
Ice-Floe Simulation Viewer Tool
Justin Adams

Computer Engineering
Memorial University

St. John’s, Newfoundland
jadams@mun.ca

Justin Sheppard
Computer Engineering
Memorial University

St. John’s, Newfoundland
justin.sheppard@mun.ca

Shadi Alawneh
Electrical & Computer Engineering

Memorial University
St. John’s, Newfoundland
shadi.alawneh@mun.ca

Dennis Peters
Electrical & Computer Engineering

Memorial University
St. John’s, Newfoundland

dpeters@mun.ca

Abstract—We are developing software to simulate the be-
haviour of sea ice in a floe on the ocean surface, including
interactions with solid objects (e.g., ships). In order to interact
with this simulation and to visualize the results, we are developing
a tool that gives the user the ability to set up the initial
conditions, run the simulation, and display the simulated ice-
floe data in sequence. Initial data can be extracted from images
(e.g., from a satellite), manually manipulated, and then passed to
the simulator. The output can then be viewed and interrogated
interactively. By using this tool to display the simulation of the
ice-floes, the users will have the ability to analyze ice-floe and
ice-structure interactions.

I. INTRODUCTION

Ice interactions is an area of research that is gaining popu-
larity amongst researchers and investors alike. The Sustainable
Technology for Polar Ships and Structures (STePS2) project is
developing a numerical model for sophisticated simulations of
ice-structure and ice-ice interactions that is being implemented
using High Performance Computing techniques — specifically,
the STePS2 model is utilizing a high-end graphics processing
unit for the computational part of an ice floe simulation.

To compliment the numerical model, a graphical user inter-
face (GUI) is being developed to allow the user to visualize
the simulation results. This tool provides users with a 3D
interactive environment for analyzing simulations provided by
the model. Users can use zoom, pan, and rotate to move around
the field and simulations can be played in slow motion, real-
time, or accelerated time, or on a frame-by-frame basis. The
functionality provided by the interface has a look and feel
similar to popular 3D modelling software such as Google
Sketchup so that new users feel comfortable when utilizing
the tool. Figure 1 shows a screenshot of the main interface of
the Ice Simulation Viewer with example objects loaded.

Furthermore, there are several methods for importing the ice
fields, including from a proprietary text format, COLLADA
files, and images. Once the ice field has been imported the
user can edit the properties of individual floes, including X,
Y, and angular velocities. Users also have the ability to export
initial conditions of scenes for use with the model, or, for a
simulation, data can be exported as a comma separated value
(.csv) file to, for example, plot a floe’s velocity against time.
However, the functionality that is available to the user depends
on the type of data they are currently viewing — a static scene,
or an actual simulation.

Fig. 1. Ice Simulation Viewer

II. STATIC VS. DYNAMIC SCENES/SIMULATIONS

The Ice Simulation Viewer Tool uses two types of files
referred to as static scenes and simulations. Static scenes are
files that contain just the position and attribute data for a
number of ice floes, whereas simulations further contain a
series of updated positions for the floes that were generated
by the numerical model and can be displayed as an actual
simulation of the floes in a given time domain. The user must
choose which they wish to load before any functionality in
the GUI will become available, with the exception of the
image import tool, discussed in Section VIII. Scenes and
simulations have to be treated differently because some data is
only available to be displayed or manipulated in certain states
- for example, a scene contains no data with which to display
a simulation so this functionality is not available. Similarly,
since the numerical model and the GUI are currently separate,
a simulation cannot have its properties edited on-the-fly.

A scene can be created manually in a text file, in a 3D
graphics program that supports exporting as COLLADA files,
or by the image import tool. Within the scene view the user
can click on an object and view or edit its properties: currently
X-, Y-, and angular velocities, with others to be added as the
simulation tool is enhanced. A scene is manually passed into
the numerical model to be used as an initial condition state
that can be used to generate a simulation. Any frame within
a simulation can be extracted, edited and used as a scene.
A simulation is therefore a series of static frames (scenes)



played sequentially. Each frame contains information about
the current objects to be displayed. A simulation is passed in
three parameters to be initialized:

• Time Step: Integer value which indicates the amount of
time, in seconds, between each frame of the simulation;

• Multiplier: Integer multiplier for the Time Steps parame-
ter. The value of the Multiplier times the Time Steps value
is the number of frames per second in the simulation;

• Length: This is the total length of the simulation in
seconds.

Once a simulation as been loaded and initialized in the Ice
Simulation Viewer the data is read by the viewer and displayed
using OpenGL in the main viewing area. Once a simulation is
loaded into the Ice Simulation Viewer the user can play, pause
and stop the simulation as desired. Any time the simulation is
paused the user can export the current frame as a scene and
then edit its properties to then create a new simulation.

III. TOOLS USED

The Ice Simulation Viewer is written in C++ and utilizes
several different libraries to achieve its various features.

A. Nokia Qt

The Nokia Qt library1 is used for the creation of the
graphical user interface in the Ice Simulation Viewer. The
Qt library has wide range of features to allow designers to
create graphical user interfaces quickly and efficiently. The
library has numerous built in features including multimedia
networking, scripting, database, XML, and multi-threading
support. The library also includes a 2D graphics canvas which
allows developer to use a wide array of 2D image manipu-
lation tools and has integrated OpenGL support to allow 3D
graphics programming with OpenGL syntax in line with the
Qt application.

The Ice Simulation Viewer makes extensive use of the Qt
library for all of its graphical user interface components. It
utilizes the multi-threading support to ensure constant respon-
siveness and the integrated OpenGL for graphics.

B. OpenGL

OpenGL2 is a 2D and 3D graphics Application Program-
ming Interface (API) that can be used with a wide range
of programming languages across a number of operating
platforms. OpenGL offers a stable, reliable, fast and well sup-
ported graphics medium that abstracts the intricacies of video
hardware from the developer, allowing a common graphics
syntax across all OpenGL supported devices.

The Ice Simulation Viewer uses OpenGL for all its 3D
graphics components. The 3D viewing area uses OpenGL
for all functionality, including drawing the 3D objects (ice
floes), displaying a pseudo-ocean (an ocean that currently has
no collision detection with the ice-floes), applying textures to
objects, and the pan, zoom and rotate operations.

1http://qt.nokia.com
2http://www.opengl.org

C. OpenCV

Analyzing and modifying images in the Ice Simulation
Viewer for use with importing scenes from satellite imagery
is accomplished using the Open Computer Vision (OpenCV)
library3. Written in C, OpenCV provides many highly opti-
mized algorithms for real-time computer vision and image pro-
cessing. To extract ice floes from images, the Ice Simulation
Viewer only utilizes a few basic functions from the OpenCV
library, including thresholding (converting colour images to
black and white) and some morphological operators. Much
more advanced functionality is available in OpenCV, but it is
currently not required for extracting ice-floes from images.

IV. IMPORT METHODS

A. Text

Text files are the main method of input for the Ice Sim-
ulation Viewer; the data in the files are configured with a
custom formatting that is read on a frame by frame basis by
the Ice Simulation Viewer. Each frame of the simulation is
saved as an individual file that contains the data associated
with each object in that current frame. Each object has a set
of data that includes 3D positional information for each vertex
of the object to be used in drawing as well as some attributes
including the X-, Y-, and angular velocities of the object.

B. COLLADA

Collaborative Design Activity (COLLADA)4 is an inter-
change format used for interactive 3D applications and defines
an open standard XML schema for describing 3D objects
and animations. Once selected for importing into the Ice
Simulation Viewer, the COLLADA file’s XML structure is
parsed and its meshes are extracted and converted to planes,
which are then converted to the Ice Simulation Viewer’s
custom object types for representing floes.

C. Images

Creating lengthy lists of point coordinates of 3D objects in
text files and manually creating realistic-looking floes in a 3D
modelling program can be time consuming, especially when
large numbers of floes are involved (e.g., see Figure 2). A tool
for the Ice Simulation Viewer was created using OpenCV to
extract these floes from a selected image that can then be used
as scenes such that the user can then assign properties to the
objects and use the scene as initial conditions for a simulation;
the details of the import process from image to a scene are
discussed in Section V. A wide range of common file types
are supported, including JPEG, PNG, GIF, TIFF, and BMP.
For example, the user is able use a satellite image of ice-floes
from any location and use the Ice Simulation Viewer to create
a scene with the extracted data from the image. The user can
then edit the properties of the scene and use it as an initial
condition state for a simulation, allowing the user to create a
realistic scenario for a real location and various conditions.

3http://opencv.willowgarage.com
4http://collada.org



Fig. 2. Ice Floe[1]

V. IMPORTING FROM IMAGES

Importing static ice fields into the Ice Simulation Viewer
from satellite imagery allows for easy representation of real
ice fields without having to manually create them using 3D
modelling software or manually typing coordinates. Upon
importing an image into the Ice Simulation Viewer, images
are automatically adjusted and processed using various mor-
phological operations[2] to isolate and extract the shapes in the
image as polygons that represent ice floes. To accomplish this,
the importer utilizes OpenCVs image processing functionality
to perform some basic image operations to segment the
background and foreground areas.

A. Segmentation Methodology and Algorithms

Segmenting the image foreground from its background
is accomplished using three image processing techniques:
thresholding, the morphological erosion and dilation operators,
and contour tracking. An ongoing example in this section will
utilize the Figure 3 as the original image:

Fig. 3. Ice Floes Image Processing Example[3]

1) Thresholding: Thresholding[4] is the main function used
to remove background information. Many of the image pro-
cessing techniques that follow this step cannot be performed
on a coloured or even grayscale image - a binary (black and
white) image must be used. Thus, the first action performed
on the image is a binary threshold. OpenCVs implementation
of threshold provides the use of Otsus method; it assumes
two classes in the image (background and foreground) and
calculates the optimum threshold separating the two so that
their combined intra-class variance is minimal. If the user is
not satisfied with the result, a slider is provided to adjust the
level at which the image is thresholded and the results are
displayed to them in real-time. Figure 4 below shows the
ice floes as foreground (white) with the background water
removed:

Fig. 4. Ice Floes Image Processing - Threshold

2) Morphology: Mathematical morphology is a technique
for analyzing and processing geometrical structures, based
on various mathematical theories. Binary morphological tech-
niques use a structural element which passes over each pixel
and, depending on the operation, uses various set theory
operations (union, intersection, etc.) to calculate the value of
the pixel of interest. For the image importer, the morphological
erosion and dilation techniques are used to reduce noise caused
by thresholding and to restore information to the actual ice
floes that may have occurred due to the noise reduction[2].

a) Erosion: Binary erosion is a process which “shrinks”
segmented foreground objects/contours in an image. This is
achieved by passing a specified structural element over the
image and performing an intersection with the surrounding
pixels. If the current pixel’s neighbours match the structural
element, it is set to 1, but otherwise 0. The example below
shows a 5× 5 matrix A eroded by a 3× 3 structural element
B: ∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣
	

∣∣∣∣∣∣
1 1 1
1 1 1
1 1 1

∣∣∣∣∣∣→
∣∣∣∣∣∣∣∣∣∣
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣
(1)

The center 1 in the 3×3 structural element is used as the center.
In the second 5×5 matrix, only the center 1 survived, as they



were the only pixels whose neighbours perfectly matched the
structural element. With erosion (and many other operations),
a number of iterations can be specified, which would pass the
structural element over the image again. If a second iteration
was performed in the above example, all pixels would be set
to 0.

Figure 5 shows how erosion works in the ice simulation
viewer on the on-going example, using three iterations.

Fig. 5. Ice Floes Image Processing - Erosion

In the figure, erosion has segregated most of the barely
connected floes, which is desired to ensure the convexity
conversion (explained later) and does not create excessively
large objects; however, there has been significant information
removed from the individual floes — this can be restored using
the dilate operator, explained below.

b) Dilation: Binary dilation is similar to erosion, except
that it “expands” segmented areas by performing an union
operation with the structural element as it passes over the
image. The example below shows a 5×5 matrix A eroded by
a 3× 3 structural element B:∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣
⊕

∣∣∣∣∣∣
1 1 1
1 1 1
1 1 1

∣∣∣∣∣∣→
∣∣∣∣∣∣∣∣∣∣
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣
(2)

The shape becomes fully expanded as each 0 element has
at least one neighbour that is a 1. As with erosion, dilation
can be performed a number of times, repeatedly expanding the
shape.

Figure 6 restores some of the information to the ice floes
that was removed by the eroison algorithm.

3) Contour Tracking: A contour is the outline of a shape in
an image. To find the contours of the ice floes in the imported
image, the findContours function provided by OpenCV is
used[5]. This method uses a border following algorithm which
looks for black-to-white (background to object) transitions in
the image. It then traces the object’s boundary by comparing
each pixel’s eight neighbours to determine if it, too, is part
of the object. Conveniently, findContours allows just the first
level of contours to be returned, allowing for easy removal of
any holes generated by the erosion process.

Fig. 6. Ice Floes Image Processing - Dilate

Once contours around the floes have been determined, a
convex hull (a polygon with all internal angles less than 180 ◦)
is calculated. The results are shown to the user, at which point
they can adjust the minimum area they wish to import, which
removes small floes from the image that could have been
created by the dilation. Furthermore, the user has the ability
to adjust the origin in the image as well as the scale of the
floes, which will affect how the floes are converted and shown
in the 3D view.

B. Results
The first implementation of the image importer provides the

basic functionality needed for extracting ice floes from images.
Along with automatic and manual adjustments, the ability to
adjust the field’s origin and scale before importing allows
users to achieve accurate and desired results. The figure below
illustrates a fully processed image with discovered contours
and adjusted origin which is ready to be imported as 3D ice
floe objects:

Figure 7 shows the imported ice from the contours discov-
ered in the example, with a centered origin in the 3D display
of the Ice Simulation Viewer.

Fig. 7. Ice Floes Image Processing - Contours

VI. EXPORTING DATA

Exporting data from the Ice Simulation Viewer can be done
at two different times: during the editing of initial conditions
and after a simulation has been initialized. Each of these
situations are treated differently by the Ice Simulation viewer.



A. Exporting Initial Conditions

After a user has completed customizing an ice field the
Ice Simulation Viewer allows the data to be exported in the
form of a text file. This file can then be used to as the initial
conditions of a simulation. The exported data is stored in the
text file, each ice-floe represented in the data has its associated
x, y, and z coordinates and a list of its initial properties.

B. Exporting Simulation Data

Once a simulation has been initialized the user can choose
to export a CSV file containing the data from the simulation
over a desired time period. The user can choose to export any
combination of x, y and angular velocities for an individual
ice-floe or the entire set of ice-floes. The export into a CSV
file allows the user to easily use their data in any software
with graphing capabilities that supports the CSV file type.

VII. FUTURE DIRECTION AND GOALS

Since the Ice Simulation Viewer is still in the early devel-
opment stages there are a number of features that haven’t been
implemented and tools which will be further developed.

• Image Importer
The Image Importer will be further developed to allow
the user to have more control over how the Ice Simulation
Viewer is processing the images. The user will be able
to choose between several different erosion and dilation
kernels which will alter the results of the operations. The
user will able to preview the results and choose a kernel
best suited for data they desire.

• Simulation Files
As development progresses on the Ice Simulation Viewer
a new method of input files for simulations will be im-
plemented. The current method of one text file per frame
will be replaced by a single file structured using XML.
This file will contain all the data for the entire simulation
which will be more efficient as the Ice Simulation Viewer
will be reading from a single file.

• Exporting Data
The option for exporting an initial condition state as a
COLLADA file will also be available to the user as the
development of the Ice Simulation Viewer progresses.
This will allow the user to load the data into any
supporting graphics software and further define the size
and shape of each floe. This is advantageous, for example,
when importing images causes some definition of floes to
be lost - the user would be able to export to COLLADA
and then refine the lines and shapes, or insert new ones,
in their preferred 3D graphics program.

VIII. CONCLUSION

The Ice Simulation Viewer GUI provides users with an
excellent means of visualizing and interacting with results
produced by the ice collision numerical model. The user
can create realistic scenes and use them as an inital state
for simulations. These scences and simulations are displayed
to the user with an integrated window with the main user

interface using the OpenGL API. The Ice Simulation Viewer
supports several input formats including text, COLLADA and
images. The Image Importer Tool uses the OpenCV library
to allow images of real world ice floes to be processed and
imported into the Ice Simulation Viewer, allowing users to
create simulations for real world locations. Data can then be
exported from the Ice Simulation Viewer as a CSV file to be
used in any supporting graphing software. The Ice Simulation
Viewer is a step foward in the simulation of ice-floe movement
and their interaction with polar ships and structures.

ACKNOWLEDGMENT

This research has been done as part of the STePS2 project,
under the leadership of Drs. Claude Daley and Bruce Col-
bourne, and was supported by: ABS, Atlantic Canada Oppor-
tunities Agency, BMT Fleet Technology, Husky Oil Operations
Ltd, Research and Development Council, Newfoundland and
Labrador and Samsung Heavy Industries.

REFERENCES

[1] Haxon, “Ice floe at Oslofjord,”
http://www.panoramio.com/photo/19618780, March 2009.

[2] Edward R. Dougherty and Roberto A. Lotufo, Hands-on Morphological
Image Processing, SPIE - The International Society for Optical Engi-
neering, 2003.

[3] Jim Wark, “Ice floes on lake superior near Duluth, Duluth, Minnesota,
usa,” http://www.art.com/products/p14101032-sa-i2797699/jim-wark-ice-
floes-on-lake-superior-near-duluth-duluth-minnesota-usa.htm.

[4] E. R. Davies, Machine Vision: Theory, Algorithms, Practicalities, Morgan
Kaufmann, third edition, 2005.

[5] Gary Bradski and Adrian Kaehler, Learning OpenCV, O’Reilly Media,
2008.


