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Abstract

Modern manufacturing plants rely heavily on the use of automation. Automated facilities use sensors

to measure material state and react to data patterns, which correspond to physical events. Many patterns

can be predefined either by careful analysis or from domain experts. Instances of these patterns can then

be discovered through techniques such as pattern recognition. However, this approach will fail to detect

events that have not been predefined, potentially causing expensive production errors. A solution to

this dilemma, novelty detection, allows for the identification of interesting data patterns embedded in

otherwise normal data. This paper describes several novelty detection methods for time series data that

have been proposed in the literature.

1 Introduction

The demand for improved efficiency and quality in the manufacturing industry has led to an increased use of
automation. The success of automated production depends largely on control systems that monitor material
state and take appropriate action. One method of monitoring uses sensors to detect changes in physical
properties of the material being produced. In some cases, this measurement data has been interpreted
manually by qualified human operators. This has worked well for many years in part because the amount of
data has been small and manageable. Advances in data capture technology and the availability of inexpensive
storage are making it possible to record and store vast amounts of measurement data. As a result, human
operators are becoming less able to detect all material defects in a timely and cost effective fashion. There is
a growing realization that for such monitoring systems to be effective, the data analysis must be automated.

Automating data analysis for the detection of faults is not a new concept in the manufacturing industry.
For years computational intelligence techniques have been used to detect tool breakage, product defects,
etc. [1, 2, 3]. On the forefront of industrial monitoring is INSTRUMAR Limited, a company based in
Newfoundland and Labrador. This company has developed a sophisticated on-line synthetic polymer fiber
monitoring system called the AttalusTM Fiber System [4]. Synthetic polymer fiber is typically used in the
clothing and textiles industries.

The basis for most of these techniques is to match the data to known patterns, which correspond to
physical events. The matching process can be implemented with techniques such as pattern recognition,
similarity search, or by other specialized means [3, 5]. Such systems are fine for detecting faults that have
previously occurred. The procedure for doing so involves two steps: define data signatures for all possible
faults, and then search for them continually. This works quite well if nothing unexpected happens. In this
case, faults are expected patterns since we are searching for them. As shown in Figure 1, the obvious problem
with this system is made evident when an unidentified event occurs. The system would fail to recognize the
event and pass it off as normal operation data. In the case of a production line, this oversight could lead



to substantial financial losses in off specification product. In other words, sometimes the most interesting
fault being searched for is not known. It may be unknown because it has never occurred before (as described
above) or computing a data signature for it is too expensive [6].
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Figure 1: An incomplete knowledgebase will ultimately cause interesting events to be missed.

Clearly, enumerating all possible fault patterns can not detect all events. A more robust approach, called
novelty detection, can be defined as the automatic identification of abnormal phenomena embedded in a
large amount of normal data [7]. Much research has been devoted to this approach in general. Until recently
however, novelty detection on time series data has received much less attention [8]. This is in part due to
the fact that time series databases are usually very large and the notion of similarity can be subjective.
Similarity may depend on the user, the domain, and the task at hand [9].

The occurrence of false positives is a problem for many novelty detection methods. A false positive
occurs when a particular method marks something as novel when it is not. As a result, novelty detection
systems should not be solely responsible for monitoring of a product. An ideal monitoring system could take
advantage of both approaches. A pattern matching approach is very capable of finding known data patterns
and novelty detection allows the system to expand its knowledgebase either autonomously or by a supervised
means. It is the purpose of this paper to examine the various approaches to novelty detection on time series
data that have been proposed in the literature.

2 Techniques

Many approaches to novelty detection on time series data have been proposed. Some mimic biological systems
such as the human immune system [10] and the human brain [11]. Others apply classic statistical theory to
the problem [12]. Still others approach the problem in a more unique way [8, 7, 13, 14].

2.1 Artificial Neural Networks

Artificial neural networks have been used for many years in the manufacturing industry for monitoring and
control [15]. This is mainly because of their ability to learn patterns in data from experience - not from explicit
mathematical models of the data. Neural networks are applied in cases where the underlying mathematical



models are too complex or too costly to determine by traditional means. They have been used successfully for
novelty detection in time series data as well [11]. They learn/classify the normal data behavior and therefore
distinguish normal from abnormal. For small problems neural networks work quite well. However, they do
not scale well to massive datasets [8].

2.2 Negative Selection

Dasgupta and Forrest [10] proposed a novelty detection technique based on the negative selective mechanism
of the human immune system. The human immune system is able to distinguish foreign (i.e. not seen before)
cells from normal body cells. It does this by first generating a set of T-cells via a pseudo-random genetic
rearrangement process. These T-cells are then exposed to the body’s own cells in a training area. T-cells
that bond to the body’s cells are destroyed. The T-cells that are left match cells that are foreign to the body.
This process is called negative selection [16].

The basic idea in applying this to data sets is to somehow generate a set of candidate pattern detectors
and then discard those detectors that match the training data. The pattern detectors left over from this
process are then used to match novel or abnormal patterns in the data. One major drawback of this method
occurs when the normal data set becomes increasingly diverse. As a data set becomes more diverse, the
number of possible patterns increases as well. As a result, more candidate detectors match the normal data
and are destroyed. In the worst case, all pattern detectors are destroyed and the algorithm fails [8, 7].

2.3 Outlier Based

A novel occurrence can be thought of as being an outlier of normal occurrence data. Outlier analysis is
well established in statistics as well as in the more recent data mining area. The authors of [12] introduce
a scheme whereby optimal histograms are used to identify outliers in time series data. Under this scheme,
outliers are defined as “...points with values that differ greatly from that of surrounding points” [12]. In a
fault monitoring system a single data point does not give much information about the system state. System
state is defined by multiple consecutive data points, a data sequence or pattern. We are most interested
in data patterns that deviate from the normal operational data. As a result, this method as described is
not suitable for fault monitoring. An interesting variation of this method involves searching for outliers in a
feature space. A feature space is a transformed representation of the original data space. A simple example
would be taking the standard deviation of the dataset at regular intervals. Each standard deviation value
would be a representation of a sequence of values in the original data.

2.4 Wavelet Based

The authors of [13] take advantage of the multi-resolution property of the wavelet transform to find novel
events at several levels of abstraction. For example, a high level of abstraction would ignore short novel
events. Their approach uses a wavelet-based TSA-Tree (Trend and Surprise Abstractions Tree) structure to
improve the performance of searching for novel events at multiple levels of abstraction. This method defines
novelties as having a large difference between two consecutive averages [17]. This limits the detected novelties
to being dramatic shifts in the signal. Because of this, short novelties that lie within the normal data pattern
cannot be detected [8, 7]. Also, since the definition of surprise gives the same weight to positive and negative
magnitude changes, there is no distinction made between them. Obviously for some systems, a high spike is
not the same as a low spike. Again, the novelty definition imposes another flaw on this method. As described
in [8], sometimes large changes in magnitude at regular intervals are part of the normal operational data.
For instance, in a fiber production facility, the process of ending a package of fiber causes a large drop in the



signal at regular intervals. In this case the absence of a large drop in signal is a novel event. This algorithm
would fail in this case.

2.5 Frequency Based

Keogh et al. [8] have developed a novelty detection algorithm based on data pattern frequencies. They define
a novel pattern as having a frequency of occurrence different from that of normal data. Frequencies of all the
normal data patterns are encoded in a suffix tree data structure. To utilize this structure, the data is first
discretized into a textual representation. A Markov model is then used to estimate the expected frequency
of any new data pattern. A data pattern with a greater frequency than what was expected is considered a
novel event. As with any discretization technique, meaningful data may be lost in the transformation [7]. As
a result, the discretization technique must be chosen carefully. An interesting property of this technique is
its time/space complexity. Once the suffix tree is constructed from the normal data, the process of detecting
all novel patterns in a dataset is linear in the size of the dataset. In 2003, a National Aeronautics and Space
Administration (NASA) study singled out Keogh’s approach as having “great promise in the long term” [18].
It is currently being tested by NASA for space shuttle launch monitoring [19].

2.6 Support Vector Machines

The authors of [7] propose a novelty detection method based on support vector machines (SVMs). SVMs
are a relatively new machine learning technique applicable to both classification and regression. In this
case, support vector regression (SVR) is applied. The idea behind SVR is to first map the input data via a
nonlinear map to a higher dimensional feature space. By applying a simple linear algorithm in the feature
space, a nonlinear fit is created in the input space. The use of kernel functions allows all computations to be
carried out in the input space, with no explicit computations in the higher dimensional space. This makes
SVR as powerful as a nonlinear method (such as neural networks) but much more computationally efficient
[20].

Once the input data has been processed by the SVR method, all outliers of the model are considered to
be novel events. An interesting feature of this method is its ability to associate a measure of confidence with
each novel event. However, the authors admit that the technique has many open issues which require further
investigation.

2.7 Rule Based

Another take on the novelty detection problem is to learn rules from the data that define the possible normal
sequences [14]. Any sequence of data deviating from these rules would be considered a novelty. This approach
involves three main steps as illustrated in Figure 2 (adapted from [14]). The first step is to separate the
raw data into clusters or segments. Next, rules that best describe each segment are generated. In the
illustration, signal magnitude and slope are the defining features of each segment; other measures may be
used however. From these rules, a state machine can be constructed that will only accept normal data
sequences. Any sequence that is not accepted by the state machine is marked as novel. This method was
designed to automate the process of populating an expert system’s knowledgebase. As a result, the rules
generated by this method are human readable - a contrast to the other novelty detection methods described
above. Having the ability to clearly explain and tweak the underlying behavior is of great value.
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Figure 2: Learning rules to uncover novelties

3 Conclusions and Future Work

As modern manufacturing facilities grow more automated, product quality is depending more on automation
systems. The most effective automation solution detects all possible events. Novelty detection is an integral
part of such a solution. It is currently a “hot spot” for research with many different approaches being
investigated in parallel. Currently, it is not clear as to which method is most suitable to a fiber monitoring
application.

Future work will focus on evaluating the effectiveness of several of the aforementioned novelty detection
techniques to the problem of identifying faults in real fiber sensor data. This will involve creating a software
prototype for each technique and evaluating them with real fiber data. The prototypes will be compared
based on two metrics: probability of detection and probability of false alarms. Probability of detection
refers to the rate that a method will successfully detect a novel data pattern during a particular time frame.
Probability of false alarms refers to the rate that a method will detect data patterns that are not particularly
novel. In addition, a recommendation will be made on the method that is best suited to applications involving
fiber.
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