 7→ os1, id 7→ 1]),
(oc2, Control2, [x 7→ os1, id 7→ 2]),
(oc3, Control3, [x 7→ os1, id 7→ 3]),
(ou1, User Caller, [x 7→ os1, id 7→ 1, call 7→ 2]),
(ou2, User Callee, [x 7→ os1, id 7→ 2]),
(ou3, User Callee, [x 7→ os1, id 7→ 3]),
(ocf, CF, [x 7→ os1, fw 7→ 3]),
(oocs, OCS, [x 7→ os1, screen 7→ 3])}

Figure 4.5: FITEL OO model initial instantiation

WRL

The WRL part of FITEL’s AO model is shown in Figure 4.6, and is explained below:

• Weaving rule 1: Before core instance oc1 : Control1 can process event

dial(num : int) when it is in state offhook, aspect instance oocs : OCS pro-

cesses the event. If as a result, oocs’s statechart lands in state screen, the

event is consumed (preventing the core from seeing it). Otherwise, oc1 pro-

cesses the event as usual.

• Weaving rule 2: Before core instance oc2 : Control2 can process event

iring(oid : int) regardless of its current state, aspect instance ocf : CF pro-

cesses the event. Then, unconditionally, the event is consumed.

Figure 4.7 shows FITEL’s WRL in the alternative syntax of Figure 3.1.

4. Case Studies 78

Advice mapping:
(c1, jp1) 7→ as1
c1 = control1

jp1 = ({ offhook }, dial(num : int))
as1 = as1bef = { (OCS, adv1) }
adv1 =

root

({idle},dial(num))

({idle}, skip)

({screen}, skip)

consume

({screen},dial(num))

({idle}, skip)

({screen}, skip)

consume

Object assignment:
{ (oc1, OCS) 7→ oocs }

Advice mapping:
(c2, jp2) 7→ as2
c2 = control2

jp2 = ({ root }, iring(oid : int))
as2 = as2bef = { (CF, adv2) }
adv2 =

root

({idle},iring(oid))

consume

Object assignment:
{ (oc2, CF) 7→ ocf }

Weaving Rule 1 Weaving Rule 2

Figure 4.6: FITEL WRL

Aspect OCS

Core Control1

before ({offhook},dial)

({idle},dial(num))

({idle}, skip)

({screen}, skip)

consume

({screen},dial(num))

({idle}, skip)

({screen}, skip)

consume

ObjectMap

oc1 -> oocs

Aspect CF

Core Control2

before ({root},iring)

({idle},iring(oid))

consume

ObjectMap

oc2 -> ocf

Weaving Rule 1 Weaving Rule 2

Figure 4.7: FITEL WRL in alternative syntax

4. Case Studies 79

4.1.2 Woven OO model

WP1

FITEL’s woven OO model (using WP1) is shown in the figures below:

• Class names and data are shown in Figure 4.8.

• Statecharts of proxies for core classes Control1 and Control2 are shown in

Figure 4.9 and Figure 4.10 respectively (statecharts of other classes are the

same as in the unwoven AO model), and event receptions of all statecharts

are shown in Figure 4.11. Note that some statechart transitions added by the

weaving process may be unreachable in the sense that they are not enabled for

any configuration of the woven model. The woven model can be simplified by

removing such transitions. In FITEL’s woven model (using WP1), the unreach-

able transitions are: transitions from st adv1 i, st n1, and st n2 to st adv1 f

in PControl1; and transition from st adv2 i to st adv2 f and the transition

from st adv2 f to idle guarded by !jp2 con in PControl2.

• The initial instantiation is shown in Figure 4.12.

WP2

FITEL’s woven OO model (using WP2) is shown in the figures below:

• Class names and data are shown in Figure 4.13.

4. Case Studies 80

S witch
C ontrol1

id:int
oid:intx

User_C allee

u2

u3

x

C F

fw:int

x

OC S

screen:int

User_C aller

id:int
call:int

u1

x

C ontrol2

id:int
oid:int

xC ontrol3

id:int
oid:int

x

c3

P C ontrol1

num_arg:int
jp1_con : bool

c

ocs

c1

P C ontrol2

oid_arg:int
jp2_con : bool

c2 c

cf

Figure 4.8: FITEL woven OO model (using WP1) data

• The modified portion of statecharts of core classes Control1 and Control2 are

shown in Figure 4.14 and Figure 4.15 respectively (statecharts of other classes,

as well as event receptions of all classes are the same as in the unwoven AO

model).

• The initial instantiation is shown in Figure 4.16.

WP2.1

FITEL’s woven OO model (using WP2.1) is shown in the figures below:

• Class names and data and the initial instantiation are the same as in WP2.

• The modified portion of statecharts of core classes Control1 and Control2 are

4. Case Studies 81

idle

s ig/c! s ig(s ig.Args)

dial[! c.inS tate(offhook)]/c.dial(num)

st_adv1_i

dial[c.inS tate(offhook)]/num_arg := num; jp1_con := false

st_adv1_f

[! (ocs .inS tate(idle) or
ocs .inS tate(screen))]

[! (ocs .inS tate(idle) or
ocs .inS tate(screen))]

[! jp1_con]/c.dial(num_arg)
[jp1_con]

st_n1

[ocs .isS tate(idle)]/ocs .dial(num_arg)

[! (ocs .inS tate(idle) or
ocs .inS tate(screen))]

st_n2

[ocs .inS tate(screen)]/ocs .dial(num_arg)

[! (ocs .inS tate(idle) or
ocs .inS tate(screen))]

st_n11

[ocs .inS tate(idle)]

st_n12

[ocs .inS tate(screen)]

st_n21

[ocs .inS tate(idle)]

st_n22

[ocs .inS tate(screen)]

st_n121

/jp1_con := true

st_n221

/jp1_con := true

for all sig in control1.S ignal

Figure 4.9: FITEL woven OO model (using WP1) statechart for PControl1 (proxy
of Control1)

4. Case Studies 82

idle

s ig/c! s ig(s ig.Args)

st_adv2_i

iring/oid_arg := oid; jp2_con := false

st_adv2_f

[jp2_con] [! jp2_con]/c.iring(oid_arg)

[! cf.inS tate(idle)]

st_n1

[cf.inS tate(idle)]/cf.iring(oid_arg)

st_n11

/jp2_con := true

for all sig in control1.S ignal

Figure 4.10: FITEL woven OO model (using WP1) statechart for PControl2 (proxy
of Control2)

4. Case Studies 83

Control1

Signal = { on(), off() // from user
ifree(oid : int), iconn(oid : int), idisconn(oid : int), ibusy(oid : int),
iring(oid : int), istopring(oid : int) // from control }

Call = { dial(num : int) }

Control2

Signal = { on(), off(), dial(num : int) // from user
ifree(oid : int), iconn(oid : int), idisconn(oid : int), ibusy(oid : int),
istopring(oid : int) // from control }

Call = { iring(oid : int) }

PControl1− 2

same as Control1− 2 of Figure 4.4

Control3, User Caller− Callee, Switch

same as Figure 4.4

Figure 4.11: FITEL woven OO model (using WP1) events

(os1, Switch, [c1 7→ opc1, c2 7→ opc2, c3 7→ oc3,
u1 7→ ou1, u2 7→ ou2, u3 7→ ou3]),

(opc1, PControl1, [c 7→ oc1, ocs 7→ oocs, numarg 7→ 0, jp1 con 7→ false]),
(opc2, PControl2, [c 7→ oc2, cf 7→ ocf, oidarg 7→ 0, jp2 con 7→ false]),
. . . (other initial instantiations in FITEL’s OO model, unchanged)}

Figure 4.12: FITEL woven OO model (using WP1) initial instantiation

4. Case Studies 84

S witch

C ontrol1

id:int
oid:int
num_arg:int
jp1_con : bool

x c1

User_C allee

u2

u3

x

C F

fw:int

x

OC S

screen:int

ocs

User_C aller

id:int
call:int

u1

x

C ontrol2

id:int
oid:int
oid_arg:int
jp2_con : bool

c2x

cf

C ontrol3

id:int
oid:int

xc3

Figure 4.13: FITEL woven OO model (using WP2) data

st_top

offhook

st_tr1

dial [jp1_con]

dialed

[! jp1_con]/
oid := num_arg;
x! oring(id,oid)

Other parts
of original
C ontrol1
statechart
(not shown)
remain
unchanged.

dial [jp1_con]

[! jp1_con]/
oid := num_arg;
x! oring(id,oid)

st_idle

dial[this .inS tate(offhook)]/
jp1_con := false;
num_arg := num;
if(ocs .inS tate(idle)) {

ocs .dial(num);
if(ocs .inS tate(idle)) {

skip };
if(ocs .inS tate(screen)) {

skip; jp1_con := true }};
if(ocs .inS tate(screen)) {

ocs .dial(num);
if(ocs .inS tate(idle)) {

skip };
if(ocs .inS tate(screen)) {

skip; jp1_con := true }}

dial[this .inS tate(offhook)]/
jp1_con := false;
num_arg := num;
if(ocs .inS tate(idle)) {

ocs .dial(num);
if(ocs .inS tate(idle)) {

skip };
if(ocs .inS tate(screen)) {

skip; jp1_con := true }};
if(ocs .inS tate(screen)) {

ocs .dial(num);
if(ocs .inS tate(idle)) {

skip };
if(ocs .inS tate(screen)) {

skip; jp1_con := true }}

dial [jp1_con]

[! jp1_con]/
oid := num_arg;
x! oring(id,oid)

al[this .inS tate(offhook)]/
jp1_con := false;
num_arg := num;
if(ocs .inS tate(idle)) {

ocs .dial(num);
if(ocs .inS tate(idle)) {

skip };
if(ocs .inS tate(screen)) {

skip; jp1_con := true }};
if(ocs .inS tate(screen)) {

ocs .dial(num);
if(ocs .inS tate(idle)) {

skip };
if(ocs .inS tate(screen)) {

skip; jp1_con := true }}

st_advicest_core

. . .

. . .

Figure 4.14: FITEL woven OO model (using WP2) statechart for Control

4. Case Studies 85

st_top

st_tr1offhook iring

[jp2_con]

[! jp2_con]/
x! obusy(id,oid_arg)

S ame applies to other self-transitions
labeled 'B US Y' (not shown). Other
parts of original C ontrol2 statechart
(also not shown) remain unchanged.

iring

[jp2_con]

[! jp2_con]/
x! obusy(id,oid_arg)

st_idle

iring/
jp2_con := false;
oid_arg := oid;
if(cf.inS tate(idle)) {

if(ocs .inS tate(idle)) {
cf.iring(oid);
jp2_con := true }}

iring/
jp2_con := false;
oid_arg := oid;
if(cf.inS tate(idle)) {

if(ocs .inS tate(idle)) {
cf.iring(oid);
jp2_con := true }}

iring

[jp2_con]

[! jp2_con]/
x! obusy(id,oid_arg)

iring/
jp2_con := false;
oid_arg := oid;
if(cf.inS tate(idle)) {

if(ocs .inS tate(idle)) {
cf.iring(oid);
jp2_con := true }}

st_advicest_core

.

Figure 4.15: FITEL woven OO model (using WP2) statechart for Control2

(oc1, Control1, [x 7→ os1, id 7→ 1, ocs 7→ oocs, numarg 7→ 0, jp1 con 7→ false]),
(oc2, Control2, [x 7→ os1, id 7→ 2, cf 7→ ocf, oidarg 7→ 0, jp2 con 7→ false]),
. . . (other initial instantiations in FITEL’s OO model are unchanged)}

Figure 4.16: FITEL woven OO model (using WP2) initial instantiation

4. Case Studies 86

dialeds t_tr1

[! jp1_con]/
oid := num_arg;
x! oring(id,oid)

offhook

dial/
jp1_con := fals e;
num_arg := num;
if(ocs .inS tate(idle)) {

ocs .dial(num);
...

[jp1_con]

O ther parts
of original
C ontrol1
s tatechart
(not s hown)
remain
unchanged.

Figure 4.17: FITEL woven OO model (using WP2.1) statechart for Control1

offhook st_tr1

iring/jp2_con := false;
oid_arg := oid;
if(cf.inS tate(idle)) {

if(ocs .inS tate(idle)) {
...

[jp2_con]

[! jp2_con]/
x! obusy(id,oid_arg)

S ame applies to
other self-transitions
labeled 'B US Y' (not
shown). Other parts
of original C ontrol2
statechart (also not
shown) remain
unchanged.

.

Figure 4.18: FITEL woven OO model (using WP2.1) statechart for Control2

shown in Figure 4.17 and Figure 4.18 respectively (statecharts of other classes,

as well as event receptions of all classes are the same as in the unwoven AO

model).

4. Case Studies 87

4.1.3 Reports

Analysis Report

The syntactic analysis of the FITEL AO model reveals nothing, while as we know,

interactions do exist in this model. These are revealed in the verification report as

we shall see in the next section.

Verification Report

We verified the following correctness property of FITEL’s woven OO model using IFx

[33] as discussed in Section 1.3:

Propocs = ‘No connection from user 1 to user 3 is possible’

Propocs is required by the OCS subscription of user 1. Its observer class behaviour

is shown in Figure 4.19 (the class has no data). Propocs was verified once with only

Weaving Rule 1 (only weave OCS), and once with both Weaving Rule 1 & 2 (weave

both OCS and CF) of Figure 4.6 on a machine with 2GB of memory. Table 4.1

tabulates the results using weaving processes WP1 and WP2.1 (IFx does not yet

support concurrent regions). The column States is the size of the state space of an

IF model equivalent to FITEL’s woven model and is a measure of the woven model’s

verification complexity (using WP1 and with both OCS and CF woven, the state-

space is too large to fit even in 2GB of memory). Note that Propocs is satisfied with

4. Case Studies 88

ok
ko

<<error>>match receivesignal : oconn(id, oid) [id = 3 and oid = 1]

match receivesignal : oconn(id, oid) [id != 3 or oid != 1]

Figure 4.19: Propocs observer class behaviour

only OCS woven, but fails to satisfy with both OCS and CF woven: this indicates an

interaction between these two features.

Table 4.1: FITEL verification results using IFx
WP1 WP2.1

States Propocs States Propocs

OCS ≈ 160000 X ≈ 57000 X
OCS + CF 550000+ − ≈ 120000 ×

4.2 Interactions in an Electronic Commerce Shop

Our second case study is an adaption of the e-commerce shop example used to il-

lustrate EAOP in [11]. Here we consider a trivial electronic commerce shop where

a customer makes requests for purchasing products and is billed accordingly. The

shop has two promotions in place: the regular discount promotion is that any pur-

chase that exceeds some threshold t is awarded a pd percent price reduction from

their purchase; the bingo promotion is that the nth customer is awarded a pb percent

price reduction from their purchase (and the promotion is repeated for the next n

4. Case Studies 89

customers). The shop has a profiling mechanism that allows the manager to monitor

the number of discounts awarded to customers so far. Suppose the shop has a price

reduction limit (PRL) policy that the total price reduction awarded to a customer

for a given purchase shall not exceed some percentage pt. If pd + pb > pt and the nth

makes a purchase that exceeds t, PRL is violated (i.e. the promotions interact). We

will illustrate how our process can be used to detect this violation. This case study

will be referred to as ECOMM .

4.2.1 AO model

UML

The UML part of FITEL’s AO model is shown in the following figures:

• Class names and data are shown graphically in Figure 4.20.

• Class statecharts (with action labels) are shown graphically in Figure 4.21, and

their event receptions are shown in abbreviated notation in Figure 4.22. Note

that the customer continually makes purchases of $40.

• The initial instantiation is shown in Figure 4.23. Note that here, t = $30,

n = 100, pd = %10, pb = %50, and pt = %50.

4. Case Studies 90

Customer

order : int

Profiling

count : int

Shop

s

Bingo

count : int
rate : int
threshold : int

c : Customer

pr : int

Discount

rate : int

threshold : int

c : Customer

pr : int

Figure 4.20: ECOMM OO model class names and data

idle waiting
/order := 40; s!buy(self, order)

bill idle

buy/cust!bill(cust.order)

idle checkbuy/c := cust; pr := price

[pr > threshold]/l1: c.order := c.order - pr*rate/100

[pr <= threshold]

idle checkbuy/count := count + 1; c := cust; pr := price

[count = threshold]/l2: c.order := c.order - pr*rate/100; count := 0

[count != threshold]

idle

discount/count := count + 1

Customer Shop

Discount Profiling

Bingo

Figure 4.21: FITEL OO model statecharts (with action labels)

4. Case Studies 91

Customer

Signal = { bill(price : int) }, Call = ∅

Shop

Signal = { buy(cust : Customer, price : int) }, Call = ∅

Discount

Signal = ∅, Call = { buy(cust : Customer, price : int) }

Bingo

Signal = ∅, Call = { buy(cust : Customer, price : int) }

Profiling

Signal = ∅, Call = { buy(cust : Customer, price : int) }

Figure 4.22: ECOMM OO model events

(oc, Customer, [s 7→ os, order 7→ 0]
(os, Shop, ∅),
(od, Discount, [rate 7→ 10, threshold 7→ 40, c 7→ null, pr 7→ 0]),
(ob, Bingo, [count 7→ 0, rate 7→ 50, threshold 7→ 100, c 7→ null, pr 7→ 0]),
(op, Profiling, [count 7→ 0])}

Figure 4.23: ECOMM OO model initial instantiation

4. Case Studies 92

WRL

The WRL part of ECOMM ’s AO model is shown in Figure 4.24. Here, Shop is advised

by Discount and Bingo, which themselves are advised by Profiling (this illustrates

an aspect of aspect scenario). The weaving rules are explained below:

• Weaving rule 1: Before core instance os : Shop can process event

buy(cust : Customer, price : int) when it is in state idle, first aspect instance

od : Discount and then ob : Bingo process the event. Then unconditionally, os

processes the event.

• Weaving rule 2: After the execution of action l1 in core instance od : Discount,

event discount() is dispatched to aspect instance op : Profiling if its state-

chart is in state idle.

• Weaving rule 3: After the execution of action l2 in core instance ob : Bingo,

event discount() is dispatched to aspect instance op : Profiling if its state-

chart is in state idle.

Figure 4.25 shows FITEL’s WRL in the alternative syntax of Figure 3.1.

4.2.2 Woven OO model

WP1

ECOMM ’s woven OO model (using WP1) is shown in the figures below:

4. Case Studies 93

Advice mapping:
(c1, jp1) 7→ as1
c1 = Shop

jp1 = ({ idle }, buy(cust : Customer, price : int))
as1 = as1bef = { (Discount, adv1), (Bingo, adv2) } and

(Discount, adv1) > (Bingo, adv2)
adv1 = adv2 =

root

({idle}, buy(cust, price))

Object assignment:
{ (os, Discount) 7→ od, (os, Bingo) 7→ ob }

Weaving Rule 1

Advice mapping:
(c2, jp2) 7→ as2
c2 = Discount

jp2 = l1
as2 = as2aft = { (Profiling, adv3) }
adv3 =

root

({idle},discount())

Object assignment:
{ (od, Profiling) 7→ op }

Advice mapping:
(c3, jp3) 7→ as3
c3 = Bingo

jp3 = l2
as3 = as3aft = { (Bingo, adv4) }
adv4 =

root

({idle},discount())

Object assignment:
{ (ob, Profiling) 7→ op }

Weaving Rule 2 Weaving Rule 3

Figure 4.24: ECOMM WRL

4. Case Studies 94

Aspect Discount

Core Shop

before ({idle},buy)

({idle},buy(cust,price))

ObjectMap

os -> od

Aspect Bingo

Core Shop

before ({idle},buy)

({idle},buy(cust,price))

ObjectMap

os -> ob

Weaving Rule 1 (part 1) Weaving Rule 1 (part 2)

Aspect Profiling

Core Discount

after l1

({idle},discount())

ObjectMap

od -> op

Core Bingo

after l2

({idle},discount())

ObjectMap

ob -> op

Weaving Rules 2 and 3

Figure 4.25: ECOMM WRL in alternative syntax

4. Case Studies 95

Customer

order : int

Profiling

count : int

Shop

s s

p p

b d

Bingo

count : int
rate : int
threshold : int

c : Customer

pr : int

Discount

rate : int

threshold : int

c : Customer

pr : int

PShop

cust_arg : Customer

price_arg : int

jp1_con: Boolean

Figure 4.26: ECOMM woven OO model (using WP1) data

• Class names and data are shown in Figure 4.26.

• Statecharts of the proxy for core class Shop and modified core classes Discount

and Bingo are shown in Figure 4.27 (statecharts of other classes are the same

as in the unwoven AO model), and event receptions of all statecharts are shown

in Figure 4.28. Note that the jp1con attribute of PShop is not necessary due

to the absence of consume nodes in advice. All transitions guarded by !jp1con,

therefore are unreachable and can be removed. The same is true of all transitions

guarded by !s.inState(idle), !d.inState(idle), or !b.inState(idle).

• The initial instantiation is shown in Figure 4.29.

4. Case Studies 96

PShop

Discount

Bingo

idle checkbuy/count := count + 1; c := cust; pr := price; count := 0

[count = threshold]/l2 : c.order := c.order - pr*rate/100

[count != threshold]

st_n1 st_adv4_ist_adv4_f [p.inState(idle)]/p.discount()

[!p.inState(idle)]

[pr <= threshold]

idle checkbuy/c := cust; pr := price

[pr > threshold]/l1 : c.order := c.order - pr*rate/100

st_n1 st_adv3_ist_adv3_f [p.inState(idle)]/p.discount()

[!p.inState(idle)]

idle

buy/cust_arg := cust; price_arg := price; jp1_con := false

st_n1 st_adv1_i

st_adv2_i st_adv2_f

st_adv1_f

st_n2

[!jp1_con]

[d.inState(idle)]/d.buy(cust_arg, price_arg)

[b.inState(idle)]/b.buy(cust_arg, price_arg)

[jp1_con]

[!jp1_con]/s.buy(cust_arg, price_arg) [jp1_con]

[!d.inState(idle)]

[!b.inState(idle)]

Figure 4.27: ECOMM woven OO model (using WP1) statecharts for PShop (proxy
of Shop), Discount, and Bingo

Shop

Signal = ∅, Call = { buy(cust : Customer, price : int) }

Figure 4.28: ECOMM woven OO model (using WP1) events

4. Case Studies 97

(oc, Customer, [s 7→ ops, order 7→ 0]
(ops, PShop, [s 7→ os, b 7→ ob, d 7→ od,

custarg 7→ null, pricearg 7→ 0, jp1con 7→ false]),
(od, Discount, [p 7→ op, rate 7→ 10, threshold 7→ 40, c 7→ null, pr 7→ 0]),
(ob, Bingo, [p 7→ op, count 7→ 0, rate 7→ 50, threshold 7→ 100,

c 7→ null, pr 7→ 0]),
. . . (other initial instantiations in ECOMM ’s OO model are unchanged)

Figure 4.29: ECOMM woven OO model (using WP1) initial instantiation

WP2

ECOMM ’s woven OO model (using WP2) is shown in the figures below:

• Class names and data are shown in Figure 4.30.

• The statechart of core class Shop is shown in Figure 4.31 (statecharts of other

classes as the same as in WP1, and the event receptions of all classes are the

same as in the unwoven AO model).

• The initial instantiation is shown in Figure 4.32.

WP2.1

ECOMM ’s woven OO model (using WP2.1) is shown in the figures below:

• Class names and data and the initial instantiation are the same as in WP2.

• The statechart of core class Shop is shown in Figure 4.33 (statecharts of other

classes, as well as event receptions of all classes are the same as in WP2).

4. Case Studies 98

Customer

order : int

Profiling

count : int

s

p p

b d

Bingo

count : int
rate : int
threshold : int

c : Customer

pr : int

Discount

rate : int

threshold : int

c : Customer

pr : int

Shop

cust_arg : Customer

price_arg : int

jp1_con: Boolean

Figure 4.30: ECOMM woven OO model (using WP2) data

st_top

st_advicest_core

buy[this.inState(idle)]/
jp1_con := false;
cust_arg := cust;
price_arg := price;
if(d.inState(idle)) {
 d.buy(cust, price) };
if(!jp1_con) {
 if(b.inState(idle)) {
 b.buy(cust, price) } }

st_idle
idle

[!jp1_con]/cust!bill(cust_arg.order)

st_tr1buy

[jp1_con]

Figure 4.31: ECOMM woven OO model (using WP2) statechart for Shop

(oc, Customer, [s 7→ os, order 7→ 0]
(os, Shop, [b 7→ ob, d 7→ od,

cust 7→ null, pricearg 7→ 0, jp1con 7→ false]),
. . . (the initial instantiation of other classes is the same as in WP1)}

Figure 4.32: ECOMM woven OO model (using WP2) initial instantiation

4. Case Studies 99

buy/
jp1_con := false;
cust_arg := cust;
price_arg := price;
if(d.inState(idle)) {
 ...

idle

[!jp1_con]/cust!bill(cust_arg.order)

st_tr1

[jp1_con]

Figure 4.33: ECOMM woven OO model (using WP2.1) statechart for Shop

4.2.3 Reports

Analysis Report

The syntactic analysis of the ECOMM AO model reveals an overlap between advice

(Discount, adv1) and (Bingo, adv2) of Figure 4.24, as they both apply to the same

join point (jp1) and (Discount, adv1) > (Bingo, adv2) (note that while the overlap is

explicit in the state-based WRL syntax of Figure 4.24, it is not so in the alternative

syntax of Figure 4.25). This overlap indicates a possible interaction between concerns

Discount and Bingo.

4. Case Studies 100

Verification Report

We verified PRL (whose observer class data and behaviour are shown in Figure 4.34)

for the UML part of ECOMM ’s unwoven AO model, and for its woven OO model

(using WP1 and WP2.1) with all aspect combinations (for combinations involving

Profile, the unbounded incrementation of the count attribute of Profile was ex-

cluded from its behaviour to reduce verification complexity - this behaviour change

does not affect PRL). The results are tabulated in Table 4.2. For the unwoven model,

the state-space size is 37 states and PRL is satisfied. Note that PRL only fails to

satisfy with combinations Discount+Bingo and Discount+Bingo+Profiling. This

confirms that the advice overlap detected by the syntactic analysis (Section 4.2.3) task

does indeed correspond to an interaction between concerns Discount and Bingo.

Table 4.2: ECOMM verification results using IFx
WP1 WP2.1

States PRL States PRL
No advice ≈ 160000 X ≈ 57000 X
Discount 550000+ X ≈ 120000 X
Discount + Bingo 550000+ × ≈ 120000 ×
Discount + Profiling 550000+ X ≈ 120000 X
Discount + Bingo + Profiling 550000+ × ≈ 120000 ×
Bingo 550000+ X ≈ 120000 X
Bingo + Profiling 550000+ X ≈ 120000 X

4. Case Studies 101

PRL

c : Customer

order : int

bill : int

idle

ko
<<error>>

((order - bill)*100/order <= 50)

check

ordered

billed

match send : buy(cust, price) /c := cust; order := price

match receivesignal : bill(price) /bill := price

((order - bill)*100/order > 50)

Figure 4.34: PRL observer class data and behaviour

Chapter 5

Discussion

This chapter evaluates the proposed process by informal analytical arguments con-

cerning the verification complexity of the woven model generated by the weaving

processes, the expressiveness of the AO modeling language, and the traceability of re-

sults from the static analysis and verification tasks to the AO model; and by empirical

results obtained from applying the process to FITEL and ECOMM.

Verification complexity. The three weaving processes (WP1, WP2, and WP2.1)

introduced in this paper differ both in the number of class elements they introduce to

implement advice on event join points, and in where they allocate such elements in

the woven model. The increased verification complexity of the woven model compared

to the UML part of the unwoven model depends on both the number and allocation

of advice elements (for event join points). The number of advice elements depends

102

5. Discussion 103

on the AO model (as explained in previous sections), while for a given number of

advice elements, the impact of the allocation of these elements on the verification

complexity of the woven model decreases in order, from WP1 to WP2 to WP2.1. The

decrease in verification complexity from one weaving process to another comes at the

expense of support for AO model features: From WP1 to WP2 we lose support for

after advice, and from WP2 to WP2.1 we additionally lose support for concurrent

regions and conflicting transitions.

Expressiveness of AO model. We will assess the expressiveness of the AO mod-

eling language described in Section 3.2 by comparing it to the (in our opinion, ex-

pressive) aspect definition language of EAOP. As described in Section 2.3, in EAOP,

an aspect in its most basic form, is a rule that maps a join point in the execution

trace of the core to advice. Aspects can be composed by recursion, choice, sequential,

and (adapted) parallel composition operators. Compound aspects are state machines

that evolve from one constituent aspect to another (based on the composition oper-

ators) in response to join points. Aspects themselves can contribute join points to

the execution trace; that is, they can be advised by other aspects. In our modeling

approach, a basic aspect is a state machine that reacts to join points by executing

one or more advice trees (before or after the join point), where each advice tree pre-

scribes one or more evolution steps based on the join point context (and optionally,

the consumption of the join point in the case of before advice). Aspects can only

5. Discussion 104

be composed sequentially, but at the granularity of advice; that is, order is imposed

on advice (within a before/after category) and not on aspects. As explained in Sec-

tion 3.2 aspects of aspects are also supported in our approach. We believe, there is

no fundamental difficulty is changing the weaving processes to support the rich com-

position operators of EAOP; however, the affect of such support on the verification

complexity of the woven model is an important consideration.

On another note, with static weaving processes such as ours, per instance advice

(i.e. advice on a particular instance of a core class rather than on all instances of

the core) cannot be supported. FITEL (Section 4.1) is an example of where per

instance advice is needed: ideally, we would model the basic control software with a

single class (say Control) and assign features to specific instances of this class. Per

instance advice can be (perhaps not attractively) simulated statically by duplicating

the core class for each advised core instance. This method has been applied to FITEL

in Section 3.1 by duplicating Control per user (Control1− 3).

Traceability Static analysis is performed on the unwoven model, and as such, its

results are readily traceable to elements of the AO model. Formal verification however,

is performed on the woven model. Assuming the UML verifier tool presents error

scenarios in UML (rather than in a language that the tool translates UML to, e.g.

Promela [41] or IF [33] - and both [41] and [33] do so), traceability of error scenarios to

the unwoven AO model deteriorates from WP1 to WP2 to WP2.1, as class elements

5. Discussion 105

that implement advice on event join points become less localized (advice elements

for action join points have the same allocation for all approaches). Regardless of the

weaving process used, the direct mapping from advice elements to advice trees allows

reasonable traceability.

Empirical Results It appears that with current UML verification technology

(based on a sample of one verification tool), WP1 is not feasible for moderately

complex models (such as FITEL - Section 4.1), and should be used only if the model

requires after advice on event join points and/or is relatively simple (such as ECOMM

- Section 4.2). WP2.1 and we speculate WP2 (though without empirical evidence due

to the limitation of the UML verification tool at our disposal) on the other hand, do

appear feasible, and we believe a large set of useful AO models satisfy their restric-

tions.

Chapter 6

Conclusion

We have presented a process for detecting concern interactions in AO designs ex-

pressed in UML (for modeling concern data and behaviour) and WRL (a domain

specific language for specifying how concerns crosscut). The process consists of two

tasks: 1) A syntactic analysis of the unwoven AO model to alert the developer of

potential sources of interaction. 2) Verifying properties of the model before and after

the weaving of concerns to confirm/reject findings of task 1 and/or to reveal new

interactions. At the heart of task 2 is a weaving process that maps an unwoven AO

model to a behaviourally equivalent woven OO model. We present three weaving pro-

cesses: WP1 (supports all features of WRL; yields a woven model of high verification

complexity), WP2 (does not support after advice; verification complexity of woven

model is generally lower than WP1), and WP2.1 (does not support after advice, con-

106

6. Conclusion 107

current regions, and conflicting transitions; verification complexity of woven model is

generally lower than WP2), the choice of which is driven by required WRL features

and the complexity of the AO model. For the (moderately complex) FITEL case

study, we observed that using IFx [33] for UML verification, WP1 and WP2 are not

feasible (due to verification complexity and lack of support for concurrent regions by

the verification tool respectively), while WP2.1 is feasible. For the simple ECOMM

case study, we observed that WP1 and WP2.1 are feasible, while WP2 is not (due to

lack of support for concurrent regions by the verification tool).

6.1 Future Work

We propose the following directions for future research:

• Further optimizations to the weaving processes.

• Improving expressivity of our AO modeling language by

– Implementing EAOP [10] composition operators and studying their affect

on verification complexity.

– Adding introductions (ala AspectJ [19]) to WRL.

• Experimenting with more case studies to empirically evaluate the effect of the

weaving processes on verification complexity, and the expressivity of our AO

modeling language.

6. Conclusion 108

• Investigating UML verification tools to determine the feasibility of verifying

larger models.

Bibliography

[1] J. Aldrich, “Open Modules: A Proposal for Modular Reasoning in Aspect-
Oriented Programming,” in FOAL: Foundations Of Aspect-Oriented Languages
(C. Clifton, R. Lämmel, and G. T. Leavens, eds.), pp. 7–18, March 2004.

[2] J. H. Andrews, “Process-Algebraic Foundations of Aspect-Oriented Program-
ming,” in REFLECTION ’01: Proceedings of the Third International Conference
on Metalevel Architectures and Separation of Crosscutting Concerns, (London,
UK), pp. 187–209, Springer-Verlag, 2001.

[3] L. Bergmans and M. Akşit, “Principles and Design Rationale of Composition
Filters,” [13], pp. 63–95.

[4] G. S. Blair, L. Blair, A. Rashid, A. Moreira, J. Araújo, and R. Chitchyan, “En-
gineering Aspect-Oriented Systems,” [13], pp. 379–406.

[5] L. Blair, G. Blair, J. Pang, and C. Efstratiou, “’Feature’ Interactions outside a
Telecom Domain,” in Proceedings of Workshop on Feature Interactions in Com-
posed Systems, ECOOP2001, June 2001.

[6] L. Blair and M. Monga, “Reasoning on AspectJ Programmes,” in 3rd Work-
shop on Aspect-Oriented Software Development (AOSD-GI) of the SIG Object-
Oriented Software Development, German Informatics Society (B. Bachmendo,
S. Hanenberg, S. Herrmann, and G. Kniesel, eds.), March 2003.

[7] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec, “Feature inter-
action: a critical review and considered forecast,” Comput. Networks, vol. 41,
no. 1, pp. 115–141, 2003.

[8] C. Clifton and G. T. Leavens, “Observers and Assistants: A Proposal for Modu-
lar Aspect-Oriented Reasoning,” in FOAL 2002: Foundations of Aspect-Oriented
Languages (AOSD-2002) (R. Cytron and G. T. Leavens, eds.), pp. 33–44, March
2002.

109

BIBLIOGRAPHY 110

[9] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby,
and H. Zheng, “Bandera: extracting finite-state models from Java source code,”
in International Conference on Software Engineering, pp. 439–448, 2000.

[10] R. Douence, P. Fradet, and M. Südholt, “Composition, reuse and interaction
analysis of stateful aspects,” in Proc. 3rd Int’ Conf. on Aspect-Oriented Software
Development (AOSD-2004) (K. Lieberherr, ed.), pp. 141–150, ACM Press, March
2004.

[11] R. Douence and M. Südholt, “A model and a tool for Event-based Aspect-
Oriented Programming (EAOP),” Tech. Rep. 02/11/INFO, Ecole des Mines de
Nantes, 2002.

[12] T. Elrad, M. Akşit, G. Kiczales, K. Lieberherr, and H. Ossher, “Discussing
Aspects of AOP,” Comm. ACM, vol. 44, no. 10, pp. 33–38, oct 2001.

[13] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit, Aspect-Oriented Software De-
velopment. Addison-Wesley, 2005.

[14] R. E. Filman and D. P. Friedman, “Aspect-Oriented Programming Is Quantifi-
cation and Obliviousness,” [13], pp. 21–35.

[15] Foundations of Software Engineering (FOSE), ACM Press, October 2004.

[16] R. J. Hall, “Feature Interactions in Electronic Mail.,” in FIW (M. Calder and
E. H. Magill, eds.), pp. 67–82, IOS Press, 2000.

[17] D. Harel and H. Kugler, “The Rhapsody Semantics of Statecharts (or, On the
Executable Core of the UML),” Lecture notes in computer science, 2004.

[18] D. Jackson, “Alloy: a lightweight object modelling notation,” Software Engi-
neering and Methodology, vol. 11, no. 2, pp. 256–290, 2002.

[19] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Gris-
wold, “Getting Started with AspectJ,” Comm. ACM, vol. 44, no. 10, pp. 59–65,
October 2001.

[20] G. Kiczales and M. Mezini, “Aspect-oriented programming and modular reason-
ing,” in ICSE ’05: Proceedings of the 27th international conference on Software
engineering, (New York), pp. 49–58, ACM Press, 2005.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwin, “Aspect-Oriented Programming,” in Proc. of European Conf. on
Object Oriented Programming, no. 1241 in Lecture Notes in Computer Science,
Springer-Verlag, 1997.

BIBLIOGRAPHY 111

[22] M. Kolberg, E. H. Magill, D. Marples, and S. Reiff, “Second Feature Interaction
Contest,” in Proc. 6th. Feature Interactions in Telecommunications and Soft-
ware Systems (M. H. Calder and E. H. Magill, eds.), (Amsterdam, Netherlands),
pp. 293–324, IOS Press, May 2000.

[23] S. Krishnamurthi, K. Fisler, and M. Greenberg, “Verifying Aspect Advice Mod-
ularly,” in FOSE04 [15].

[24] R. Laddad, AspectJ in Action: Practical Aspect-Oriented Programming. Man-
ning, 2003.

[25] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary Design of JML: A Be-
havioral Interface Specification Language for Java,” Tech. Rep. 98-06i, 2000.

[26] K. Lieberherr, D. Orleans, and J. Ovlinger, “Aspect-Oriented Programming with
Adaptive Methods,” Comm. ACM, vol. 44, no. 10, pp. 39–41, oct 2001.

[27] X. Liu, G. Huang, and H. Mei, “Feature Interaction Problems in Middleware
Services.,” in FIW (S. Reiff-Marganiec and M. Ryan, eds.), pp. 313–319, IOS
Press, 2005.

[28] M. Mahoney, A. Bader, T. Elrad, and O. Aldawud, “Using Aspects to Abstract
and Modularize Statecharts,” in The 5th Aspect-Oriented Modeling Workshop
In Conjunction with UML 2004 (O. Aldawud, G. Booch, J. Gray, J. Kienzle,
D. Stein, M. Kandé, F. Akkawi, and T. Elrad, eds.), October 2004.

[29] H. Masuhara and G. Kiczales, “Modular crosscutting in aspect-oriented mech-
anisms,” in ECOOP 2003—Object-Oriented Programming, 17th European Con-
ference (L. Cardelli, ed.), vol. 2743 of lncs, (Berlin), pp. 2–28, sv, jul 2003.

[30] M. Monga, F. Beltagui, and L. Blair, “Investigating feature interactions by ex-
ploiting aspect oriented programming,” Tech. Rep. comp-002-2003, Lancaster
University, Lancaster, LA1 4YR, 2003.

[31] M. Monga, “On Aspect-Oriented Approaches,” in European Interactive Work-
shop on Aspects in Software (EIWAS) (K. Gybels, S. Hanenberg, S. Herrmann,
and J. Wloka, eds.), Sept. 2004.

[32] S. Nakajima and T. Tamai, “Weaving in Role-Based Aspect-Oriented Design
Models,” in Early Aspects 2004: Aspect-Oriented Requirements Engineering and
Architecture Design Workshop at OOPSLA 2004 (A. Moreira, A. Rashid, E. Ba-
niassad, B. Tekinerdoğan, P. Clements, and J. Araújo, eds.), 2004.

BIBLIOGRAPHY 112

[33] I. Ober, S. Graf, and I. Ober, “Validating timed UML models by simulation and
verification,” in Workshop on Specification and Validation of UML models for
Real Time and Embedded Systems (SVERTS 2003), a satellite event of UML
2003, San Francisco, October 2003, October 2003.

[34] I. P. Paltor and J. Lilius, “vUML: A Tool for Verifying UML Models,” in Proc.
of the 14th IEEE International Conference on Automated Software Engineering,
ASE’99 (R. J. Hall and E. Tyugu, eds.), IEEE, 1999.

[35] J. Pang and L. Blair, “An Adaptive Run Time Manager for the Dynamic In-
tegration and Interaction Resolution of Features,” in Proc. 2nd Int’l Workshop
on Aspect Oriented Programming for Distributed Computing Systems (ICDCS-
2002), Vol. 2 (M. Akşit and Z. Choukair, eds.), July 2002.

[36] D. L. Parnas, “On the Criteria to be Used in Decomposing Systems into Mod-
ules,” Communications ACM, pp. 1053–1058, Dec. 1972.

[37] T. Reenskaug, Working with Objects: The OOram Software Engineering Method.
Manning Publications, 1996.

[38] M. Rinard, A. Salcianu, and S. Bugrara, “A Classification System and Analysis
for Interactions in Aspect-Oriented Programs,” in FOSE04 [15].

[39] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Ref-
erence Manual. Addison-Wesley, second ed., 2005.

[40] F. Sanen, E. Truyen, W. Joosen, A. Jackson, A. Nedos, S. Clarke, N. Loughran,
and A. Rashid, “Classifying and documenting aspect interactions,” in Proceed-
ings of the Fifth AOSD Workshop on Aspects, Components, and Patterns for In-
frastructure Software (Y. Coady, D. H. Lorenz, O. Spinczyk, and E. Wohlstadter,
eds.), (Bonn, Germany), pp. 23–26, Published as University of Virginia Com-
puter Science Technical Report CS–2006–01, March 2006.

[41] T. Schäfer, A. Knapp, and S. Merz, “Model checking UML state machines and
collaborations.,” Electr. Notes Theor. Comput. Sci., vol. 55, no. 3, 2001.

[42] M. Sihman and S. Katz, “Superimpositions and Aspect-oriented Programming,”
The Computer Journal, vol. 46, no. 5, pp. 529–541, September 2003.

[43] e. a. Sullivan K., Griswold W. G., “On the criteria to be used in decomposing
systems into aspects,” in ESEC/FSE ’05: Proceedings of the Joint 10th European
Software Engineering Conference and 13th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pp. 5–9, ACM Press, 2005.

BIBLIOGRAPHY 113

[44] P. Tarr, H. Ossher, S. M. Sutton Jr., and W. Harrison, “N Degrees of Separation:
Multi-Dimensional Separation of Concerns,” [13], pp. 37–61.

[45] N. Ubayashi and T. Tamai, “Aspect Oriented Programming with Model Check-
ing,” in Proc. 1st Int’ Conf. on Aspect-Oriented Software Development (AOSD-
2002) (G. Kiczales, ed.), pp. 148–154, ACM Press, apr 2002.

[46] A. Wasowski, “Flattening Statecharts without Explosions,” in Proceedings of
ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), pp. 257–266, ACM press, 2004.

[47] M. Weiser, “Program Slicing.,” IEEE Trans. Software Eng., vol. 10, no. 4,
pp. 352–357, 1984.

[48] J. Zhao and M. Rinard, “Pipa: A Behavioral Interface Specification Lan-
guage for AspectJ,” in Proc. Fundamental Approaches to Software Engineering
(FASE’2003), LNCS 2621, pp. 150–165, Springer-Verlag, April 2003.

