
Tool Support for Test-Driven Development Using Formal
Specifications

Shadi Alawneh and Dennis Peters
Electrical and Computer Engineering

Faculty of Engineering and Applied Science
Memorial University

{shadi.alawneh, dpeters}@mun.ca

Abstract— This paper describes how Test-Driven Develop-
ment (TDD) can be conducted using formal specifications with
appropriate tool support. In TDD, the test code is a formal
documentation of the required behaviour of the component
or system that is being developed, but this documentation is
necessarily incomplete and often over-specific. We propose an
alternative approach to TDD that is to develop the specification
of the required behaviour in a formal notation as a part of the
TDD process and to generate test oracles from that specification.
This approach has the advantage that the specifications can be
complete and appropriately abstract but still support TDD.

Index Terms— Open Mathematical Documents, Test-
Driven Development, Test Oracle, Automated testing.

I. INTRODUCTION

Test-Driven Development (TDD) is a software development
technique that relies on the repetition of a very short devel-
opment cycle: first the developer writes a failing automated
test case that defines a desired improvement or new function,
then produces code to pass that test and finally refactors the
new code to acceptable standards. The steps of test-driven
development (TDD) are illustrated in the UML activity dia-
gram of Figure 1. TDD is one of the core practices of Extreme
Programming (XP)[1], [2]. Two key principles of TDD are 1)
that no implementation code is written without first having a
test case that fails with the current implementation, and 2)
that we stop writing the implementation as soon as all of the
existing test cases pass. Although not all developers agree
with all of the XP practices, the ideas of TDD have started
to gain wide acceptance.

In TDD, the test code is a formal documentation that
describes the required behaviour for the component or the
system that is being developed for the particular test cases
included. However, tests alone describe the properties of a
program only in terms of examples and thus, they are not
sufficient to completely describe the behaviour of a program.
Consequently, this documentation is necessarily incomplete
and often over-specific. To solve this problem we propose an
alternative approach to TDD, which is to develop a formal
specification of the required behaviour as a part of the TDD
process and then generate test oracles from that specification.
We thus propose a variation on the key TDD principles listed
above: 1) No implementation code is written without first
having a specification for the behaviour that is not satisfied

Fig. 1. The Steps of test-driven development (TDD)[3]

by the current implementation, and 2) we stop writing the
implementation as soon as the implementation satisfies the
current specification. By generating oracles directly from the
specification, we are able to quickly and accurately check if
the specification is satisfied by the implementation for the
selected test cases.

Our methods are applicable for programs written in differ-
ent programming languages, but the prototype tools that we
have implemented to describe and explain these techniques
only work for those written in ‘Java’.

II. FORMAL SOFTWARE SPECIFICATIONS

Formal specifications are documentation methods that use
precisely defined notations, which are usually mathematically
based, to define the software or hardware behavior. These
specifications may be used to develop an implementation and



to drive automated testing, as is discussed in this paper. The
emphasis in the specification is on what the system should
do, not necessarily how the system should do it. Examples of
such languages (or notations) that are used to define formal
specifications are VDM, Z, and B.

Formal specifications have several advantages over more
traditional (informal) techniques:

• Since they are precisely defined, there is little room
for misinterpretation of the intended meaning. This
is in stark contrast to natural language and other
informal techniques, which leave lots of room for
(mis)interpretation.

• Formal specifications are a kind of mathematical entity,
so they may be analyzed and studied using mathematical
tools and methods.

• They can be processed automatically, so they can be used
as an exchange medium between software tools.

For automated testing some form of formal specification of
the required behaviour is essential. In a traditional automated
testing process, this specification is in the form of the testing
code, which will implement comparisons or tests to determine
if the actual behaviour is acceptable. In this work we propose
that the specification be expressed in a mathematical notation
and that specification can be used to automatically generate
testing code.

With reference to the set of documents described in [4], in
this work, we are focused on deriving test oracles from the
module internal design document [5]. This type of document
describes the module’s data structure, states the intended
interpretation of that data structure (in terms of the external
interface), and specifies the effect of each access-program on
the module’s data structure.

Computer system behavior is often such that the sys-
tem must react to changes in its environment and behave
differently under different circumstances. The result is that
the mathematics describing this behavior consists of a large
number of conditions and cases. It has been long established
that tables can be used to help in the effective presentation
of such mathematics [6], [7], [8]. It has been shown in the
previous work that the tabular representation of relations and
functions is a significant factor in making the documentation
more readable, and so we have customized our tools to
support them.

A complete discussion of tabular expressions is beyond the
scope of this paper, hence interested readers are referred to the
cited publications [7], [8]. In their most basic form, tabular
expressions represent conditional expressions. For example,
the function definition in equation (1), could be represented
by the tabular expression in equation (2).

The tabular form of the expressions is not only easier to
read, but also easier to write correctly. Tabular expressions
make it very clear what the cases are, and all that cases are
considered.

f(x, y)
df
=



x+ y if x > 1 ∧ y < 0
x− y if x ≤ 1 ∧ y < 0
x if x > 1 ∧ y = 0
xy if x ≤ 1 ∧ y = 0
y if x > 1 ∧ y > 0
x/y if x ≤ 1 ∧ y > 0

(1)

f(x, y)
df
=

x > 1 x ≤ 1
y < 0 x+ y x− y
y = 0 x xy
y > 0 y x/y

(2)

A program specification in our work, consists of these
components: the program invocation gives the name and type
of the program and lists all its actual argument program
variables; an expression that gives the semantics of the
program; constants, variables, auxiliary function and predicate
definitions.

A. Sample Program Specification

Figure 2, specifies a program ‘ggcd’ which compares an
integer value ‘i’ with another integer value ‘j’, returns the
greatest common divisor of them if ‘i > 0 ∧ j > 0’, other-
wise returns 0. Additionally, it indicates if the two integers are
positive by using the returned value, which is represented by
a boolean variable ‘result’. Note that the auxiliary function
‘gcd’ is a recursive function and so it will be used repeatedly
until the greatest common divisor is found.

Program Specification
Boolean
ggcd(Integer i, Integer j, Integer gcdvalue)

i > 0 ∧ j > 0 i ≤ 0 ∨ j ≤ 0

gcdvalue = gcd(i, j) 0
result = TRUE FALSE

Auxiliary Function Definitions
Integer gcd(Integer a, Integer b)

df
=

b 6= 0 gcd(b, a%b)
b = 0 a

Fig. 2. Ggcd Program Specification

III. TOOL SUPPORT

A. OMDoc Document Model

As described in [9], the OMDoc (Open Mathematical Doc-
uments) format is a content markup scheme for (collections
of) mathematical documents including articles, textbooks,
interactive books, and courses. OMDoc also serves as the
content language for the communication of mathematical
software. The specifications in our work consists of program



specifications, which, in OMDoc terms, are symbol defini-
tions contained within theories. Also, each symbol has a type
and possibly other information.

B. The Eclipse Framework

Eclipse is a software platform that consists of extensible
application frameworks, tools and a runtime library for soft-
ware development and management. It is written primarily
in Java to provide software developers and administrators
with an integrated development environment (IDE). Using this
framework to develop our tool provides significant advantages
over developing a stand-alone tool including its widespread
use in the user community, its facilities for tight integration
of documents with other software artifacts, and provision of
support for software development tasks.

C. Specification Editor

As a part of our tools, we are developing a specification
editor to support production of software documents. This
Editor provides a “multi-page editor” (which provides dif-
ferent views of the same source file) for “.tts” files, which
are OMDoc files. One page of the editor is a structured
view of the document, another one shows the raw XML
representation, and another gives a detailed view of the
document giving the user the ability to view and edit the
mathematical expressions. The support libraries in Eclipse
provide techniques to ensure that the views of the document
are consistent. This editor is built using several open source
libraries in including the RIACA OpenMath Library.

This editor is seen as a primary means for the human users
to interact with specification documents.

IV. ORACLE GENERATION

As described in [10], an oracle is some method for checking
whether the system under test has behaved correctly on a
particular execution.

In our work, an oracle is a program which, given a
test input and output, will determine if it passes or fails
with respect to the specification from which the oracle was
derived. The oracle evaluates the characteristic predicate of
the specification relation—if it evaluates to true, then that
test input and output passes, otherwise it fails. Note that such
an oracle does not require the existence of a correct version
of the program.

The second author has previously addressed this problem
together with David Parnas [11]. That work described an algo-
rithm that can be used to generate a test oracle from program
documentation, and presented the results of using a tool based
on it to help test parts of a commercial network management
application. The results demonstrated that these methods can
be effective at detecting errors and greatly increase the speed
and accuracy of test evaluation when compared with manual
evaluation. The prototype test oracle generator they used
allows using only the C programming language. If there is
a need to choose among several programming languages,

one must add several additional sub-modules, one for each
language.

The work reported in this paper is similar to the work
in [11] but our approach for generating test oracles has the
following characteristics that make it unique:

• We are using OMDoc as a standardized storage and
communications format for our specifications, and so we
can take advantage of other tools.

• The semantics of tabular expressions have been general-
ized to allow more precise definition of a broader range
of tabular expression types.

• The test oracle generator can generate test oracles from
module (class) specifications, which are based on the
externally observable behaviour of the class. This will
allow the use of oracles in class testing.

• The test oracle generator is implemented using Java. This
makes it easy to integrate with the Eclipse platform.

• The oracle generator has a ‘graphical user interface’.
This interface gives the user the ability to select any
program specification and generate the oracle from it.
This has the advantage of enabling the user to interact
easily with the specifications.

• The generated test code integrates smoothly with test
frameworks (e.g., JUnit) and hence, it can be directly
used to test the behaviour of the program.

Our tool can generate test oracles from both scalar expres-
sions (logical operators, primitive relations, quantifications),
and tabular expressions. Moreover, it can handle auxiliary
functions and predicates.

The oracle in our approach consists of two kinds of code:
that generated by the Test Oracle Generator (TOG), and
object classes (e.g., Integer Interval.Java, InvertedTable.Java,
NormalTable.Java and VectorTable.Java), previously manually
implemented and are used by the TOG generated code. These
table classes contain all knowledge of the semantics of tabular
expressions and provide several methods (addHeaderCell,
addMainCell, getMainCell, evaluateTable) which give the
user the ability to create and evaluate the tabular expressions.
The Integer Interval class is a java collection used to imple-
ment the finite set containing the integers in a specified range
for the quantifications.

Tabular expressions are implemented by instantiating an
object of one of several classes of (Java) table objects
which implement the various types of tabular expressions
(normal, inverted and vector). These table objects contain
all knowledge of the semantics of tabular expressions, hence
there is no need for this knowledge to be in the TOG. The
expression in each cell of the table is implemented as Java
class that extends CellBase and contains a procedure that
evaluates that expression. This approach for implementing
tabular expressions has the advantage that the oracle code
can be more organized.

Table objects have a method, evaluateTable, which evalu-
ates the tabular expression.



V. TEST DRIVEN DEVELOPMENT WITH ORACLES

This section describes our new approach for TDD. It
also describes an example which shows how to apply this
approach.

The process is as described below:

• Write the specification for some required behaviour.
• Generate the test oracle from the specification and select

test inputs.
• Run the program under test in the test framework (e.g.,

JUnit) using the test oracle to verify if it passes or fails.
• If the test fails, write code until this test passes.
• If the test passes and the specification is not completed

yet, add to or refine the specification and redo the process
again.

• We keep doing this process until the specification is
complete.

The illustration of TDD provided in [12], [13], in which
a program is developed to convert decimal numbers into
their roman numeral equivalent, serves as a good, although
somewhat simplistic, illustration of our method.

Here, we work through the example to show the whole
process for specification supported TDD. According to our
approach, the first step is to write a specification for some
required behaviour. So, we have started with this specification:

String dToR(Integer i)
df
=

i = 1 i = 2 i = 3

result = “I” “II” “III”

The above specification shows the definition for dToR(i)
function which represents the program function. In program
function definitions, we use the convention that result

represents the value returned by the function. The required
behaviour that is represented by this specification is to support
the conversion of numbers (1–3) into their corresponding
roman numerals (I, II, III).

After we write the specifications, we generate the test
oracle from it and we run the test oracle to make sure that
the program behavior is consistent with the required behavior.
Following the TDD approach, the test cases should initially
fail since we haven’t yet implemented the program. We then
implement enough of the program to make the cases pass.

The previous specifications only specifies a behavior for
numbers in the range 1–3, so if a test case outside that
range is used then the test oracle will give an error that says
“NoSuchElementException”.

The pattern used in the previous specification (i.e., explic-
itly specifying the corresponding roman numeral represen-
tation for each decimal number) is clearly not practical for
a very broad range of inputs. We can re-write the previous
specification, as follows (where “+” on Strings is used to
represent concatenation):

String dToR(Integer i)
df
=

i ≥ 1 ∧ i < 4
result = subDToR(i)

String subDToR(Integer i)
df
=

i > 0 ∧ i < 4 “I” + subDToR(i− 1)
i = 0 “”

Then we can broaden the domain of the previous specifi-
cation:

String dToR(Integer i)
df
=

i ≥ 1 ∧ i < 5 i ≥ 5 ∨ i < 1
result = subDToR(i) “NA”

String subDToR(Integer i)
df
=

i = 4 “IV”
i > 0 ∧ i < 4 “I” + subDToR(i− 1)

i = 0 “”
Now, the specification defines the conversion of numbers

from (1–4) into their corresponding roman numerals (I, II,
III, IV) and handles the error where subDToR is not defined
by specifying the behavior for those inputs. After we have
refined the initial specification, we do the same steps as we
did in the previous one. Again we refine the implementation
until the behavior is consistent with the specification, then
continue to revise the specification, as follows.

String dToR(Integer i)
df
=

i ≥ 1 ∧ i < 9 i ≥ 9 ∨ i < 1
result = subDToR(i) “NA”

String subDToR(Integer i)
df
=

i ≥ 5 ∧ i < 9 “V” + subDToR(i− 5)
i = 4 “IV”

i > 0 ∧ i < 4 “I” + subDToR(i− 1)
i = 0 “”

The specification defines behaviour for the conversion of
numbers from (1–8) into their corresponding roman numerals
(I, II, III, IV, V, VI, VII, VIII). We do the same steps as
before and after that, we continue to revise the specification,
as follows.

String dToR(Integer i)
df
=

i ≥ 1 ∧ i < 10 i ≥ 10 ∨ i < 1
result = subDToR(i) “NA”



String subDToR(Integer i)
df
=

i = 9 “IX”
i ≥ 5 ∧ i < 9 “V” + subDToR(i− 5)

i = 4 “IV”
i > 0 ∧ i < 4 “I” + subDToR(i− 1)

i = 0 “”
Now, the specification defines the conversion of numbers

from (1–9) into their corresponding roman numerals (I, II,
III, IV, V, VI, VII, VIII, IX). So, in every step we revise the
specification to describe new behavior and the specification
is represented in a formal way. Also, if the tests fail after
we revise the specification we have to write some code to
satisfy the specification, and after that we continue to revise
the specification.

We keep doing this process until the specification is com-
plete and the code behavior is consistent with the required
behavior that is described by the specification. After we have
done several steps using our TDD approach to develop the
specification and code together, the complete specification is
as follows.

String dToR(Integer i)
df
=

i ≥ 1 ∧ i ≤ 3999 i > 3999 ∨ i < 1
result = subDToR(i) “NA”

String subDToR(Integer i)
df
=

i ≥ 1000 “M” + subDToR(i− 1000)
i ≥ 900 ∧ i < 1000 “CM” + subDToR(i− 900)
i ≥ 500 ∧ i < 900 “D” + subDToR(i− 500)
i ≥ 400 ∧ i < 500 “CD” + subDToR(i− 400)
i ≥ 100 ∧ i < 400 “C” + subDToR(i− 100)
i ≥ 90 ∧ i < 100 “XC” + subDToR(i− 90)
i ≥ 50 ∧ i < 90 “L” + subDToR(i− 50)
i ≥ 40 ∧ i < 50 “XL” + subDToR(i− 40)
i ≥ 10 ∧ i < 40 “X” + subDToR(i− 10)

i = 9 “IX”
i ≥ 5 ∧ i < 9 “V” + subDToR(i− 5)

i = 4 “IV”
i > 0 ∧ i < 4 “I” + subDToR(i− 1)

i = 0 “”
Now, we have a complete specification that describes the

whole required behavior for the program, and presumably the
working implementation developed along with it using TDD.
So, using our approach results in a complete specification,
implementation and suite of test cases for the program.

VI. CONCLUSION

In test-driven development, tests are used to specify the
behaviour of the program, and the tests are additionally used
as a documentation of the program. However, tests are not
sufficient to completely define the behaviour of a program
because they only define the program behaviour by example
and they do not state general properties. Therefore, the latter

can be achieved by using our TDD approach, which uses a
formal specification to specify the behaviour of the program
and supports testing directly against that specification by
generating oracles. The outcome of this technique is that,
at the end of the development period, the developer has
produced not only a working implementation, but also a
complete specification and a full set of test cases.

VII. FUTURE WORK

Clearly a next step in this research and tool development
will be to support test case generation from the specification
as well, which will further reduce the amount of ’manual’
test code development effort.

Other possible improvements in the tool set (e.g., better
visual editing etc.) could be done in the future development
of these tools. In addition to that, part of the future work is
using these tools to do analysis of the test cases (e.g., coverage
of the specification).

VIII. ACKNOWLEDGMENTS

This research was supported by the Faculty of Engineering
and Applied Science at Memorial University of Newfound-
land (MUN) and the Government of Canada through the Nat-
ural Sciences and Engineering Research Council (NSERC).

REFERENCES

[1] Kent Beck, Extreme Programming Explained: Embrace Change,
Addison-Wesley, 2000.

[2] Ron Jeffries, Ann Anderson, and Chet Hendrickson, Extreme Program-
ming Installed, Addison-Wesley, 2001.

[3] Scott Ambler, Agile Database Techniques:Effective Strategies for the
Agile Software Developer, Wiley Publishing, United States of America,
2003.

[4] David Lorge Parnas and Jan Madey, “Functional documentation for
computer systems,” Science of Computer Programming, vol. 25, no. 1,
pp. 41–61, Oct. 1995.

[5] David Lorge Parnas, Jan Madey, and Michal Iglewski, “Precise
documentation of well-structured programs,” IEEE Trans. Software
Engineering, vol. 20, no. 12, pp. 948–976, Dec. 1994.

[6] David Lorge Parnas, “Inspection of safety critical software using
function tables,” in Proc. IFIP Congress. Aug. 1994, vol. I, pp. 270–
277, North Holland.

[7] Ruth F. Abraham, “Evaluating generalized tabular expressions in
software documentation,” M. Eng. thesis, McMaster University, Dept.
of Electrical and Computer Engineering, Hamilton, ON, Feb. 1997.

[8] Ryszard Janicki and Ridha Khedri, “On a formal semantics of tabular
expressions,” Science of Computer Programming, vol. 39, no. 2–3, pp.
189–213, Mar. 2001.

[9] Michael Kohlhase, OMDoc: An Open Markup Format for Mathematical
Documents (Version 1.2), Number 4180 in Lecture Notes in Artificial
Intelligence. Springer Verlag, 2006.

[10] William E. Howden, Functional Program Testing and Analysis,
McGraw-Hill Book Company, 1987.

[11] Dennis K. Peters and David Lorge Parnas, “Using test oracles generated
from program documentation,” IEEE Trans. Software Engineering, vol.
24, no. 3, pp. 161–173, Mar. 1998.

[12] Clarke Ching, “A brief introduction to test
driven development using microsoft excel and vba,”
http://www.clarkeching.com/2006/04/test driven dev.html.

[13] Dave Nicolette and Karl Scotland, “Manager’s introduction
to test-driven development,” Agile Conference, 2008,
http://www.infoq.com/presentations/TDD-Managers-Nicolette-
Scotland.


