
Deriving Real-time Monitors
from

System Requirements Documentation

Dennis K. Peters
CRL, McMaster University

Hamilton, ON Canada L8S 4K1
e–mail: peters@mcmaster.ca

Supervisor: David L. Parnas

Abstract

During system testing, determining if the observed
behaviour of a real–time system is consistent with
its requirements specification can be difficult. I pro-
pose that a system to check the behaviour against
the specification, a monitor, be automatically de-
rived from the requirements documentation. The
monitor would model the system requirements as a
modified finite state automaton in which the states
represent equivalence classes of system histories
and transitions are labelled with predicates such
that it accepts only executions representing accept-
able system behaviour. Investigation into the design
of such a monitor, and the process for automatically
generating it from reviewable requirements docu-
mentation is on–going.

1. Problem Statement

The process of testing a real–time system typically involves
running the system in a test environment, observing its
behaviour and comparing it to that required by its specifica-
tion. In general, making this comparison can be quite diffi-
cult since the requirements may be complex, possibly in-
cluding time constraints and interdependencies. A monitor
is a system that automatically determines if the observed
behaviour is consistent with a given specification.

When designing safety– or mission–critical systems, good
engineering practice dictates that a clear, precise and unam-
biguous specification of the required behaviour of the sys-
tem be produced and reviewed for correctness by experts in
the domain of application of the system. Research has dem-
onstrated that such reviews are effective if the system beha-
vioural requirements documentation is written such that:

� it expresses the required behaviour in terms of the
quantities from the environment that are moni-
tored and/or controlled by the system,

� it uses terminology and notation that is familiar
to, or easily understood by, the domain experts,
and

� it is presented in a manner that permits indepen-
dent review of small parts of the document.[5]

As discussed in [4], [9], [12] and [13], a (relational) system
requirements document describes a relation, REQ, on vector
functions of time representing the environmental quantities
that are monitored and controlled by the system. I intend to
explore techniques for using reviewable forms of such docu-
mentation (i.e. satisfying the above three criteria) to gener-
ate a software monitor that will determine if the observed
behaviour of some software is consistent with that expressed
in the documentation. Such a monitor would be useful, dur-
ing system testing, for determining if the system is operating
correctly, or, in certain safety–critical applications, it may be
useful as a redundant monitoring system during operation.

Through this research I hope to answer the following ques-
tions:

1. How can a monitor be used to verify conforman-
ce with relational requirements documentation?

2. What are the useful classes of behavioural prop-
erties that can and cannot be:

a) specified in relational documentation?

b) verified using a monitor as described above?

3. Under what conditions can an effective monitor
be produced automatically from a relational re-
quirements document? What restrictions on the
form or content of the documentation must be
imposed?

4. What is the cost (computational and space com-
plexity) of using such a monitor? Are there some
optimizations that can be done to reduce this
complexity or restrictions on the documentation
that will ensure that the complexity is tractable?

Monitor

INCmon
Input devices

INMmon
Input devices

om
tim t

Monitor system

Figure 1 – Possible Monitor Configurations

IN OUT

REQ

SOF

mt

it ot

ct

Software

Computer system

Input
devices

Output
devices

IN OUT

REQ

SOF

mt

it ot

ct

Software

Computer system

Input
devices

Output
devices

Monitor

A: Internal Monitor B: External monitor

Key
REL

name

The acceptable behaviour of component “name” is
described by the relation “REL”.

xt The data represented by xt is either input or output
for the component “name”.

2. Background

The vector functions of time representing the quantities
monitored and controlled by the system are denoted by mt

and ct, respectively. These environmental quantities, in gen-
eral, cannot be observed directly by monitor software, but
must be observed through the monitor system’s own input
devices (Figure 1B), or surmised by observing the system
software input and output values, it and ot (Figure 1A). In
order to determine if observed behaviour is acceptable with
respect to the system requirements, REQ, the input relation,
IN, which characterizes the possible values of it for any in-
stance of mt, and the output relation, OUT, which character-
izes the possible values of ct for any instance of ot, must be
used.

As illustrated in [5], the required system behaviour can be ef-
fectively described by describing the values of the controlled
quantities in terms of conditions—predicates that character-
ize some aspect of mt or ct for a measurable period of
time—and events—changes in values of conditions. This ap-
proach has been shown to be effective for a number of realis-
tic examples (e.g. [2], [5] and [7]) and to satisfy industrial ex-

pectations of requirements documentation.[1] A tool–set for
specifying and analyzing requirements has been developed
[3], but this tool–set does not at this time support automated
testing.

3. Solution Approach

The proposed solution addresses this problem in two stages:
1) development of a general design of a monitor (i.e. a family
of monitors[8]) and, 2) design of a generator to produce in-
stances of the family from relational requirements docu-
mentation. Some of the issues to be faced in each of these,
and some proposed solutions to them, are discussed in this
section.

3.1 Monitor Design

In general, a monitor must detect the occurrence of events
relevant to the system and, considering those events that
have occurred previously (i.e. the execution so far), deter-
mine if the events and the values of the controlled quantities
represent acceptable behaviour.

3.1.1 Monitor Input

Since my goal is to automatically derive the monitor from
documentation, and it is hoped that the generation tool will
be applicable to a wide variety of systems, I will not attempt
to generate a general, non–intrusive, mechanism for detect-
ing events, but rather will assume that the monitor will be
given, as input, a sequence of ’samples’ of the values of it and
ot, or im t and om

t, (i.e. (it(tj), ot(tj)) for j = <1, … , n>). The
generation of this sequence is the responsibility of the moni-
tor ’harness’ or interface system, which must be designed to
meet the specific restrictions imposed by the testing/oper-
ation environment. Some possible approaches to this are as
follows.

1. Modify the behaviour of the system under test, or
the systems that interact with it, to have them
report when they detect or generate events. This
is only applicable when the sequence of events
fully describes the system behaviour.

2. Sample it and ot at regular intervals, presumably
fast enough to detect all events of interest.

3.1.2 Execution History

The proposed approach to evaluating and maintaining the re-
quired information about the execution history is to model
the system requirements specification as a modified finite
state automaton (FSA) that accepts only those sequences of
events that represent acceptable behaviour. Each state in the
FSA represents an equivalence class of executions (i.e. his-
tories) of the system. Each transition in the FSA is labelled
by a predicate (the transition predicate) and represents a set
of events that have a similar interpretation with respect to the
specification (e.g. an acceptable output being produced
within an acceptable time limit). The exact form of this FSA
is a topic of current research, but I expect that it will include
variables representing the values of it, ot and time at the
point where the FSA enters each state. The transition predi-
cates will be expressed in terms of these variables (e.g. a
transition predicate may be “Output O1 occurs within T1 sec-
onds after the occurrence of its triggering event, I1”).

3.1.3 Event Detection

For each input sample, the monitor will evaluate the values
of all conditions and compare them to the values of the
conditions in the previous state to determine which, if any,
have changed, and hence what event(s) have occurred. Note
that since a condition may be dependent on time alone (e.g.
the amount of time elapsed since the occurrence of an event),
it may be necessary for the monitor to independently detect
changes in such conditions (i.e. based on an internal clock)
and respond appropriately to the event. The transition predi-
cates of the FSA will then be evaluated to determine if the
event occurrence is acceptable at this time, and how the FSA
state should change in response to it.

3.1.4 Controlled Variables

Each input sample will also be used to verify that the values
of the controlled variables are correct with respect to the cur-
rent FSA state and the values of the monitored variables.
This will be done by evaluating the appropriate predicate
characterizing the value of each controlled variable.

3.2 Monitor Generation
Generating the monitor involves analysis of the require-
ments document to determine the set of states of the FSA (i.e.
an appropriate set of equivalence classes of executions), the
transition predicates for each transition and the predicates
characterizing the values of the controlled variables in each
state. A few of the issues to be considered in this area are as
follows.

3.2.1 State Enumeration

The exact procedure for deriving the set of states is still under
investigation, but I expect it will draw on state exploration
and reduction techniques such as those presented in [6]. Note
that for documentation techniques, such as SCR, that model
the requirements using parallel state machines (mode classes
in SCR), the monitor FSA will represent the parallel com-
position of those state machines. For example, the set of
states in the FSA derived from an SCR requirements specifi-
cation would be related to the cross product of the mode
classes in the specification. Note also that, since the real–
time aspects of the system need to be monitored, the FSA
will include states representing the period between occur-
rence of an input event and the output event that it triggers.

3.2.2 Transition and Controlled Value
Predicates

As mentioned above, the monitor cannot, in general, directly
access the monitored and controlled quantities, so it will see
only internal values—values of it or ot. Since IN and OUT
are relations, each internal value represents a set of possible
external values, so the monitor will need to determine if any
and/or all of the elements of that set represent acceptable
behaviour, depending on how ’pessimistic’ the user wants
the monitor to be. If the IN–1 and OUT relations are ’well be-
haved’ over the domain of interest then this can be done by
choosing the worst and/or best case when generating the
transition and controlled value predicates.

3.2.3 Predicate Evaluation

In my previous work [10], [11], I have shown how an oracle
can be automatically generated from relational program
documentation, which gives the characteristic predicate of
the relation describing the acceptable start and stop state
pairs for a single program. This oracle determines if the va-
lues of the program variables in the starting and stopping
states of the program execution are in the relation by evaluat-
ing its characteristic predicate. A major component of that

work is a procedure for generating C code to evaluate the
characteristic predicate of a relation. That procedure can be
used again here to generate code for evaluation of both the
transition predicates in the FSA implementation and the
predicates characterizing acceptable values of controlled
variables.

4. Contributions
The primary contribution of this work will be a method of
using a reviewable system requirements document to auto-
matically generate a monitor that can determine if observed
’internal’ behaviour is consistent with the requirements.
Secondary contributions include a statement of the express-
iveness of the system requirements specification technique
used, and a characterization of the class of system require-
ments specifications that can be used to generate an effective
monitor.

5. Progress
This research is still in its preliminary stages. I am investigat-
ing existing methods for specifying system requirements,
hybrid automatas and methods for generating real–time
oracles.

6. References
[1] S. R. Faulk, J. Brackett, P. Ward and J. Kirby Jr., “The

CORE Method for Real–Time Requirements”, IEEE
Software, vol. 9, no. 6 (September 1992), pp. 22–33.

[2] C. L. Heitmeyer and J. McLean, ”Abstract Require-
ments Specification: A New Approach and Its Ap-
plication,’’ IEEE Transactions on Software Engineer-
ing, vol. 9, no. 5 (September 1983), pp. 580–589.

[3] C. L. Heitmeyer, A. Bull, C. Gasarch and B. G.
Labaw, ”SCR*: A Toolset for Specifying and Analyz-
ing Requirements,” Proceedings of the Tenth Annual
Conference on Computer Assurance (COMPASS ’95),
Gaithersburg, MD, June 25–29, 1995, pp. 109–122.

[4] K. Heninger, J. Kallander, D. L. Parnas and J. E.
Shore, “Software Requirements for the A–7E Air-
craft”, Naval Research Laboratory Memorandum Re-
port 3876, November 1978.

[5] K. Heninger, “Specifying Software Requirements for
Complex Systems: New Techniques and their Ap-
plications”, IEEE Transactions on Software Engineer-
ing, vol. SE–6, no. 1 (January 1980), pp. 2–13.

[6] I. Kang and I. Lee, “An Efficient State Space Gener-
ation for Analysis of Real–time Systems”, Proceed-
ings of the International Symposium on Software Test-
ing and Analysis (ISSTA), published in Software

Engineering Notes, vol. 21, no. 3 (May 1996), pp.
4–13.

[7] J. Kirby, “Example NRL/SCR Software Requirements
for an Automobile Cruise Control and Monitoring
System”, Technical Report TR–87–07, Wang Institute
of Graduate Studies, July 1987.

[8] D. L. Parnas, “On the Design and Development of
Program Families”, IEEE Transactions on Software
Engineering, vol. SE–2, no. 1 (March 1976), pp. 1–9.

[9] D. L. Parnas and J. Madey, “Functional Documenta-
tion for Computer Systems Engineering”, Science of
Computer Programming (Elsevier), vol. 25, no. 1 (Oc-
tober 1995), pp. 41–61.

[10] D. K. Peters and D. L. Parnas, ”Generating a Test
Oracle from Program Documentation—work in prog-
ress”, Proceeding of the 1994 International Sympo-
sium on Software Testing and Analysis (ISSTA), (Au-
gust, 1994), pp. 58–65.

[11] D. K. Peters, Generating a Test Oracle from Program
Documentation, M.Eng. Thesis, Department of Elec-
trical and Computer Engineering, McMaster Univer-
sity, Hamilton, ON (April, 1995). 97 pgs. Also printed
as CRL Report No. 302, Telecommunications Re-
search Institute of Ontario (TRIO).

[12] A. J. van Schouwen, “The A–7 Requirements Model:
Re–examination for Real–Time systems and An Ap-
plication to Monitoring Systems”, Technical Report
TR 90–276, Queen’s University, Kingston, Ontario,
1990.

[13] A. J. van Schouwen, D. L. Parnas and J. Madey,
“Documentation of Requirements for Computer Sys-
tems”, Proceedings of the IEEE International Sympo-
sium On Requirements Engineering, January 1993, pp.
198–207.

