
Test Driven Development with Oracles and
Formal Specifications

Shadi Alawneh and Dennis Peters

Faculty of Engineering and Applied Science
Memorial University, St.John’s, NL

Canada A1B 3X5
{shadi.alawneh,dpeters}@mun.ca

Abstract. The current industry trend to using Test Driven Develop-
ment (TDD) is a recognition of the high value of creating executable
tests as part of the development process. In TDD, the test code is a
formal documentation of the required behaviour of the component or
system being developed, but this documentation is necessarily incom-
plete and often over-specific. An alternative view to TDD is to develop
the specification of the required behaviour in a formal notation as a part
of the TDD process and to generate test oracles from that specification.
In this paper we present tools in support of this approach that allow
formal specifications to be written in a readable manner that is tightly
integrated with the code through an integrated development environ-
ment, and test oracles to be generated automatically. The generated test
code integrates smoothly with test frameworks (e.g., JUnit) and so can
be directly used in TDD. This approach has the advantage that the spec-
ifications can be complete and appropriately abstract but still support
TDD.

Keywords: Test Driven Development, Extreme Programming, Open
Mathematical Documents, Test Oracle

1 Introduction

TDD is one of the core practices of Extreme Programming (XP). Two key princi-
ples of TDD are 1) that no implementation code is written without first having a
test case that fails with the current implementation, and 2) that we stop writing
the implementation as soon as all of the existing test cases pass.

In TDD, the test code is a formal documentation of some of the required be-
haviour of the system being developed. However, tests alone describe the prop-
erties of a program only in terms of examples and thus are not sufficient to
completely describe the behaviour of a program. So, this documentation is nec-
essarily incomplete and often over-specific. To solve this problem we propose an
alternative approach to TDD, which is to develop a formal specification of the
required behaviour as part of the TDD process and then generate test oracles
from that specification. We thus propose a variation on the key TDD principles

listed above: 1) No implementation code is written without first having a specifi-
cation for the behaviour that is not satisfied by the current implementation, and
2) we stop writing the implementation as soon as the implementation satisfies
the current specification. By generating oracles directly from the specification
we are able to quickly and accurately check if the specification is satisfied by the
implementation for the selected test cases.

We are using OMDoc (Open Mathematical Documents) [3] as a standardized
storage and communications format for our specifications, and so we can take
advantage of other tools.

2 Formal Software Specifications

Formal specifications are documentation methods that use a mathematical de-
scription of the software or hardware behaviour, which may be used to develop
an implementation. With reference to the set of documents described in [6],
in this work, we are focused on using module internal design documents [7] or
module interface specifications to drive the development [8]. These two types of
documents specify the behaviour of the module either in terms of the internal
data structure and the effect of each access program on it, or in terms of the
externally observable behaviour of the module.

There are several different formal methods for program specifications, e.g.
the Java Modeling Language (JML) [4] and Z [9]. In our work, we use relations
for the specifications, which characterize the acceptable set of outcomes for a
given input. The specifications in our work consists of program specifications,
which, in OMDoc terms, are symbol definitions contained within theories. Also,
each symbol has a type and possibly other information. A program specification,
describes the required behaviour of a program either in terms of the internal data
structure and the effect of each access program on it, or in terms of the externally
observable behaviour of the module. It consists of these components: constants;
variables; auxiliary function and predicate definitions; the program invocation,
which gives the name and type of the program and lists all its actual argument
program variables; and an expression that gives the semantics of the program.

3 Oracle Generation

As described in [2], an oracle is some method for checking whether the system
under test has behaved correctly on a particular execution.

In our work, an oracle is a program which, given a test input and output,
will determine if it passes or fails with respect to the specification from which
the oracle was derived. The oracle evaluates the characteristic predicate of the
specification relation—if it evaluates to true, then that test input and output
passes, otherwise it fails. Note that such an oracle does not require the existence
of a correct version of the program.

Our tool can generate test oracles from both scalar expressions (logical oper-
ators, primitive relations, quantifications), and tabular expressions. Moreover, it

can handle auxiliary functions and predicates. It has been shown in the previous
work that the tabular representation of relations and functions is a significant
factor in making the documentation more readable, and so we have customized
our tool to support them.

The oracle in our approach consists of two kinds of code: that generated
by the Test Oracle Generator (TOG), and classes (e.g., Integer Interval.Java,
InvertedTable.Java, NormalTable.Java and VectorTable.Java), previously man-
ually implemented that are used by the TOG generated code.

In the example described in Section 4.1, we are using one kind of tabular
expression (Vector). Tabular expressions are implemented by instantiating an
object of one of several classes of (Java) table objects which implement the
various types of tabular expressions (normal, inverted and vector). These table
objects contain all knowledge of the semantics of tabular expressions, so there
is no need for this knowledge to be in the TOG. The expression in each cell of
the table is implemented as Java class that extends CellBase and contains a pro-
cedure that evaluates that expression. This approach for implementing tabular
expressions has the advantage that the oracle code can be more organized.

Table objects have a method, evaluateTable, which evaluates the tabular
expression.

4 Test Driven Development with Oracles

The work reported in this paper is an extension of the work reported in [1].
In [1], the test oracle generator supports generating test oracles from methods
but in this work we extended the test oracle generator to allow the users to
generate test oracles from module (class) specifications, which are based on the
externally observable behaviour of the class. This will allow the use of oracles in
class testing. Also, we have introduced an alternative approach to TDD that is
to develop the specification of the required behaviour in a formal notation as a
part of the TDD process and to generate test oracles from that specification.

The process looks like this:

– Write the specification for some required behaviour.
– Generate the test oracle from the specification and select test inputs.
– Run the program under test in the test framework (e.g., JUnit) using the

test oracle to verify if it passes or fails.
– If the test fails, write code until this test passes.
– If the test passes and the specification is not completed yet, add to or refine

the specification and redo the process again.
– We keep doing this process until the specification is complete.

4.1 Example

As an illustrative example we use the bounded stack as developed in [5]. The
first step in our approach is to specify some required behaviour, in this case for
creation of an empty stack:

Data Structure
Integer s[]
Integer maxSize
Integer length

Program Functions
Stack stack(Integer x)

df= (result.isEmpty()∧
result.maxDepth() = x)

Boolean isEmpty()
df= result = (length = 0)

Integer maxDepth()
df= result = maxSize

The specification consists of the data structure description, the definition for
stack(x) function, which is the program function specifying the behaviour of the
constructor and two program functions specifying the behaviour of the methods
isEmpty() and maxDepth().

After we write the specification, we generate the test oracle from it and write
the test code to call it (e.g., from JUnit). The test case will, of course, fail, so
we should implement the constructor and methods so that the test case passes
and we have a program that is consistent with the specified behaviour.

We then modify the specification for push to define behaviour for pushing
on a non-full stack, and add three more methods:

void push(Integer x)
df=

p this.size() ≥ 0 ∧ p this.size() < this.maxDepth()
this.size() = p this.size() + 1

this|
∀i : [0, p this.size()− 1].(
this.elementAt(i) = p this.elementAt(i))∧
(this.lastElement() = x)

Integer elementAt(Integer i)
df= result = s[i]

Integer size()
df= result = length

Integer lastElement()
df= result = s[length− 1]

Here we use the naming convention of prepending “p ” to a program variable
name (e.g., p this) to represent the value of the program variable (e.g., this)
in the state immediately before the function was executed. The new behaviour
defined by the specification is to push an object on an a non-full stack. After
the push the stack should contain that element and the size for the stack after
is increased by one. Again we generate the test oracle and implement a test

case, which will initially fail. The stack code is then developed until the test case
passes, and so it implements the specified behaviour.

Again we generate the test oracle and implement test cases, this time to push
a few elements onto the stack.

Continuing in this manner, we eventually reach the full specification of the
bounded stack, as below, and we have at the same time developed a full imple-
mentation and a full suite of test cases.
Data Structure

Integer s[]
Integer maxSize
Integer length

Program Functions
Stack stack(Integer x)

df= (result.isEmpty() ∧ result.maxDepth() = x)

void push(Integer x)
df=

p this.size() ≥ 0∧
p this.size() < this.maxDepth()

p this.size() =
this.maxDepth()

this.size() = p this.size() + 1 p this.size()
this| ∀i : [0, p this.size()− 1].(

this.elementAt(i) =
p this.elementAt(i)

)
∧

(this.lastElement() = x)

this = p this

Integer pop()
df=

p this.size() ≥ 1
this.size() = p this.size()− 1

this| ∀i : [0, this.size()− 1].
(
this.elementAt(i) =
p this.elementAt(i)

)
∧

(result = p this.lastElement())

Integer top()
df= result = this.lastElement()

Boolean isEmpty()
df= result = (length = 0)

Integer maxDepth()
df= result = maxSize

Integer size()
df= result = length

Integer lastElement()
df= result = s[length− 1]

Integer elementAt(Integer i)
df= result = s[i]

5 Conclusions

In test driven development, tests are used to specify the behaviour of the pro-
gram, and the tests are additionally used as a documentation of the program.
However, tests are not sufficient to completely define the behaviour of a pro-
gram because they only define the program behaviour by example and do not
allow us to state general properties. So, the later can be achieved by using our
TDD approach, which uses a formal specification to specify the behaviour of the
program and supports testing directly against that specification by generating
oracles.

Clearly a next step in this research and tool development will be to support
test case generation from the specification as well, which will further reduce the
amount of ’manual’ test code development effort.

6 ACKNOWLEDGMENTS

This research was supported by the Faculty of Engineering and Applied Science
at Memorial University and the Government of Canada through the Natural
Sciences and Engineering Research Council (NSERC).

References

1. S. Alawneh and D. Peters. Specification-based test oracles with junit. Proc. IEEE
Canadian Conference on Electrical and Computer Engineering (CCECE’10), Cal-
gary, Canada, May. 2010.

2. W. E. Howden. Functional Program Testing and Analysis. McGraw-Hill Book
Company, 1987.

3. M. Kohlhase. OMDoc: An Open Markup Format for Mathematical Documents (Ver-
sion 1.2). Number 4180 in Lecture Notes in Artificial Intelligence. Springer Verlag,
2006.

4. G. T. Leavens, A. L. Baker, and C. Ruby. JML: a notation for detailed design.
In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications for
Businesses and Systems, chapter 12, pages 175–188. Kluwer, 1999.

5. J. Newkirk and A. Vorontsov. Test-Driven Development in Microsoft .NET. Mi-
crosoft Press, 2004.

6. D. L. Parnas and J. Madey. Functional documentation for computer systems. Sci-
ence of Computer Programming, 25(1):41–61, Oct. 1995.

7. D. L. Parnas, J. Madey, and M. Iglewski. Precise documentation of well-structured
programs. IEEE Trans. Software Engineering, 20(12):948–976, Dec. 1994.

8. C. Quinn, S. Vilkomir, D. Parnas, and S. Kostic. Specification of software com-
ponent requirements using the trace function method. In Int’l Conf. on Software
Engineering Advances, page 50, Los Alamitos, CA, USA, 2006. IEEE Computer
Society.

9. J. M. Spivey. The Z Notation: A Reference Manual. International series in computer
science. Prentice Hall, New York, 2nd edition, 1992.

