Enhancing Performance of Simulations using GPGPU

Shadi Alawneh and Dennis Peters
Electrical and Computer Engineering
Faculty of Engineering and Applied Science
Memorial University
{shadi.alawneh, dpeters}@mun.ca

Abstract— General Purpose GPU computing, or GPGPU, is
the use of a GPU (graphics processing unit) to do general pur-
pose scientific and engineering computing. The model for GPU
computing is to use a CPU and GPU together in a heterogeneous
co-processing computing platform. The sequential part of the
application runs on the CPU and the computationally-intensive
part is accelerated by the GPU. From the users perspective,
the application just runs faster because it is using the high-
performance of the GPU to boost performance. We have applied
this technique to some sub-problems that form part of an
ice-floe simulation problem and conducted an experiment to
measure the performance of the GPU with respect to the CPU.
The experiment consists of implementing a serial and parallel
algorithm to detect and locate the intersection between polygons.
We run the serial and parallel algorithms on several different
sets of polygons and compare the performance.

Index Terms— GPGPU, CUDA.

1. INTRODUCTION

The Sustainable Technology for Polar Ships and Structures
(referred to as STePSS or STePS2)' project supports sus-
tainable development of polar regions by developing direct
design tools for polar ships and offshore structures. Direct
design improves on traditional design methods by calculating
loads and responses against defined performance criteria. The
project goal is to increase the understanding of interactions
between ice and steel structures such as ships and oil rigs.
The project began in July 2009 and has a duration of five
years. It takes place at the St. John’s campus of Memorial
University of Newfoundland and is funded by government
and private sector partners. The deliverables of the project
include a numerical model which accurately handles collision
scenarios between ice and steel structures. We are using
General Purpose GPU computing, or GPGPU,[1], [2] to
implement some of the numerical models in this project.

“Commodity computer graphics chips, known generically
as Graphics Processing Units or GPUs, are probably to-
day’s most powerful computational hardware for the dol-
lar. Researchers and developers have become interested in
harnessing this power for general-purpose computing, an
effort known collectively as GPGPU (for ‘General-Purpose
computing on the GPU”).”[2] GPUs are particularly attractive
for many numerical problems, not only because they provide
tremendous computational power at a very low cost, but also
because this power/cost ratio is increasing much faster than

Thttp://www.engr.mun.ca/steps2/index.php

for traditional CPUs. A reason for this is a fundamental
architectural difference: CPUs are optimized for high perfor-
mance on sequential code, with many transistors dedicated to
extracting instruction-level parallelism with techniques such
as branch prediction and out-of-order execution. On the other
hand, the highly data-parallel nature of graphics computations
enables GPUs to use additional transistors more directly for
computation, achieving higher arithmetic intensity with the
same transistor count.[2] Many other computations found
in modelling and simulation problems are also highly data-
parallel and therefore can take advantage of this specialized
processing power.

Hence, in this research we are trying to use the benefit
of the high performance of the GPU to implement fast algo-
rithms that can simulate ice-ice and ice-structure interactions
in a very short time. In this paper, we present some initial
results of measuring the performance of the GPU with respect
to the CPU through an experiment consisting of implementing
both serial and parallel algorithms to detect and locate the
intersection between polygons and running both algorithms on
several different sets of polygons to compare the performance.

A. Ice Floe Simulation

The particular problem that we are investigating is to
simulate the behaviour of floating ice floes (pack ice, see Fig.
1) as they move under the influence of currents and wind and
interact with land and other structures, possibly breaking up in
the process. In a two-dimensional model, we model the floes
as convex polygons and perform a discrete time simulation
of the behaviour of these objects. One of the steps in the
simulation, then, is to compute the points of contact between
floes in the ice field.

Fig. 1.

Ice Floe[3]

Another deliverable of this project is the Ice Simulation
Viewer, which is being developed to display the data produced
by the simulation. This program displays frames of ice field
data sequentially to provide its user with a video of a
simulation of the field. It is currently used by the STePS?
software team to help determine the validity of the data
calculated by the simulation and will eventually be used to
present results to project partners. The Ice Simulation Viewer
is being developed in C++ using the Qt [4] user interface
framework.

II. METHODOLOGY
A. Stream Processing

The basic programming model of traditional GPGPU is
stream processing, which is closely related to SIMD?. A
uniform set of data that can be operated in parallel is called
a stream. The stream is processed by a series of instructions,
called a kernel [5]. Stream processing is a very simple and
restricted form of parallel processing that avoids the need for
explicit synchronization and communication management. It
is especially designed for algorithms that require significant
numerical processing over large sets of similar data (data
parallelism) and where computations for one part of the
data only depend on ‘nearby’ data elements. In the case
of data dependencies, recursion or random memory accesses
stream processing becomes not reasonable [5], [6]. Computer
graphics processing is very suitable for this, where vertices,
fragments and pixel can be processed independently of each
other, with clearly defined directions and address spaces for
memory accesses. The stream processing programming model
allows for more throughput oriented processor architectures.
For example, without data dependencies caches can be re-
duced in size and the transistors can be used for ALUs instead.
Fig. 2 shows a simple model of a modern CPU and a GPU.
The CPU uses a high proportion of its transistors for controls
and caches while the GPU uses them for computation (ALUs).

Control ALU ALU

ALU ALU Control &
Cache

IENENEED
|

Fig. 2. Simple comparison of a CPU and a GPU [7]

B. CUDA

Compute Unified Device Architecture (CUDA) is a com-
prehensive software and hardware architecture for GPGPU
that was developed and released by Nvidia in 2007. It is
Nvidia’s move into GPGPU and High-Performance Comput-
ing (HPC), combining huge programmability, performance,

2Single Instruction Multiple Data, in the Flynn’s taxonomy of computer
architectures

and ease of use. A major design goal of CUDA is to support
heterogeneous computations in a sense that serial parts of an
application are executed on the CPU and parallel parts on the
GPU[S8]. An general overview of CUDA is illustrated in Fig.
3.

Devicelevel APls
~ N - -

Language Integration
A .

€ for CUDA

HLSL
Compute Shaders

OpenCL C
Compute Kemels

C for CUDA
Compute Kernels

Compute Functions

DirectX Open CL C Runtime
Compute Driver for CUDA
3
CUDA Driver
CUDA Support in OS Kernel 2

CUDA Parallel Computer Engines
Inside NVIDIA GFUs

Fig. 3. CUDA overview [9]

Nowadays, there are two distinct types of programming
interfaces supported by CUDA. The first type is using the
device level APIs (left part of Fig. 3) we could use the
new GPGPU standard DirectX Compute by using the high
level shader language (HLSL) to implement compute shaders.
The second standard is OpenCL which is created by the
Khronos Group (as is OpenGL). OpenCL kernels are written
in OpenCL C. The two approaches don’t depend on the GPU
hardware hence they can used to GPUs from different ven-
dors. In addition to that, there is a third device-level approach
through low-level CUDA programming which directly uses
the driver. One advantage for this approach is it gives us
a lot of control but this approach is complicated because
it is low-level (it interacts with binaries or assembly code).
Another programming interface is the language integration
programming interface (right column of Fig. 3). As explained
in [9], it is better to use the C runtime for CUDA, which is
a high-level approach that requires less code and is easier
in programming and debugging. Also, we could use high-
level languages e.g. Fortran, Java, Python, or .NET languages
through bindings. Therefore, in this work we have used the
C runtime for CUDA.

The CUDA programming model, as discussed in [10],
suggests a helpful way to solve a problem by splitting it
in two steps: Firstly into coarse independent sub-problems
(grids) and then into finer sub-tasks that can be executed
cooperatively (thread blocks). The programmer writes a se-
rial C for CUDA program which invokes parallel kernels
(functions written in C). The kernel is usually executed as
a grid of thread blocks. In each block the threads work
together through barrier synchronization and they have access
to a shared memory which is only visible to the block.
Each thread in a block has a different thread ID which

can be accessed though threadldx. Each grid consists of
independent blocks. Each block in a grid has a different block
ID which can be accessed though blockIdx. Grids can be
executed either independently or dependently. Independent
grids can be executed in parallel provided that the hardware
being used supports executing concurrent grids. Dependent
grids can only be executed sequentially. There is an implicit
barrier that ensures that all blocks of a previous grid have
finished before any block of the new grid is started.

In our work, we have two kernels: one to detect the inter-
section between polygons and find the list of pairs that have
intersection. Another one, to find the intersection between all
pairs.

C. Separation Of Convex Polygons in 2D

We have used the method of separating axes [11] to deter-
mine whether or not two convex polygons are intersecting.
This method is for determining whether or not two stationary
convex objects are intersecting. The ideas can be extended to
handle moving convex objects and are useful for predicting
collisions of the objects and for computing the first time of
contact. This method is a fast generic algorithm that can
remove the need to have collision detection code for each
type pair (any type of convex polygons) thereby reducing
code and maintenance.

Based on this method, a test for nonintersection of two
convex objects is simply stated: If there exists a line for which
the intervals of projection (the lowest and highest values of
the polygon projection on the line) of the two objects onto
that line do not intersect, then the objects do not intersect.
Such a line is called a separating line or, more commonly, a
separating axis.

For a pair of convex polygons in 2D, only a finite set
of direction vectors needs to be considered for separation
tests. That set includes the normal vectors to the edges of the
polygons. The left picture in Fig. 4 shows two nonintersecting
polygons that are separated along a direction determined by
the normal to an edge of one polygon. The right picture
shows two polygons that intersect (there are no separating

directions).

pro]ectlon(Cl

D et
projec‘tion(CD}

no SBDBI’GUDH on any axis
separation

Fig. 4. Nonintersecting convex polygons (left). Intersecting convex polygons
(right). [11]

D. Intersection Of Convex Polygons

The intersection of two arbitrary polygons of n and m
vertices can have quadratic complexity, Q(nm). But the

intersection of two convex polygons has only linear com-
plexity, O(n + m). Intersection of convex polygons is a key
component of a number of algorithms, including determining
whether two sets of points are separable by a line. The first
linear algorithm was found by Shamos (1978), and since then
a variety of different algorithms have been developed, all
achieving O(n + m) time complexity. In our work, we have
used the algorithm developed by O’Rourke, Chien, Olson
& Naddor since it is claimed to be the simplest algorithm
available.[12] Based on the research that we have done to
find an algorithm for calculating the intersection between two
convex polygons, we haven’t found any simpler than the one
that we have used in this work.

The basic idea of the algorithm is straightforward, but the
converting of the idea into code is somewhat delicate. Assume
the boundaries of the two polygons P and () are oriented
counterclockwise, let A and B be directed edges on each.
The algoirthm has A and B chasing one another. The basic
structure of the algorithm is illustrated in Algorithm 1[12].

Algorithm 1 :Intersection of convex polygons
1) Choose A and B arbitrarily.
2) repeat
a) if A intersects B then
i) Check for termination.
ii) Update an inside flag.
b) Advance either A or B,
i) depending on geometric conditions.

3) until both A and B cycle their polygons
4) Handle PNQ =® and P C @Q and P D (cases.

E. Experimental Procedure

The problem explored in this paper is to detect and locate
the intersection between polygons. We have implemented the
serial and parallel algorithms to compute the intersection
between polygons. Then, we run both algorithms using 25
data sets of polygons: five different set size (100, 500, 1000,
2000, 3000) and each size has five data sets. Finally, we
measured the speed-up (ratio of time for serial algorithm to
that for parallel algorithm).

The GPU card that we have used in our work is Tesla
C2050 which is shown in Fig. 5. This card has 448 proces-
sor cores, 1.15 GHz processor core clock and 144 GB/sec
memory bandwidth.

ITII. RESULTS

Fig. 2 shows the CPU and GPU time to detect and locate
the intersection between polygons for all five data sets. As
we see in Fig. 6 we can tell that the GPU time is less than
the CPU time and as we increase the number of polygons
the CPU time gets much higher than GPU time. Therefore,
we conclude the GPU is more efficient when we have huge
number of polygons.

Tesla C2050.

Fig. 5.

#Polygonsvs, Time (s)

3500
3000 /
2500 /
2000
—#— #Polygonsvs. CPU Time (s)
—H-#Polygonsvs. GPU Time (s
1500 /
1000 /
200

0 500 1000 1500 2000 2500 3000 3500

Time (s}

#Polygons

#Polygons vs. Speed Up

160

140 A
120

Speed Up

80
/ \ —4—#Polygonsvs. Speed Up
60 / \
40 1 \\
20

T~

0 T T T T T T 1
a 500 1000 1500 2000 2500 3000 3500

#Polygons

Fig. 6. Compute Time.

Fig. 7 shows the speed up (ratio of time for serial algorithm
to that for parallel algorithm) in all five different cases.
We notice that the highest speed up is when the number
of polygons is 500. We believe this is due the number of
processor cores (448) on the card that we have used. Each
polygon is approximately handled by one core, but in cases
where there are more than 448 polygons one core must handle
more than one polygon.

IV. CONCLUSION

The paper introduced the basics of GPGPU. The stream
processing programming model and the traditional GPGPU
approach was presented. CUDA was introduced, including
the programming model. The experiment proved performance
benefits for detecting and locating the intersection between
polygons. It is clear that GPGPU has the potential of signif-
icantly improving the processing time of highly data parallel
algorithms.

V. FUTURE WORK

Clearly a next step in this research will be to validate
and enhance physical models that we are going to use for

Fig. 7. Speed Up.

simulating the ice floe behaviour using the GPGPU. Adding
more model characteristics (driving forces, 3D, floe splitting)
will allow us to provide a more useful simulation.

VI. ACKNOWLEDGMENTS

This research has been done under STePS? project, under
the leadership of Drs. Claude Daley and Bruce Colbourne,
and was supported by: ABS, Atlantic Canada Opportuni-
ties Agency, BMT Fleet Technology, Husky Oil Operations
Ltd, Research and Development Council, Newfoundland and
Labrador and Samsung Heavy Industries.

REFERENCES

[1] Hubert Nguyen,
edition, 2007.

[2] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens
Krger, Aaron Lefohn, and Timothy J. Purcell, “A survey of general-
purpose computation on graphics hardware,” Computer Graphics
Forum, vol. 26, no. 1, pp. 80-113, 2007.

[3] Haxon, “Ice floe at oslofjord,”
http://www.panoramio.com/photo/19618780.

[4] Jasmin Blanchette and Mark Summerfield, C++ GUI Programming
with Qt 4 (2nd Edition) (Prentice Hall Open Source Software Devel-
opment Series), Prentice Hall, 2 edition, Feb. 2008.

[5] John Owens, “Streaming architectures and technology trends,” in GPU
Gems 2, Matt Pharr, Ed., chapter 29, pp. 457-470. Addison Wesley,
Mar. 2005.

[6] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fata-
halian, Mike Houston, and Pat Hanrahan, “Brook for GPUs: stream
computing on graphics hardware,” in SIGGRAPH ’04: ACM SIG-
GRAPH 2004 Papers, New York, NY, USA, 2004, pp. 777-786, ACM
Press.

[7] Nvidia, “Cuda programming guide v2.3.1,” 2009.

[8] Nvidia, “Cuda development tools v2.3. getting started,” 2009.

[9] Nvidia, “Cuda architecture overview vl.1. introduction & overview,”
2009.

[10] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron, “Scal-
able parallel programming with cuda,” Queue, vol. 6, pp. 40-53, March
2008.

[11] David Eberly, “Intersection of convex objects: The method of separating
axes,” Geometric Tools, LL, 2008.

[12] Joseph O’Rourke, Computational Geometry in C, Cambridge Univer-
sity Press, New York, NY, USA, 2nd edition, 1998.

Gpu gems 3, Addison-Wesley Professional, first

March 2009,

