On the Description of Communications Between Software
Components with UML

Zhiwel An Dennis Peters

Faculty of Engineering and Applied Science
Memorial University of Newfoundland
St. John’s NL A1B 3X5

zhiwei@engr.mun.ca dpeters@engr.mun.ca

November 12, 2003

Abstract

For the purpose of analysis and verification, in software design, architecture of the software system and
communications between software components should be specified. Unified Modeling Language (UML) is
a standard software design notation that includes Sequence diagrams and Collaboration diagrams, which
describe the interaction between objects. They also can be used to describe communications between
components. In this paper, we discuss what should be modeled in the communication and how the
elements in UML can be adopted to model the communication. A formalism of UML design models that
can be used for design analysis is also proposed.

1 Introduction

Software systems are often composed of several components each of which is a computational entity that
realizes a particular function. Components interact with each other by communications between them.
Documenting communications is one part of software design and the design models should be verifiable to
ensure the correctness of the design.

In software systems, synchronous and asynchronous communication could exist. To describe different
types of communications between components, several methodologies have been proposed. Two kinds of
methods are 1) Architectural Description Languages (ADL) [1] and 2) UML in architecture description
3, 4].

The Unified Modeling Language (UML) [6] is a standard modeling language with rich diagrams to model
static and dynamic aspects of a system. Sequence diagrams and collaboration diagrams are two types of
UML diagrams widely used in communication description.

In a sequence diagram, the horizontal dimension represents different objects and the vertical dimension
represents time. Each object has a lifeline with activation bars. The bar begins with the invocation of a
method and stops when the method ends. Arrows represent messages transmitted between the objects. The
life line could have a branch at a time point and the two or more lines could merge at a later time. The
branch means conditional branch or concurrency.

Sequence diagrams specify time explicitly. In a sequence diagram, objects interact with each other via
messages. A message may specify several different time points such as sending time and receiving time. One
message links two events and the order of events is specified.

A collaboration diagram presents a set of roles to be played by instances as well as required relationships
between them. It also presents a set of messages specifying the interaction between the instances playing the
roles to achieve the desired result. In collaboration diagrams, message order is described by adding numbers
to arrow labels.

To verify the UML design models, the idea of model checking [2] is proposed. Typically, a model checking
algorithm checks properties of a system description based on a (finite) state machine model with parallel
composition.

To generate the automata based model, sequence diagrams should be analyzed and translated into state
machines. A sequence diagram describes time explicitly so the timing relation of the events can be derived
from it. In UML design models for a software system there are usually several sequence diagrams. Analysis
of all of these diagrams could generate a state machine based model for model checking.

The rest of this paper is organized as follows: In Section 2, we discuss types of communications between
software components and what should be modeled in the communication. Section 3 uses an simplified elevator
example to show how to use UML diagrams to describe interactions. In Section 4, we propose one behavior
model of the software system and illustrate how information in Sequence diagrams could be mapped to the
behavior model. In Section 5, we draw some conclusions.

2 Types of Communications

Communications between software components are either asynchronous or synchronous. The difference be-
tween these two classes of communications is that synchronous communications involves blocking operations
in the communication. In synchronous communication, the component is suspended after the send operation
until it is unblocked by the other partner in the communication. In asynchronous communication, nonblock-
ing operations are used which means that the components will proceed without waiting for the completion
of the communication.

The following classes of communications are possible.

Shared Variable A variable that can be accessed by more than one component is a means of communi-
cation. The basic operations on a shared variable are read and write so mutual exclusion is the main
problem in this type.

Asynchronous Message Passing (AMP) In this type of communication, there are two events 1) the
sender sends out the message and continues running, 2) the receiver receives the message. If the
receiver is available and the processes are co-located, 1 and 2 happen at essentially the same time and
could be considered as the same event. If the receiver is not available, the message is stored in a buffer
until the receiver is available. The sender is not blocked at any time.

Synchronous Message Passing (SMP) In Synchronous Message Passing, the sender cannot send the
message until the receiver is available to receive it. There is no buffer in this type of communication.

Procedure Call In Procedure Call, there are four events 1) the caller calls an access program in the callee,
2) the access program is invoked, 3) the access program finishes, and 4) the caller knows that the callee
finishes. In Procedure Call 1 and 2 happen at the same time and they could be considered as one
event. 3 and 4 are also the same event. Between the events of 2 and 3, the caller is blocked.

Remote Procedure Call When there are more than one process and a process calls a function in another
process, this type of communication is called Remote Procedure Call (RPC). The mechanism of RPC
is almost the same as procedure call except that the function in another process may be unavailable
because that function is called by another component and it can not be called twice at the same time.

Asynchronous communication and synchronous communication have the similar semantics and can be
modeled in a similar way. For example, synchronous message passing is a special case of asynchronous
message passing without a buffer and asynchronous message passing between two components could be
modeled as two synchronous messages: from one component to a buffer and then from the buffer to the
other component.

Table 1: Concepts in Communication and UML
| Communication Concepts | UML Notations |

Component Object
Component’s Life Lifeline
Running Access Program Activation Bar
Messages or Calls Message Arrow
(Operations)
Message Name or Call Name | Arrow Label
Event Two Ends of an Arrow
Two ends of an Activation Bar

3 Description of Communications in UML

The techniques for denoting communication types in UML are defined in UML 1.4. To describe communi-
cations with UML, the first step is to map concepts in communication to the elements in UML diagram.
Table 1 illustrates the relations of UML notations and concepts of communication in this work.

Operations and events should be distinguished here: operations have time duration and they are often
composed of several events which are points in time.

Some concepts in communication cannot be represented by UML notations. For example, the data state
is not in UML at all and control state may be represented implicitly.

After mapping concepts of communications to elements of UML, we need to model communications with
the semantics of collaboration diagrams and sequence diagrams. To describe the whole system, the first step
is to use collaboration diagrams to describe relations between objects, the second step is to use sequence
diagrams to describe interactions.

3.1 Collaboration Diagrams in Communication

Because a collaboration diagram presents a collection of instances and their relationships, we can use it
to describe the relations between components, as illustrated in Figure 1. The arrows between components
represent messages and calls. Since this diagram only illustrates the static relations between components no
number is used in the arrow label.

elevatorA:elevator elevatorB:elevator
carArrived et Fl oor . carArrived het Fl oor
next(St op etDirection detDirection
next gt o
schedul e schedul e
schedulerA:scheduler defete coordinator:coordinator derere schedulerB:scheduler
— [TregServed ~reqServed
schedul et ‘fem)Ve schedul 4 lr enmove
car Req
o renove renove
destinationRequestA destinationRequestB
:destinationRequest :destinationRequest
f]eSt Request carRequest: carRequest ?est Request
Far Request

Figure 1: Elevator System in Collaboration Diagram

3.2 Sequence Diagrams in Communication

A sequence diagrams describes several aspects of the communication. First, it can describe the phenomenon
of when one access program is invoked, what other events could be generated during the run time of the

access programs. Second, it can illustrate the mechanism of communication.

When one access program is invoked, it may send messages to or call access programs in other components.
Messages and calls are distinguished by different types of arrows. For example, Figure 2 shows that when the
access program schedule is invoked, three operations, getFloor, getDirection and nextStop happen. Figure 3
illustrates the order of the events in the case of AMP.

destnation | schedulerA | | elevatorA | | c | | i | |
destnation schedulera elevatori arRequest coordinator schedulerA schedulerB
RequestA ; T ; . ; ;
! ! ! hdul ¢ !
hedul ! ! car Request sc
dest Request schecu e get Fl oor [carReq ‘ schdul e | :
|« — — :l;l
getDirection
[
| Bp—" | |
| nextstop _ ! | I |
| I I I
I I I I
I] I] | |
| |) i I
Figure 2: Stimulus in UML, I Figure 3: Stimulus in UML, 1T

Since there are a finite number of access programs in the system and we can draw one sequence diagram
for each access program, the number of sequence diagrams is equal to the number of access programs and
hence the number of sequence diagrams will not grow too rapidly as the system size increases.

Figure 2 and Figure 3 only illustrate the behaviour when one access program is invoked. More sequence
diagrams are needed to completely describe the communications between components, including conflict
resolution.

Figure 4 illustrates all types of communications discussed in Section 2. In I, a procedure call is illustrated:
component P calls an access program in component Q (operation a). The access program in Q is invoked
at the same time as the component P calls it and P is blocked. After the access program in Q ends, P is
unblocked. In II, P calls Q (operation a) first and it is blocked until the operation b. If Q is unavailable
and R wants to call Q, R is blocked and should wait until the operation b is over. R will be unblocked
only after the operation d. In III, P sends a message (operation a) to Q and P is not blocked. If Q is not
available before it finishes serving the message form P and R sends a message to it (operation b), a buffer is
used to store the message and re-send the message to Q (operation c¢) after Q is available. In this type of
communication, no component is blocked. In IV, P sends a message to Q (operation a), R sends a message
to Q (operation b) when Q is not available and R is blocked, this operation can finish only after Q finishes
serving the message from P. When the operation b ends, R is unblocked and Q begins to serve the message
from R. In V, read and write are two basic operations and they should obey the rules of mutual exclusion.

[2] [2] [2]
a | ! | ! | |
a I a | b

B [

I. Procedure Call I'l. Renote Procedure Call .

@ var
|

|
read read

P, Q R are conponents
a, b, c, d are nmessages or calls

var is shared variable
wite wite

IV. Synchronous Message Passing V. Shared Variabl e

Figure 4: Types of Communication in UML

Figure 4 only illustrates some basic types of communications. In a realistic system mixtures and variants
of these communications exist. In Figure 5, the communication are AMP. In this example, the coordinator
can access two messages from two schedulers so we can draw two lifelines for coordinator. A buffer is necessary
when message delete cannot be processed immediately after being sent.

schedulerA:scheduler | | coordinator | | buffer | | schedulerB:scheduler
T T

reqSer ved |

|
|
|
' reqServed

del ete ‘ del ete L]
] del ete |
|
|
|
|

| | L

. |
|
|

Figure 5: Communication Mechanism

4 Analysis Technique

To verify UML design models, we need a formalism to accept all sequences of events described by the model.
In software systems, components are modeled as state machines and most model checking algorithms accept
automata based specification as the input, so parallel composition of state machines is the model in this
research work.

4.1 From UML to State Machine Model

Sequence diagrams describe the relative order of events. In communications, there are several possible orders
of events so the events are not totally ordered. The best description of the relationship of events is a partial
order <.

In [5], relations of messages in Message Sequence Charts (MSC) are translated into a partial order.
Because sequence diagrams come from MSCs with extension, a similar process can be used to extract the
partial order from sequence diagrams.

UML Sequence diagrams do not have state variables in them so they do not represent component state
precisely. UML Statecharts have the ability to describe the behavior of the component but Module Interface
Specifications (MIS)[7] make better use of abstraction and are more amenable to machine processing. A
discussion of the process for generating a formal behaviour model from component MIS is beyond the scope
of this paper.

From the discussion above, we can propose that the problem of synthesizing concurrent automata from
Sequence diagrams can be divided into two steps. 1)Describe partial order relation in sequence diagrams
formally and 2)synthesizing concurrent automata model from the partial order relations and component MIS.

5 Conclusion

UML interaction diagrams have the ability to describe the communication between software components.
Collaboration diagrams describe the relations between components and sequence diagrams describe two
aspects of the interaction: 1) when one event happens, what other events could happen, and 2) what
communications mechanisms represent the communication types. To verify software design, an automata
based behavior model could be derived from the sequence diagrams and used for model checking.

References

[1]

Robert Allen and David Garlan. A formal basis for architectural connection. ACM Trans. Software Eng.
and Methodology, July 1997.

E. M. Clark, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

Hassan Gomaa. Designing Concurrent, Distributed, and Real-Time Applications with UML. Addison-
Wesley, 2000.

Christine Hofmeister, Robert Nord, and Dilip Soni. Applied Software Architecture. Addison-Wesley,
2000.

Madhavan Mukund, K. Narayan Kumar, and Milind Sohoni. Synthesizing distributed finite-state systems
from MSCs. In Proc. Int’l Conf. Concurrency Theory (CONCUR), number 1877 in Lecture Notes in
Computer Science, pages 521-535, University Park, PA, 2000. Springer-Verlag.

Rational Software Inc., et al. OMG Unified Modelling Language Specification, version 1.5 edition, March
2003.

Yabo Wang. Formal and abstract software module specifications—a survey. CRL Report 238, Commu-
nications Research Laboratory, Hamilton, Ontario, Canada, November 1991.

