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Abstract

When designing safety- or mission-critical real-time systems, a specification of the
required behaviour of the system should be produced and reviewed by domain experts.
Also, after the system has been implemented, it should be thoroughly tested to ensure
that it behaves correctly. This, however, can be difficult if the requirements are
complex or involve strict time constraints. A monitor is a system that observes
the behaviour of a target system and reports if that behaviour is consistent with
the requirements. Such a monitor can be used as an oracle during testing or as a
supervisor during operation. This thesis presents a technique and tool for generating
software for such a monitor from a system requirements document.

A system requirements documentation technique, based on [102], is presented,
in which the required system behaviour is described in terms of the environmental
quantities that the system is required to observe and control, which are modelled as
functions of time. The relevant history of these quantities is abstracted as the initial
conditions and a sequence of events. The required value of all controlled quantities
is specified, possibly using modes—equivalence classes of histories—to simplify the
presentation. Deviations from the ideal behaviour are described using either tolerance
or accuracy functions.

The monitor will be affected by the limitations of the devices it uses to observe
the environmental quantities, resulting in the potential for false negative or positive
reports. The conditions under which these occur are discussed.

The generation of monitor software from the requirements documentation for a
realistic system is presented. This monitor is used to test an implementation of
the system, and is able to detect errors in the behaviour that were not detected by
previous testing. For this example the time required for the monitor software to
evaluate the behaviour is less than the interval between events.
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Chapter 1
Introduction

Computer systems are increasingly being used in situations where their correct be-
haviour is essential for the safety of people, equipment, the environment and busi-
nesses. In many cases there are real-time requirements on the behaviour of these
systems—failure to satisfy timing constraints is as costly as responding incorrectly.
When designing such safety- or mission-critical real-time systems, good engineer-
ing practice dictates that a clear, precise and unambiguous specification of the re-
quired behaviour of the system be produced and reviewed for correctness by experts
in the domain of application of the system. Research suggests that such reviews are

more effective, if the system behavioural requirements documentation:

e expresses the required behaviour in terms of the quantities from the environment

in which the system operates (i.e., external to the system),

e uses terminology and notation that is familiar to, or can be learned by, the

domain experts, and

e is structured to permit independent review and application of small parts of the
document.[45]

Also, after the system has been implemented, it should be tested to ensure that
its behaviour satisfies the requirements. In safety-critical applications the system
should be constantly observed by an independent safety system to ensure continued
correct behaviour. To achieve these goals there must be a means of quickly deter-

mining if the observed behaviour is acceptable or not, which can be quite difficult
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for complex real-time systems. Several authors (e.g., see [100]) have suggested that
a practical approach to analysing the behaviour of a real-time system is to use a
monitor: a system that observes and analyses the behaviour of another system (the
target system). This work investigates techniques for using the system requirements
documentation to generate a monitor automatically. Such a monitor could be used
either as an ‘oracle’[106] during system testing, or as a ‘supervisor’[95] to detect and
report, system failure during operation.

1.1 The Four Variable Requirements Model

As pointed out, e.g. in [102, 103, 108], it is important when specifying system and
software requirements to distinguish quantities that are in the environment, i.e., ex-
ternal to the system, from those that are internal to the system or artifacts of the
description of either the requirements or the design. The “Four Variable Model”, in-
troduced in [77, 102, 103], addresses this issue and is adopted here as a framework for
describing requirements. According to this model, environmental quantities are those
that are independent of the chosen solution and are apparent to the “customer”; they
are the best quantities to use when describing the requirements for the system. (The
requirements for the software can be expressed in terms of variables internal to the
system, see Section 1.1.4.) These quantities will include such things as physical prop-
erties (e.g., temperature, pressure, location of objects), values or images displayed on
output display devices, settings of input switches, dials etc., and settings of controlled
devices.

Also, it is widely accepted (e.g., see [46, 77, 85, 103]) that environmental quantities
can be modelled by functions of time. Given the environmental quantities relevant
to a particular system, ¢i,qs,...,q,, of types Q1,Qz,...Qy,, respectively, we can
represent the behaviour of the system in its environment by an environmental state
function, S : Real — Q1 X Q2 X ... X Q,, defined on all intervals of system operation.
For convenience we define St & Q1 X Q2 X ... x Q, (i.e., St is the set of possible
environmental states).

The environmental quantities of interest can be classified into two (not necessar-
ily disjoint) sets: the controlled quantities—those that the system may be required

to change the value of, and the monitored quantities—those that should affect the
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behaviour of the system.! Assuming that the monitored quantities are ¢i, go, . . ., g,
the monitored state function, m' : Real — Q; x Q2 X ... X Qj, is derived from
the environmental state function by including only the monitored quantities. Sim-
ilarly, if the controlled quantities are g;,gjt1,...,qn, the controlled state function,
¢ : Real = Q;XQ;41X...XQy, is derived. In this thesis, the pair of functions (m’, ¢')
will be used to denote an environmental state function. With respect to a particular
target system, M denotes the set of functions of type Real — Q1 X Q2 X ... X Q;,
(type correct for a monitored state function) and C denotes the set of functions of
type Real — Qj x Qj41 X ... X Q, (type correct for a controlled state function).
We usually are only interested in the environmental state function during the
periods when the system is operating (i.e., it is turned on). An environmental state
function defined on the (possibly infinite) time interval of a single execution of the
system is known as a behaviour of the system. A behaviour is acceptable if it describes

a situation in which the system is operating correctly.

1.1.1 System Requirements

The system behavioural requirements (or, where the meaning is clear from context,
system requirements) characterize the set of acceptable behaviours. Since the system
is expected to observe the monitored quantities and control the values of the controlled
quantities accordingly, it is natural to express this as a relation, REQ C M x C. A
behaviour is acceptable if and only if REQ(m’, ¢') is true. Note that, since implemen-
tations will invariably introduce some amount of unpredictable delay, or inaccuracy
in the measurement, calculation, or output of values, REQ will not be functional for
real systems, i.e., there will be more than one acceptable ¢! for a given m’.

In many cases REQ will be independent of the actual date and time, and will
depend only on the time elapsed since some event (e.g., the system being turned on).
In these cases, equivalence classes of behaviours can be represented by the behaviour
formed by translation along the time axis such that time = 0 corresponds to that
event. In cases where aspects of the date or time (e.g., day of month, hour of day)

are significant, time = 0 will need to be chosen to correspond to an appropriate clock

!There may also be environmental quantities that are neither monitored nor controlled but are
relevant to the design or analysis of the system. These quantities are not relevant to the the four-
variable model and so are not considered in this presentation.
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time and appropriate functions defined to determine the needed quantities.

1.1.2 Environmental Constraints

The possible values of the environmental state function are constrained by physical

laws independent of the system to be built. For example,

e the rate of change (or higher order derivatives) of a quantity may be constrained

by some natural laws,

e some quantities may be related to each other (e.g., pressure and temperature

in a closed container),

e values may be only able to change in certain ways (e.g., positions of selector

switches), or

e certain events may not be able to occur simultaneously.

These laws are described by the relation NAT C M x C, which contains all values

of (m',¢") that are possible in the environment.

1.1.3 System Design

The environmental quantities cannot usually be directly observed or manipulated
by the system software, but must be measured or controlled by some devices (e.g.,
sensors, actuators, relays, buttons), which communicate with the software through
the computer’s input or output registers, represented by program variables. The input

quantities are those program variables that are available to the software and provide

information about the monitored quantities. For input quantities, i1, is,...,%,, of
types I1,I,,...,I,, respectively, an input state function is a function, i’ : Real —
I; x Io x ... x I, representing the values of the input quantities during system

operation. Similarly, the output quantities are those program variables through which
the software can change the value of the controlled quantities. For output quantities,
01,09, ...,0m, of types Oy, 0a,..., 0, respectively, an output state function is a
function, o' : Real — O; x O3 X ... x Oy, representing the values of the output

quantities during system operation. For convenience, with respect to a particular
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REQ
(N ) SOFREQ N ( out )
m(t) . i(t) o(t) c(t)
Input Output
\ Devices ) \_Software ) \ Devices )
Target System

Figure 1.1: System Design

system being specified, the set of functions of type Real — I3 x Io x ... x I, is
denoted I, and the set of functions of type Real — O7 X O3 X ... X Oy, is denoted O.
The behaviour of the interface between the environment and the software is described
by the input relation, IN C M x I, which characterizes the possible values of i’ for
any instance of m!, and the output relation, OUT C O x C, which characterizes the

possible values of ¢! for any instance of of. This is illustrated in Figure 1.1.

1.1.4 Software Requirements

In [77] the actual software behaviour is described by the software behaviour relation,
SOF, and an expression is given for software acceptability. In this work, as in [39],
we are interested in characterizing all acceptable software, so we use the software re-
quirements relation, SOFREQ, which characterizes the set of acceptable behaviours
of the software. This is fully determined by REQ, IN, OUT and NAT, as follows

IN (m!,i") A
SOFREQ £ (¢ (i,0) | | v, ¢, | OUT (o, ¢") A | = REQ (m!, &) | 3(1.1)
NAT (m', ¢')

Note that in many cases REQ (m!,c') = NAT (m',¢!). Further, any observed
behaviour must be in N AT, since, by definition, behaviours not in NAT are not

possible.
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1.2 Scope

This thesis reports the results of an investigation of techniques for using a reviewable
form of system behavioural requirements documentation to generate a monitor that
will determine if the observed behaviour of a system is consistent with the require-
ments documentation. It demonstrates the feasibility of producing such a monitor
automatically from documentation written in a notation that is both readable and
expressive enough to describe realistic system requirements. The following questions
are addressed:

1. Under what conditions can an effective monitor be produced from a relational
requirements document? What restrictions on the form and content of the

documentation must be imposed?
2. What are the useful classes of behavioural properties that can and cannot be:

(a) specified in relational documentation of this form?

(b) verified using a monitor derived from the documentation?

3. Under what conditions will such a monitor give useful results?

The term system is used to emphasize that this work addresses specifying and
monitoring the behaviour of any physical entity. The techniques are not limited
to purely software systems (for which they are probably less than ideal) or even to
systems based on digital computers. In addition this thesis is concerned only with
the behavioural requirements for the system, and does not consider other attributes
such as maintainability or cost.

Many of the decisions required when designing a monitor are not influenced by
the behavioural requirements, but have to do with the environment in which the
monitor is to be used. This work does not present a general notation for describing
these decisions, nor does it attempt to automatically generate those parts of the
monitor that are dependent on them—only those parts of the monitor that are directly
dependent on the system behavioural requirements are generated automatically.

The term verification is often used to refer to the process of using a formal proof

system to show that a particular description of a system has, or does not have,
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certain properties. Although it is the intent that such analysis could be done based
on documentation written using the techniges presented in Chapter 5, this thesis does

not present such a formal proof system.

1.3 Notation and Terminology

There are at least two “systems” of interest in any application of this work:

e The target system is the system to be monitored. Its required behaviour is

specified in the System Requirements Document (SRD).

e The monitor system is the system that observes the behaviour of the target

system and reports whether or not it conforms to the SRD.

Of course, as discussed further in Section 3.2, in some configurations these two systems
may share components.

To help simplify the text, font faces and notational conventions are used. These
are illustrated in Table 1.1. The symbol «d 55 used to represent “is defined as”, so,
for example “f(x) & 2 4+ 57 defines the function f. The common bracketing notation

for describing an open or closed range of real numbers is used:

[,y = {z€Real|z<z<y}
(z,y) = {z€Real|z<z<y}
(z,y] = {#€Real|z<z<y}
[z,y) = {z#€Real|z<z<y}

This bracketing notation is extended to ranges of fixed-precision numbers by replacing
“” with “...” so, for example, [0.0...0.7] = {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7}.

1.3.1 Predicates and Relations

For a set, R, the characteristic predicate, R, is the predicate such that R(x) is true if
and only if z € R, i.e., R(z) & x € R. We say that the predicate R characterizes the

set R.[76] Table 1.2 gives notation used for standard operations on binary relations.
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Table 1.1: Fonts and Notational Conventions

‘ Item ‘ Notation ‘ Example ‘
function or predicate math roman func
standard function italicised kfunc
sequence bold seq
set math bold, capital R
characteristic predicate of R| set name as predicate R(z)
tuple bracketed (x,y)
named element of tuple v v.name V.X
vector function of time underlined, superscript t.| m!

Table 1.2: Operations on Binary Relations
| Operation |Definition

Domain |domain(R) 4 {z | Fy,R(z,y)}
Range |range(R) d {y | 3z,R(z,y)}
Inverse  |R~Z {(z,y) | R(y,z)}
Composition| Ry o Ry & {(z,y) | 3z,Ri(z, 2) A Ra(z,9)}




Chapter 2

Related Work

Two areas of research are most closely related to this work: specifying system require-
ments and monitoring real-time systems. Some of the most relevant work in these

areas is as follows.

2.1 System Requirements Specification

The process through which the system requirements document (SRD) is produced,
often called requirements analysis, has been the focus of much of the research in this
area. As a result, several techniques and notations have been proposed to assist with
this analysis, including data flow diagrams, structured analysis[20], object-oriented
analysis[15], use cases and scenarios.[19] Documents written using these techniques
are useful for communicating with customers and for gaining an understanding of the
problem, but they do not describe exactly the set of acceptable system behaviours,
so they are not behavioural requirements documents in the sense of this work.

Informal specification techniques, such as structured English or graphical nota-
tions that do not have precisely defined behavioural semantics, also do not meet the
needs of this work since they cannot be used to unambiguously determine if any
system behaviour is or is not acceptable.

There are a number of good collections that illustrate and compare the various
formal requirements specification techniques (e.g., [4, 8, 43]), so that work will not

be repeated here except to highlight a few of the most relevant techniques.
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2.1.1 Predicate Logic Based Methods

The specification technique used in this work is a logic based technique—the SRD ex-
presses, in some logic, the characteristic predicate of the set of acceptable behaviours.
There are a number of other such techniques, which differ primarily in the form of
logical notation used and the structure of the documents. For example, in Albert
I1]25, 26, 27| the target system is described graphically as a collection of co-operating
agents, the behaviour of which is specified using a variation of Real-Time Temporal
Logic.[72] In Real-Time Logic (RTL)[9, 52] the behaviour is described in terms of
events and actions using a notation that, like this work, is based on [6, 46], but does
not use tabular notations, so it is less readable. Requirements Modelling Language
(RML)[34] describes the environment in terms of entities and activities, which repre-
sent, respectively, the physical objects and events of the system in its environment,
and assertions, which describe behaviour and are expressed using standard logic with
some extensions.

Temporal logics introduce special operators to denote that a condition should be
true always (O) or eventually (). These have been widely studied as a means of
describing the temporal behaviour of computer systems that do not have real-time
requirements.[28] Several authors have proposed adding bounds to these operators
for specifying real-time behaviour (i.e., to assert that a condition should become true
within some fixed time period).[8, 22, 58, 72, 85] The temporal operators do not,
however, increase the expressiveness of a logic since “always” and “eventually” can

be expressed simply as quantification over time (V¢, and 3¢, respectively).

2.1.2 Process Algebras

A class of techniques that has received considerable attention, in particular with
respect to concurrent systems, is process algebras, such as Calculus of Communi-
cating Systems (CCS)[66, 67], Communicating Sequential Processes (CSP)[47] and
COSY[55]. In these techniques the behaviour of the target system and its environ-
ment are described as a set of “processes” that participate in sequences of atomic
“events.” Interaction between processes takes the form of shared events. Extensions
to these techniques have been proposed for real-time systems (e.g., Timed CSP[87]
and Temporal CCS[69)]).
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These techniques are not intended for specifying system requirements, in the sense
of this work, but rather for abstractly modelling designs so that they can be analysed.

The notation, therefore, does not lend itself to review by domain experts.

2.1.3 Automata Based Methods

Most of the ‘popular’ formal specification techniques (e.g., Hybrid Automatal7,
60], ASTRAL[17], Statecharts[35], LOTOS[49], Petri Nets[61], PAISLey[107] and
SDL([50]) are based on automata theory. They model the target system and its en-
vironment as one or more finite state automata (FSA), and describe the intended
behaviour of the system in terms of operations on that model. While this approach is
suitable for describing a system design, it is less than ideal for describing requirements

for the following reasons.

e The operational approach does not lend itself well to non-determinism so, some

acceptable behaviours are eliminated.

e Precise definition of operational semantics requires a constructive (typically

recursive) algorithm, which complicates review (e.g., see [82]).

e Constructing the model requires internal elements (e.g., states, queues), which
are not part of the environment, and hence not part of the requirements. These
tend to make the requirements less natural to the domain experts, and hence

more difficult to review.

e The finite model limits these techniques to discrete event systems—they cannot

express continuous behaviour.

e The model implies a design, and hence biases the implementation.

One such technique that has received considerable attention for requirements spec-
ification of real-time systems is Statecharts.[35, 36] It extends traditional FSA with
nested states (i.e., states can contain other FSA), parallel (AND) or choice (OR) com-
position of state machines and implicit inter-component communication. Real-time
requirements are described using an implicit clock variable and timeout events. The
statecharts notation allows relatively complex systems to be described using multiple

levels of nesting so that the result is still understandable and visually appealing.
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Several other techniques have adapted the nested state notation from statecharts,
for example RSML[37, 59] and Modecharts[51]. In addition it has been suggested
(e.g., [97]) that Statecharts could be combined with temporal logic to increase its

expressive power.

2.1.4 SCR

The “Software Cost Reduction” (SCR) approach[41], which originated in a project
at the US Naval Research Laboratory (NRL) to specify the requirements for the
operational flight program of the A-7TE aircraft[6, 46], is a forerunner of the approach
presented in this thesis. In SCR, the behaviour of the system is described by a set
of mode classes, which are concurrently executing finite state automata in which
each state corresponds to a system mode. The transitions in the FSA are triggered
by events—changes in the value of variables, modes or terms. The value of each
controlled variable is specified by a function defined in terms of the system modes,
monitored variables and terms. The use of SCR for hybrid systems is discussed in
(38].

This approach has been shown to be effective for a number of real examples (e.g.
(13, 44, 45, 57, 105]) and to satisfy some industrial expectations of requirements
documentation.[31] A tool-set for specifying and analysing requirements documents
that are written using the NRL version of this approach has been developed [39].
This tool-set does not support monitor generation.

The SCR method differs from the requirements specification technique used in

this work in two significant ways:

1. SCR defines events as changes in the value of conditions, whereas we define
events as instants when one or more conditions change value, together with
the status of all conditions at that time, which avoids the need for special
“conditioned events” and simplifies specification of requirements in the presence

of so called “simultaneous events”.

2. SCR defines a mode as a state of a FSA, whereas we define it as an equivalence
class of system histories. This avoids the problems associated with operational
semantics, such as eliminating non-determinism and needing to define mode

transitions that are triggered by other transitions.
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2.2 Real-Time System Monitoring

Much of the work related to monitoring of real-time systems addresses the challenges
associated with gathering accurate and sufficiently precise information about the run-
time behaviour of the target system without changing its behaviour (e.g., [33, 62, 63,
99, 92]). This work does not address those problems, except to discuss in Sections 3.3
and 4.1 how precision and accuracy effect the conclusions that can be drawn using

the monitor.

In [16] Brockmeyer et al. discuss a tool for “monitoring and assertion-checking” as
part of the Modechart toolset. The monitor in that work is an additional modechart
state machine that is simulated concurrently with the target system specification
to determine if the specification has certain critical properties. Since that monitor
observes the behaviour of the specification rather than the target system, it is not a
monitor in the sense of this work, although it could possibly be used as a monitor if

an appropriate interface with the target system were added.

Fickas and Feather [32] propose that requirements monitors be installed as compo-
nents of systems. These monitors collect and report information about the run-time
behaviour of the system, which can be used to determine if it conforms with the
requirements. They advocate this as a technique for gathering information about
changing requirements or environmental conditions, and suggest that certain oper-
ating parameters could be automatically adjusted by the monitor. They propose
that the monitor observe specific aspects of the behaviour that are likely to indicate
that assumptions about the environment are no longer valid. They do not discuss

derivation of the monitor directly from the requirements specification.

Jahanian et al[53] and Mok and Liu [68] describe techniques for detecting if a
system violates timing assertions—restrictions on the time that may elapse between
particular events—expressed as RTL formulae. They do not monitor for “functional”

constraints.
Similarly, Auguston and Fritzson[12] describe a notation called PARFORMAN,

which is based on formal grammars and can be used to describe desired or undesired
sequences of events. They advocate that actual behaviour be compared against as-
sertions written in PARFORMAN to determine if the system is behaving correctly.

These assertions are not the system requirements documentation. Also, formal gram-
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mar based specification techniques have the same limitations as automata based tech-
niques, as discussed above.

Other authors have presented techniques for comparing behaviour of real-time
systems with a specification. Bochmann, Dssouli and Zhao [14], for example, discuss
the automatic derivation of a “trace analysis module” which functions as a monitor
for some component taking part in a communication protocol. The specification
forms used in that work are finite state machine based models (e.g., written in SDL
or Estelle), so the monitor is implemented by ‘executing’ the specification on the
observed trace. In a similar manner Diaz et al[21], and Seviora et al[78, 91, 95]
discuss deriving monitors (apparently not automatically, however) from specifications
written, respectively, using Petri Nets and SDL. All of these groups use model-based
techniques for specifying behaviour, which, as discussed above, we find to be less
than ideal for requirements specification. In addition, since our specification can
be interpreted as the characteristic predicate of all acceptable behaviours, we do
not have to execute the specification and hence we avoid the problems caused by
non-determinism of the specification, which are central to the work of Sevioura and
Bochmann[14, 78].

In much of the literature, the term test oracle is used to refer to what we call
a monitor. In [23, 24], Dillon et al. illustrate a technique for generating oracles
from temporal specifications expressed in a variety of temporal logics. They do not,
however, support the bounded forms of the temporal operators in these logics, so they
cannot express real-time properties.

In [89], Richardson et al. discuss procedures for deriving test oracles from formal
specifications of reactive systems (i.e., systems that are “largely event-driven and
continuously reacting to external stimuli and internal events”). Automatic derivation
of oracles from specifications written in Graphical Interval Logic is discussed in [70],
and [88] discusses tools to support testing using oracles. The specifications used
in that work are design specifications, and the implementation variables and states
are mapped onto the corresponding specification entities, which requires that such a
mapping exist. Since in this work we generate monitors from system requirements,
all expressions are in terms of environmental quantities so we do not make any such

assumption about the implementation.



Chapter 3
Monitors for Real Time Systems

Testing a real-time system typically involves running the target system in a test
environment, observing its behaviour and comparing it to that required by its spec-
ification. Making this comparison can be quite difficult since the requirements may
be complex. A monitor is a system that observes the behaviour of a system and
determines if it is consistent with a given specification. That is, an ideal monitor
reports the value of REQ (m?, ¢').

3.1 Using Monitors

A monitor can be used to check the behaviour of a target system either concurrently
with the target system or post-facto, using some form of recording of the behaviour.
In either case, the monitor should report if all behaviours exhibited by the target
system are acceptable (i.e., in REQ). For a given behaviour (m?, ¢) on some interval
[ti, tf] and any ¢y € (4;,t¢], the behaviour, mt, ¢ ), formed by considering (m?, ¢!) on

[ti, o] only, i.e.,

A~ toet) (t for ¢ t;,t
(mt’gt) (1) df (m’, ') () or E.[ , to)
undefined otherwise

is also a behaviour of the system. Thus, if (mAt, ét) ¢ REQ the system has behaved
unacceptably and the monitor should report a failure.
This interpretation restricts these techniques to what [5] calls safety properties—if

a behaviour is unacceptable then no extension of that behaviour is acceptable. Once

15
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a monitor has detected a failure, no further analysis of that behaviour will give a
different result. In applications such as supervision[95], where continued analysis of
the behaviour is needed following detection of a failure, the monitor, and presumably

the target system, will need to be restarted (i.e., a new behaviour begins).

3.1.1 Non-Testable Requirements

In [5], safety properties are distinguished from liveness properties—those requirements
such that, for a given requirement and any finite duration behaviour, the behaviour
can always be extended such that it satisfies the requirement. These include the
common notions of liveness (the system must respond eventually) and fairness (if
requested often enough eventually a given response will occur) as well as statistical
properties on the behaviour (e.g., the average response time must be less than 7).
No monitor can determine that a target system does not satisfy such a requirement,
since that can only be determined using infinite behaviours (e.g., a pending request
could be serviced in the future). For real systems, however, liveness requirements are
rarely strong enough to specify the true requirements, and should be converted into
requirements that can be checked for finite duration behaviours (e.g., the system must

respond to requests within a fixed time limit), which can be checked by a monitor.

3.2 Monitor Configuration

In this thesis, the monitor is assumed to consist of some software running on a
computer system. The monitor software cannot, in general, observe the environ-
mental state function, (m?,c'), directly, but must do so through some input de-
vices that communicate the values of the environmental quantities to input registers
known as the monitor software inputs. For monitor software inputs, si, S9,.-., Sy,
of types Si1,Ss,...S,, respectively, a monitor input state function is a function,
s' : Real — S; x Sy X ...S,, representing the value of the monitor software in-
puts for the periods of monitor operation. With respect to a particular monitor
system, the set of all functions of type Real —+ S; X Sa X ...S, is denoted S. The
behaviour of the monitor input devices is characterized by the monitor input rela-
tion, INjpon € (M x C) x S. ((m', "), s") € INpon if and only if s' is a possible
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Figure 3.1: Software Monitor

monitor input state function for the environmental state function represented by
(mt, ¢"). Since the monitor must observe all acceptable behaviours, it is required that
domain(INmon) 2 REQ N NAT.

The design of the monitor will determine, for each monitored or controlled quan-
tity, whether it is observed independently of the target system (i.e., using different
devices) or observed directly from the target system software. This results in two basic

monitor configurations, in addition to the obvious mixtures of these approaches:
Software Monitor A software monitor is a monitor that directly observes the target

system software input and output variables, i.e., s' = (i*,0), as illustrated in
Figure 3.1. In this case IN,on is related to IN and OUT as follows.

INoon = { (') (o)) | IN (', ) AOUT (. )} (31)

Software monitors include all of the monitor “architectures” discussed in [99].
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REQ
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s(t)

Report

Monitor Software
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Figure 3.2: System Monitor

System Monitor A system monitor is a monitor that observes (m!,c') using its

own input devices as illustrated in Figure 3.2.

The monitor software determines if the target system behaviour is consistent with
REQ under the assumption that the monitor system’s input devices are functioning
correctly, as described in IN,.,. That is, the monitor software determines if an

observation of the target system behaviour, s’, is in the monitor relation, MON,.,
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which is defined as

N

INmon (M, ) , 8")
MON,. a s' € range(INpon) | | V (mt,gt) € M x C, \ A NAT (m!, ¢)

(3.2)

In the case of the software monitor configuration, and neglecting impossible be-
haviours (i.e., (m', ") ¢ NAT), MON,. = SOFREQ—a software monitor deter-
mines if the target software is behaving in an acceptable manner.

Note that Eq. (3.2) takes a pessimistic view of the system: it requires that all
behaviours that could have resulted in a particular s* be in REQ. If MON_(s") is true
then the behaviour is certainly acceptable, i.e., (MONpe(s*) A INyopn ((m?, ), %)) =
REQ (m', ¢"). A more optimistic view would be to check if any behaviour that could
have resulted in s’ is in REQ. The optimistic monitor relation, MON,,, is defined

as

op>

INmon ((m', ¢') , 8")

MON,, dlste range(INmon) | | 3 (m, ) € M x C, A NAT (m?, &)

A REQ (m', ')

(3.3)
and includes those observations that may, but do not necessarily, represent acceptable
behaviour. A monitor that evaluates MON,, will not give false negative results—
reports that an acceptable behaviour is unacceptable—but is not appropriate for
safety-critical systems since it may give false positive results—unacceptable behaviour
reported as acceptable. The difference between MON,, and MON,,, or, more
specifically their inverse image under INon, is indicative of the appropriateness of
the monitor input devices as reflected in IN pon.

From the above definitions, it is apparent that neither MON,(s") = MON,,(s")
nor MON,,(s") = MONe(s") holds in general. To see this, consider the equivalent
form:

INmon ((m', %), 8') A
MON,e(s") = -3 (m', ) € M x C, | NAT (m!, ct) A
ﬁREQ t t)
which clearly neither implies, nor is implied by MON,,(s"). While MON,,(s") #

MON_(s") is intuitively satisfying—the pessimistic monitor should reject some be-

€
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haviours accepted by the optimistic one—the reverse, MON,(s") & MON,,(s), is
not—if a behaviour is acceptable using the pessimistic approach, then it seems it
should be acceptable using an optimistic approach. However, if we make the as-
sumption that the input devices are working, i.e., for any observed monitor input
state function, s’, there is a possible corresponding environmental state function:
d(mt, ") € M x C, (INmon ((mf, ), s*) ANAT (m?, ¢%)), then the implication holds,
i.e., MONe(s') = MON,, ().

In cases where IN 0, and IN,o, ' are both functions (i.e., each (m?, c') maps
to only one s, which can be uniquely mapped back to (m?, ¢')), and again assuming
that any observed monitor input state function results from a possible environmental
state function, MONpe = MON,,. As discussed in Chapter 4, for real input devices
and discrete time systems, INpon and INpon + are both non-functional relations in

practice.

3.3 Accuracy

The accuracy of a monitor is determined by the set of possible false negatives, denoted
FN, which is the intersection of REQ with the set of actual behaviours that the
monitor may report as being unacceptable. The behaviours that may be reported as

unacceptable are those in the image of MON,, under INon ', as follows.

INmOn t} ! Y t
MONNEG £ {(m',¢) eMx | [3stes, Nmon (@) L
A—=MON,(s")

= {(m',d) e Mx C| (IM (m',¢') NREQ) # 0}
where IM (m/, ¢!) is the image of (m?, ¢!) under INpon © INpmen ™
M (', ') £ {(, &) | ('), (2, &)) € (Nomom 0 Nmon™)} (3.5)
and thus, FN is

FN ¥ REQNMONNEG (3.6)
= {(m,¢') e Mx C|REQ (m',c') A (IM (m',c') "REQ) # 0}

Consider FN under the best and worst case scenarios with respect to INyon- In

the best case IN o, is the identity relation, perfectly relaying the values of (m!, )
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to the monitor software. In this case, IM (m!, ¢!) = {(m}, ¢")}, MONNEG = REQ
and FN = @—the monitor software can detect exactly if the behaviour is ac-
ceptable or not. In the worst case INpon 18 a constant function, mapping all
values of (m!,c") to the same value. In this case IM (m!,c") = domain(INmon),
MONNEG = domain(INyen) and FN = REQ-—under no circumstances can the
monitor be sure that the behaviour is acceptable. In this case the monitor will be

infeasible.

Definition 3.1 A monitor is said to be feasible with respect to a monitor input re-
lation, INmon, system requirements relation, REQ, and environmental constraints,
NAT, if and only if MONp. # Q.

Clearly if INp0p is the identity relation, then MON,, = REQ and so, assuming
a non-empty REQ, the monitor is feasible.

For an alternative view of accuracy, consider the set of false positives that may be
reported by a monitor using the optimistic approach defined in Eq. (3.3), as follows.

INmon t’ ¢ Y K
MONPOS £ J(m!,¢) eMxC| [3s e s, Nmon (€))L g o)
AMON, (")

= {(m",¢) | (IM (', ') "REQ) # 0}
where IM is as defined in Eq. (3.5). The false positive set, FP, is thus

FP £ REQNMONPOS (3.8)
= {(n',¢) e M x C|-REQ (. ") A (IM (m',¢') "REQ) # 0}

Considering the IN o, scenarios from above, in the best case FP = @ and in the
worst case FP = domain(IN pen)—the monitor will report all observations as ac-
ceptable behaviour.

For realistic cases FN and FP will be small but non-empty and should be used
during monitor system design to determine if the monitor is accurate enough for the
particular application. This is discussed further in Chapter 4.



Chapter 4
Practical Monitors

Practical monitors are likely to be implemented using either general- or special-
purpose digital computers. This technology implies certain characteristics of the
monitor input relation, and monitor behaviour, which influence the conclusions that
can be drawn from the monitor output. This chapter discusses these characteristics,
and states some conditions which must hold in order for the monitor to produce

meaningful results.

4.1 Observation Errors

The choice of devices and/or software used by the monitor to observe the environmen-
tal quantities is a major design decision with respect to the monitor system. Design of
a general mechanism for observing target system behaviour in a non-intrusive manner
is beyond the scope of this work—readers interested in that topic are referred to [92]
for a survey of the relevant literature. The following are some factors that should be
taken into consideration in choosing monitor input devices.

Assuming that the monitor is a discrete-time system, there are two basic ap-

proaches to observing behaviour:

e Sample (i.e., observe the instantaneous value of) the relevant quantities at in-

tervals.

e Modify the behaviour of the target system, and/or the systems that interact

with it, to have them notify the monitor system of the values of relevant quan-

22
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tities (m!, ¢, i* or o) as they read or change them. Such notification is assumed
to include a timestamp indicating the time at which the reported value was

observed by the target system.

4.1.1 Discrete Time

Regardless of whether sampling or notification is used, the time measurement is dis-
crete: if sampling is used then the sampling period determines the smallest relevant
clock increment, whereas if notification is used it is determined by the precision of
the notification timestamp. If we assume that using the notification approach the
monitor receives notifications for all relevant changes, then this approach is not sig-
nificantly different from the sampling approach. Thus, the results from sampling
theory (e.g., see [83]) can be applied here to show that, for infinite duration signals
(behaviours), it is sufficient to sample at twice the maximum frequency of change in
the environmental quantities. However, the monitor is typically concerned with what
has happened between the most recent two samples, and so the discrete clock will
introduce some error in the perceived time of events, which is referred to as the time
error. Since this work is concerned with real-time systems, such errors in measuring
time are particularly important.

Consider the behaviours illustrated in Figure 4.1, in which the values of m and
c represent that a condition of, respectively, a monitored and controlled quantity is
either false (low) or true (high). Similarly, the values of s-m and s_c represent the
values as they appear to the monitor software and the shaded regions represent the

image of these changes under IN, on !

Let 0,,,, represent the monitor sampling
interval (i.e., m; — m;_1). Assuming that the change in ¢ is a correct target system

response to the change in m, consider the two cases illustrated.

a) The monitor sees distinct changes. The monitor can determine only that 0 <
d < 20mon- This behaviour will be rejected (considered unacceptable) if the
specified maximum delay for that change is less than 2d,,,,. This results in
Condition 1, below.

Condition 1 The mazimum time error introduced by the monitor input devices

must be less than %min(Delay), where Delay is the set of maximum delay
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Figure 4.1: Time Accuracy

tolerances for the dependent' quantities given in the SRD.

The monitor sees simultaneous changes. Here the monitor can determine that
—0mon < d < Omon (i-e., ¢ could change before m), and hence this behaviour will
be rejected if ¢ is only permitted to change following m. The implication is that
Omon Must be less than the minimum response time of the target system. This
constraint can be weakened, however, by noting that, in order for the target
system to have responded to the change in m, it must have observed its value
between the changes in m and ¢, so this case can be avoided by ensuring that
the monitor samples in that interval as well. Thus we have Condition 2, below,
which can be satisfied by ensuring that sampling by the target and monitor
systems is synchronized to within the minimum target system response time.
If event notification from the target system is used, the monitor and target

systems are assured to be synchronized.

Condition 2 The mazimum difference between the time error in the target

system and the time error in the monitor system for the same event must be

LA quantity ¢ is dependent on m if the value of ¢ may be required to change as a result of a
change in the value of m.
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Figure 4.2: Quantization and Error

less than the minimum time in which the target system might respond to that

event.

A monitor system that does not satisfy Condition 1 will be infeasible. A system
that does not satisfy Condition 2 may give false negative results for target systems

responding too quickly.

4.1.2 Quantization and Measurement Error

As for time, other values observed by the monitor software must be of finite precision,
so Real valued environmental quantities must be quantized, such that, for example,
discrete value d; represents all continuous values, x, such that [, < x < h;. As
illustrated in Figure 4.2, if the quantization is perfect, i.e., h; = [;11, the worst case
error is half the quantization step size, h; — [;, and no non-determinism is introduced.
Practical devices will exhibit some measurement error in addition to quantization, so
the actual error will be larger, and IN,,,,, Will be non-functional.

For a monitor to be feasible, there must be some monitor input state functions,

1

st, for which all images under IN,,o,~ " are acceptable. Because of the variety of

ways that quantities may be used in the SRD, we cannot state generally applicable
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conditions on INon that will ensure that a monitor is feasible. Condition 3 is a

necessary, but not sufficient condition for feasibility.

Condition 3 The error in observing a controlled quantity must be less than the non-

determinism in REQ with respect to that quantity.

4.2 Non-determinism

As mentioned in Section 1.1.1, practical requirements documents will be non-
functional to allow for unpredictable delays or errors in calculation or measurement.
In particular, if the target system is to be implemented using a discrete-time system,
then, for some small time, », REQ must allow events that occur within r of each
other to be treated as either a single event (i.e., simultaneous) or distinct events (i.e.,
non-simultaneous). The time r is known as the time resolution for the target sys-
tem and is discussed further in Section 5.2.10. The monitor system must take this

non-determinism into account when evaluating behaviour.

Consider the behaviour illustrated in Figure 4.3, and the target time resolution as
indicated. The requirements must allow the changes in C1 and C2 to treated as either
simultaneous or not in both cases illustrated. Assuming that the monitor system
samples at the indicated times, it will observe the changes either simultaneously or
not, but can certainly tell that they occurred within 20,,,, of each other. If d,,,, is
less than half the time resolution required for the target, which is required to satisfy
Condition 1, then in both cases all images of s* under IN,on ' allow the changes
to be interpreted as happening in either order or simultaneously, so MON,. accepts
a behaviour in which the target system interprets them in either way. The monitor

software must take this non-determinism into account.

In the case of the software monitor configuration, as illustrated in Figure 3.1, the
monitor software and the target system software are assured to see the same values

(i.e., s* = (&, 0')), so the monitor implementation can require deterministic behaviour.
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Figure 4.3: Event Resolution

4.3 Response Time

Clearly the delay introduced by the monitor input devices will impose a lower limit
on the monitor response time—the maximum time between a failure occurring and
the monitor reporting it—since a monitor cannot report a failure before it is evident
in s*. The choice of input devices can also affect the amount of processing required by
the monitor software, which will also affect response time, although less predictably
so. For example, input devices may be available that can directly report the value
of relevant conditions (e.g., sensors to detect if a robot has touched a wall) whereas
a different choice of input devices would require that the monitor software perform
some, possibly expensive, calculations (e.g., search a list of wall locations to determine

if the robot is touching any).

4.4 Computational Resources

Using any notation that is expressive enough to describe realistic target system re-
quirements, it is certainly possible to express requirements such that MONp(s") is
either not computable, or is computable only using an impractical amount of compu-

tational resources. Some possible causes of this are:
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e REQ (m!, ") or NAT (m!, ") may not be practically computable. As in [79],
this may result from specification errors such as infinite recursions in function
or predicate definitions, or from computation of MON,.(s") requiring quan-
tification over large sets. Specification authors must take care to avoid these

situations, if possible.

e IN,,, may be such that the pre-image of s’ is not easily computed. Since
real-valued monitored and controlled quantities are permitted, the pre-image
of s' will often be infinite, but, for most practical input devices, will be easily
described by simple predicates, characterizing a range of possible values, for
example. If this is not the case, however, it may be impractical to determine if

all elements of the pre-image are acceptable.

Careful review of the SRD and judicious choice of monitor input devices may help
to avoid these situations.



Chapter 5
Specifying System Requirements

This chapter presents a method for documenting system requirements that is based
on the method presented in [102], which developed from the A-TE project.[46] This
method has a great deal in common with the SCR method discussed in Section 2.1.4,

but enhances it in a number of ways:

e It gives an interpretation of the notation for behaviours as functions of contin-

uous time. Discrete time is used in [46] and [102].

e It clarifies the notations for event classes so that real-time properties can be
more easily specified.

e It makes a distinction between environmental and system modes, which clarifies
the interpretation with respect to environmental quantities, eliminates the need
for an assumption of initial mode, and simplifies the description of allowable

delays. [46] and [102] use only system modes.

e It introduces notations (e.g., WHILE(c) and CONT(c)) and simple semantics

to specify behaviour for what are usually called “simultaneous events”.

e It introduces “merit functions”, which allow specifiers to rank the acceptable
behaviours, indicating which are preferable over others. Previous work on SCR

has not used such functions.
e [t allows monitor generation.

29
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One goal in this work is that this method be useful in a wide variety of application
domains without imposing new or restricted notations where they are not needed.
Rather than explicitly stating a, necessarily incomplete, specification language, the
notation presented here is intended as an extension to the (presumably well defined)
mathematical notation appropriate to the application domain. This thesis does not
discuss restrictions that will ensure that expressions satisfy the assumptions of the
next section. The notation accepted by the Monitor Generator tool, and how it can
be extended, is discussed in Chapter 6, Appendix B, and [2, 79, 96].

5.1 Assumptions and Definitions

As discussed in Section 1.1, the SRD describes the relation REQ C M x C, on
functions of time. In this thesis the following definitions are used, and assumptions

made.

5.1.1 Environmental Quantities

All environmental quantities are assumed to be represented by functions of time that,

depending on the value type of the quantity, fall into one of the following categories.

e For Real valued quantities, the function is piecewise-continuous with respect
to time. That is, the quantity is modelled by a function, v : Real — Real,

such that, on any finite period of system operation, [t;, ],
L lim, .+ v(t) is defined for all o € [t;, ),
2. lim,_,,— v(¢) is defined for all ¢, € (¢;, ¢s], and
3. The set of discontinuities of v, {to € (ti,ty) | lim, - v(t) # lim,_,,- U(t)},

is finite.

e For discrete valued quantities, the function is finitely variable with respect to
time. That is, for any finite period of system operation, [t;,tf], there is at most

a finite set of instants at which the function value changes.[8]

As a notational convenience, v is taken to be a shorthand for v(t;) where ¢, is the

“current” time, i.e., the final point of the behaviour being considered.
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The notations ‘v(ty) and Vv/(ty) are used to denote the value of v immediately
before and after, respectively, ty,. This notation is formally defined by Definitions 5.1
through 5.4, below, depending on the value type of the quantity, v.

Definition 5.1 For a Real valued quantity, v, that is piecewise-continuous on an

interval [t;, t¢], and an instant ty € (t;,ty],

V(to) £ lim v(t)

t—ty

Definition 5.2 For a Real valued quantity, v, that is piecewise-continuous on an

interval [t;, t¢], and an instant ty € [t;, ty),

V(to) £ lim v(¢)

+
totg

Definition 5.3 For a discrete valued quantity, v, that is finitely variable on an in-

terval [t;,tf], and an instant ty € (t;,t5],
(o) E x| (36 >0, (Y € (to — 6,%0), v(t) = z))

Definition 5.4 For a discrete valued quantity, v, that is finitely variable on an in-

terval [t;, tf], and an instant to € [t;, tf),
V(o) £ x| (36 > 0,(Vt € (to, to + 6),v(t) = z))

Note that since v may be discontinuous at %y, it is possible that ‘v(¢) # v/(o).

5.1.2 Conditions

All systems are required to change the value of their controlled quantities in response
to changes in the monitored quantities, e.g., a user pushing a button to request some
action, or a physical quantity crossing some threshold. As illustrated in [45], such

behaviour can often be effectively described in terms of conditions and events.

Definition 5.5 A condition is a function Real — Boolean, defined in terms of
the environmental state function, that is finitely variable on all intervals of system

operation.
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With respect to a particular system being specified, we assume a finite set of
conditions, p1,ps, - .., Pn, and denote a tuple of Boolean of length n by Cnd. For
the purposes of the following discussion, we assume that the conditions are assigned
a fixed order and so can be referred to simply by their index in that order (i.e., 2

refers to po, etc.). The notations of Section 5.1.1 are extended to conditions.

5.1.3 Events

The instants when conditions change value are significant to the behaviour of the

system. These are referred to as events, and defined as follows.

Definition 5.6 An event, e, is a pair, (t,c), where e.t € Real is a time at which
one or more conditions change value and e.c € {T,F,QT, QF}" indicates the status

of all conditions at e.t, as follows:

e.cli] Di
T ‘pi(e.t) A pi'(e.t)
F | ='pi(et) A —pi(e-t)

QT | —'pi(e.t) Ap'
QF | ‘pi(e.t) A —p;’

The type EvSp & Real x {T,F,QT,QF}" is the set of all possible events—the
event space—relevant to a particular system. Since all conditions are finitely variable
on all intervals of system operation, any particular finite duration behaviour defines

a finite set of events Ev C EvSp.

5.1.4 History

For systems that respond to changes in conditions, the relevant aspects of the environ-
mental state function on some time interval, [t;, 7], can often be concisely described
by giving the value of the relevant conditions at ¢; (the initial conditions) and listing
the sequence of events between ¢; and t;. Such an abstraction of an environmental
state function with respect to a particular tuple of conditions, py, po, - . ., Py, is known

as a history.
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Definition 5.7 With respect to a particular system and conditions pi,pa,...,Pn, G

history, H, between t; and t; is a pair, (I,E), where H.I &t (p1(t:), p2(ts), - -, Pu(ts))

is the value of the initial conditions, and HE : [1...1] — EvSp, for somel > 0, is

the sequence of events occurring on (t;,t], such that

H.E[i|t < HE[i + 1].t A

e (H.I[j] & H.E[l].c[j] € {T,@F} A )
H.E[i].c[j] € {T,QT} <& H.E[i + 1].c[j] € {T,QF}

Viell...l)

The type Hist C Cnd x sequence of EvSp is the set of histories relevant to
the system. A history, H, is said to be possible with respect to a particular system
and environmental constraints, NAT, if 3 (m!,¢!) € NAT such that H is a correct

abstraction of (m!, ¢') with respect to the conditions py,ps,. . ., Dn-

5.1.5 Modes and Mode Classes

In [45, 46], it was noted that

e it is frequently the case that many histories are equivalent with respect to their

impact on future behaviour, and

e each controlled quantity is usually affected by a small number of conditions.
The following concepts are introduced here to take advantage of these facts.

Definition 5.8 An environmental mode class (or simply mode class) is an equiva-
lence relation on possible histories, MC C Hist x Hist, such that, if MC(H;, Hs),
and ﬁl and ﬁg are the extensions of Hy and Hy by the same event, then MC(I—L, ﬁg)

Note that the same change in conditions occurring at different times are different
events. Also, if, for example, the time elapsed since a previous event is significant to
the behaviour, then this is a condition relevant to the system, and is included in the
events.

A mode class defines a set of equivalence classes of histories, known as modes,
that partitions the set of possible histories (i.e., every possible history is in exactly

one mode in the mode class).
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Modes and mode classes provide a mechanism for separation of concerns in the
requirements document. The mode definitions clearly identify how the system be-
haviour depends on previous events, and the controlled state functions can be speci-
fied in terms of the current mode in one or more mode classes.

Events, histories, modes and mode classes are neither a departure from, nor an
extension to, the “four variable model” as described in Section 1.1, but rather provide
a foundation for concise descriptions of required system behaviour (REQ) by allowing
us to describe those aspects of (m!, ¢') that are relevant, and ignore those that are
not. These techniques are clearly not appropriate for all systems, and should only
be used where they add value. For example, the requirements for a simple integrator
circuit—for which the voltage at the output is the definite integral of the voltage at
the input over some period—are not made more concise by using events, histories
or mode classes. Such a system can be more effectively specified using traditional

engineering mathematics.

5.1.6 Tolerance and Accuracy

As pointed out in [102], among others, it is often helpful to describe the system
requirements by first describing the behaviour of an “ideal” (i.e., infinitely accurate
and fast) system and then specifying acceptable deviations from that behaviour. This
technique is common practice in most engineering disciplines (e.g., “2.00 m+0.01 m”,
“3.3 k2, 10% tolerance”).

Ideal system requirements are useful for requirements capture and for construction
of models for verification or validation, but they are not sufficient for detailed system
design, implementation or testing. For these tasks we must recognize that, because of
the limitations of the physical world, any implemented system can only approximate
the ideal behaviour. The requirements specification must clearly state exactly which
approximations of the ideal behaviour are sufficient for the task at hand. In the four
variable model this appears as REQ being a non-functional relation (i.e., there is
more than one acceptable value of ¢' for any value of m').

Such specifications help the implementer to decide where effort and expense should
be invested to reduce the impact of technological limitations on system behaviour.

Some examples of limitations that typically affect computer systems are



5. Specifying System Requirements 35

e all measurements contain some error,

e calculations performed on digital computers are finite precision and subject to

numerical errors, and
e no computer system can respond instantaneously to changes in its environment.

The concepts of tolerance and accuracy, which are adapted here from [102, 103],
provide a model for such specifications. Note that by choosing one or the other of
these techniques the specification author is not identifying sources of error, but is
rather describing what cumulative effect of all sources of error on the values of the
controlled quantities is considered acceptable.

The most common, and intuitively satisfying, means of describing deviations from
ideal behaviour is to state how much the actual value of a controlled quantity is
permitted to deviate from the ideal value. This can be expressed in the form of a

tolerance relation.

Definition 5.9 A tolerance relation, T C C x C, s a relation that relates an ideal
controlled state function to the controlled state functions representing acceptable actual
values of the controlled quantity. A pair of functions is in the relation if and only
if the second element of the pair is an acceptable actual value of c* when the first

element of the pair is the ideal value.

An alternative technique for describing deviation from ideal behaviour is to use
an accuracy relation to state how the values of monitored variables used in the spec-
ification may deviate from their “true” values. In [102, 103] this is called precision,
but accuracy is used here to avoid confusion with other meanings of precision, such

as the number of bits used in the representation.

Definition 5.10 An accuracy relation, A C M x M, relates an actual value of a
monitored state function to the functions representing acceptable perceived monitored
state functions.

Thus, as stated in [102, 103], the set of acceptable behaviours, REQ, can be
calculated by the composition of the accuracy relation, A, the ideal behaviour, I, and
the tolerance, T: REQ = A oI o T, or, more explicitly:
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REQ = {(m', ') | 3", &, (A (m', ') AT (&,¢) AL (i, &)} (5.1)

Clearly, there are many choices of combinations of ideal behaviour, accuracy and
tolerance to specify the same set of acceptable behaviours. In particular, by choosing
the identity relation for both accuracy and tolerance, Eq. (5.1) reduces to REQ =
{(m!, ") | 1(m!, )} = 1. (Of course, in this case I would not be what is typically
called “ideal” behaviour—it would have to allow for delays etc.) Thus accuracy
and tolerance relations do not increase the expressiveness of the method; however,
they have been found to be convenient for concisely specifying ranges of behaviours.
Similarly, there is no theoretical advantage to allowing both accuracy and tolerance
relations to be used when either one would suffice and, since the method is controlled
value driven, tolerance seems to be the most intuitive. However, there are situations
where using accuracy relations leads to a more concise and readable specification. For
example, consider a system that measures a quantity, displays its value and turns on
a light if the value is above some threshold. The SRD author may want to require
that the displayed value and light are consistent (i.e., the light is not on unless the
displayed value is above the threshold), but be willing to accept some error introduced
in the measurement of the monitored quantity. This behaviour can be clearly stated

using an accuracy relation rather than tolerance.

5.2 Specification Notation

The SRD is interpreted as the characteristic predicate of REQ, and so expressions are
implicitly taken to refer to a particular behaviour of the system (i.e., environmental
state function on some finite interval). Throughout this section the behaviour will be
assumed to be on the interval [t;,t].

In cases where the controlled quantities are simple functions of the current or past
values of monitored quantities, no special notation is required. For example, for a
simple amplifier with one controlled quantity, “o, that is always required to be within
CTOL of twice the value of the monitored quantity, ™i, the controlled value relation
is simply stated ““o = 2x™i£“TOL”. In cases where the system responds differently
depending on past events, however, notation to describe conditions, events, modes

and mode classes can be helpful.
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This section presents a system requirements documentation technique, based on
[102] and the SCR method, that could be used to specify target system behaviour.

The next sub-section gives an overview of the components of a system requirements
document (SRD). The remaining sub-sections of this section present notations for the
main components of an SRD in more detail, using a simple logic probe, of which a
system overview is given in Figure 5.1, as a running example. Appendix A contains

several complete realistic SRD examples.

System Overview

The logic probe is a device for testing and debugging TTL logic circuits. It
consists of a pen-shaped body with a short grounding wire, which has an alligator
clip on the end. One end of the body is a finely pointed metalic tip so that it can
be easilly placed against a circuit on a printed circuit board or an IC chip leg.
The other end of the body has a tri-state light on it that glows red to indicate a
logic “high” signal, green for logic “low” or is off for an invalid logic level. The
actual voltage measured at the tip is displayed on a small LCD display on the
probe body.

There is a momentary contact push button labelled “Pulse” on the side of the
probe body. When this button is pushed the probe tip will be “pulled low” (i.e.,
shunted through a low resistance to ground) for a period of 100 ms.

Figure 5.1: Logic Probe System Overview

5.2.1 Document Sections

Four sections are required in the system requirements document, and three additional

sections are optional, as follows.[102]

Required Sections

Environmental Quantities : This section defines the system boundaries by de-
scribing the set of quantities that are either monitored or controlled by the
system. Variables are defined to refer to each quantity and the physical mean-

ing of these are precisely described.



38 5. Specifying System Requirements

System Behaviour : This section defines the required behaviour of the system by
stating the value of each controlled quantity for any possible values (and history)

of the monitored quantities.

Environmental Constraints : This section describes the behaviour of the envi-
ronment in which the system operates by describing the constraints on the
monitored and controlled quantities imposed by the environment. These con-
straints both limit the possible behaviour of the system and form assumptions
that can be made by system designers. These are expressed in terms of the

values of the monitored and controlled variables and define the relation NAT.

Dictionary The dictionary contains definitions of terms, which are mathematical
functions or relations, and words that are either not common English (or what-
ever natural language is used) or have special meanings in the application do-
main. If no such definitions are needed the dictionary may be empty.

Optional Sections

System Overview : This section gives an informal description of the system re-
quirements, possibly including non-behavioural requirements. Figure 5.1 is the

system overview for the logic probe example.

Notational Conventions : If conventions or notations are used that are not stan-
dard in the application domain, then they should be explained here. For ex-
ample, as illustrated in [45, 46, 102], it is often useful to use special bracketing,
font, or variable naming conventions as mnemonics to aid readability. The

conventions illustrated in Table 5.1 are adopted for the examples in this thesis.

Anticipated Changes As discussed in [74], a major consideration when designing
a system is the set of changes to the requirements that are most likely to occur.
This information can be used to help limit the amount of re-design and imple-
mentation modification needed to effect these changes. While it is impossible
to anticipate or isolate the effects of all changes, it is useful to consider which
are most likely, and to record this in the SRD.
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Table 5.1: Notational Conventions

‘ Item ‘ Notation ‘ Example ‘
Monitored variable prefix superscript m | ™mvar
Controlled variable prefix superscript ¢ ‘cvar
Monitored and controlled variable| prefix superscript mc | ™*mcvar
Condition prefix superscript p | Pcond
Mode Class prefix superscript C1 | “!mclass
Mode prefix superscript Md| M¢mode
Constant prefix superscript C' | “const

5.2.2 Monitored and Controlled Quantities

The description of the environmental quantities defines the range of the environmen-
tal state function, denoted St. The following information must be given for each

environmental quantity that is relevant to the system.

Physical interpretation

Variable name

Role: monitored/controlled /both

Type (set of possible values)

Typically this information is summarized in a table, such as in Figure 5.2, and
notes or separate sub-sections are used to give further details. As is common in other
fields of science and engineering, the description of the physical interpretation is
usually informal, but it should be as precise and accurate as possible, using diagrams
or mathematical notation where appropriate.

The set of possible values for a particular quantity can also be determined by ex-
amining the domain or range of the environmental constraints, NAT, but it is stated
explicitly in this section because it can be used to determine the data types needed to
model the quantities. This set of values may be expressed in a wide variety of ways,
including a (open or closed) range of the real numbers or integers, an enumerated set

(e.g., for button positions) or a sequence of characters (e.g., command typed).
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Environmental Quantities

Monitored
Controlled|

Type Notes

mt Current time Real 1
™Vtip |Potential (voltage) at the probe tip|e| |[-15, +15]V
with respect to the ground clip.
™Pulse |Position of the pushbutton on the|e| [{*Up,*Down}
probe body labelled “Pulse”.

Variable| Description

“Vdisp |Value displayed on display panel. ®|[—9.9,-9.8...+9.9]
“Light |State of the probe light. o [{*Off, *Red, *Green}
“Requiv |Equivalent resistance at probe tip. e |[0 Q2,10 MQ] 2
Notes

1. Time is represented as the amount of time elapsed since some fixed arbitrary
time before the system is started (only time differences are relevant to the
requirements).

2. Equivalent resistance of the probe, modelled as a resistive shunt to ground.

Figure 5.2: Logic Probe Environmental Quantities

5.2.3 Tabular Expressions

Several industrial projects and research efforts (e.g., [39, 46, 48, 59, 75]) have demon-
strated the utility of tabular notations for representing the kinds of functions that
occur regularly in computer system documentation. Tabular expressions are used in
this work and the generalized tabular semantics model and notation of [2, 54], which
are based on [56, 75|, are used to define how they are to be interpreted. In this model,
the semantics of each form of tabular expression are described by the cell connection
graph (CCG) case and two “table rules”: the table predicate rule, pr, which deter-
mines the domain of the expression, and the table relation rule, rr, which determines

the value of the expression.
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An n-dimensional table consists of n headers, denoted H, Ho, ... H,, and an n-
dimensional main grid, GG, such that the length of G in any dimension, i, is equal to
the length of the corresponding header, H;. In the table in Figure 5.3, for example,
H, is the row header containing the expressions y < 0, y = 0, and y > 0. An indez,
a, is a tuple of length n such that Vi, 1 <i <n =1 < «fi] < length(H;), where «fi]
represents the element at position 7 of index a. An index identifies a unique cell in
each header and in the main grid. For example, the tuple (2,1) is a valid index for
the table in Figure 5.3 and identifies the expression y =0, in H;, x < 0in Hy and 7
in G.

ang(z, y)
pr : Hi AN Hy
rr: G z <0 z=0 x>0
ar | Normal
B y <0 arctan(%) — 7 | =% | arctan(¥)
y=20 T 0 0
y>0 arctan(Y) +7 | T | arctan(¥)

Figure 5.3: Example Tabular Expression

The cells of those headers and grids mentioned in the table predicate rule (H; and
H, in Figure 5.3) and table relation rule (G in Figure 5.3) are respectively referred to
as guard and value cells. The guard cells are combined according to pr to form a guard
expression, p,, for a particular index a. For example, for o = (2,1), in Figure 5.3,
pl d y = 0Az < 0. The conjunction of pl with the value expression for that index,
r,,, forms a raw element relation, Ry (e.g., Rea,1) & y=0Az <0Aang=m).

The cell connection graph case determines how the raw element relations are
to be combined to construct the table relation, Ry, as described in Table 5.2. In
Table 5.2, I is the set of possible indices for the table and v is the number of a special
header know as the vector header. IP is the index set for the table with the vector
header index removed, and « | v is the index formed by deleting the v element
from «a. n is the length of the vector header. The operator “®”, defined in [54], is a
variation of ‘join’ from relational databases, and is used to merge relations to form

a single ‘vector’ relation. For example, if A C Uy x U; and B C Uy x Uy, then
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A ® B = {(x,x1,%2) | (xg,21) € A A (29, 72) € B}. Readers interested in a more
formal and complete treatment of tabular expression semantics are referred to [54].

As an example of interpreting a tabular expression, consider Figure 5.3 in which
pr : Hi A Hy, 11 : G and CCG case “Normal” specifies that the table is interpreted
by choosing ¢ and j such that H;[i] A Hy[j] is true, the value of the tabular expression
is given by G[i, j], giving the table relation, R, as follows.

Ry = U?:1 U?:l R(i,j)

= RaunyURpe1y UR@E ) UR@E2) UR@go URGEo)
UR(1,3) U R2,3) U Rz 3

( (y <0Az <0Aang = arctan(¥) — )

Viy=0Az <0Aang=m)

V(y >0Az <0Aang = arctan(¥) 4 )

Viy<0Az=0Aang= —7%)

= <cz,y,ang|V(y =0Axz=0Aang =0) >

(y>0Az=0Aang=71)

(

(

(

N

<

2
V(y <0Az>0Aang = arctan(%))

Viy=0Az >0Aang =0)
V(y >0Az>0Aang = arctan(%)

Table 5.2: Cell Connection Graph Cases

|CCG Case |Relation, Ry = | Intuition |
Normal, Inverted! Uaer Ra Evaluate the value expression for the
index that makes the guard expression
true.
Vector ®?:1 ( apzi Ra> ‘Join’ the value expressions for all indices
oct (a row or column) that make the guard
expression true.
T
Decision User ( a,,rL Ra> Evaluate the value expression for the in-
ajv=p dex that make the conjunction of the

guard expressions in that row or column
true.
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The table layout conventions for tabular expressions are illustrated in Figure 5.4.
In this figure, R represents the table rule information (pr, rt, and CCG case), H;[j]
represents the ;' cell in header i and G[z] represents the cell at position z in the
main grid. The two tables on the left of the figure each have a one-dimensional main
grid and only one header, H;. The middle two tables in the figure each have a two-
dimensional main grid, and two headers: Hj, the row header, and Hj, the column
header. The table on the right of the figure illustrates how a three-dimensional table
can be printed by printing ‘slices’ of the table and repeating the cells of Hs for each
slice. Header grids are denoted by being separated from the main grid by double or
heavy lines. Where possible, the table rule information is printed in an otherwise

unused cell, as indicated.

R | F [SI[EI[HEE] R [ I 5]
H,[1)|G[1]|  |Hi[1]|G[L,1]|G[1,2]|G[1,3]| |Hi[1]||G[1,1,1]|G[1,2, 1] Hs[1]
H,[2]|G[2]]  |Hi[2]||G[2,1]|G[2,2]|G[2,3] GI[1,1,2]|G[1, 2, 2] | Hs[2]

H,[1]]G[1,1]|G[1,2]|G[1, 3] G[2,1,2]|G[2,2, 2] |[H3[2]

|G[1]|G[2]|] |[R || H[1] | Hy[2] | Hy[3] |

Figure 5.4: Table Layout and Numbering Conventions

To reduce wasted space when printing 3-D tables, rows may be eliminated from
slices where the table predicate rule is trivially false for the particular index values.

This is illustrated for a particular example in Table 5.6 and Table 5.7.

5.2.4 Conditions

As discussed in Section 5.1.2, conditions are simply Boolean functions of time defined
in terms of the monitored and controlled quantities. These definitions can be written
using constants, the environmental quantities, and functions of them together with

standard relational (e.g, <, >) and logic (e.g., A, V, —) operators and tabular expres-

!The “Normal” and “Inverted” CCG cases have the same interpretation but they are distinguished
for historical and technical reasons.
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sions. By adopting a logic such as presented in [76] the definitions can include partial
functions.

Conditions that differ at finitely many points (instants) are considered to be equiv-
alent, so, for example, for a Real valued and continuously changing quantity, ™x,

Mx = 0 = false. While this may seem counter-intuitive at first, it makes sense since

no system can determine if ™x = 0 ezactly, but can only determine that it is within
some tolerance of it, i.e., —d < ™x < ¢, for some small §. To help make the docu-
mentation concise shorthand notations could be defined, e.g., © ~5 y a lz —y| <0,

although this form will not be used in this thesis.

A full treatment of the logic of conditions is beyond the scope of this thesis, so in
the sequel they are treated as environmental quantities, and assumed to be finitely
variable, as defined in Section 5.1.1.

Figure 5.5 illustrates some condition definitions.

Conditions
|Name| Condition |
Plow ™Vtip < 0.8V
Pfloat 0.8 V < ™Vitip < 2.0V
Phigh|  ™Vtip > 2.0 V

Figure 5.5: Logic Probe Conditions

The behaviour of real-time systems is, by definition, dependent on time, and
hence there is often a need to specify conditions dependent on time. If this is the
case, time is a monitored variable and no special notation is required. For example,
the condition that becomes true 100 ms after the ™Pulse button was pressed is “(¢; —
Last(QT (™Pulse = *Down))) > 100 ms”. For systems where time of day or date are
relevant, time can be represented by the time elapsed since some fixed time prior to
the system being turned on. If time of day and date are not relevant to the system
behaviour then time can be represented by time elapsed since some arbitrary time
prior to the system being turned on.
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5.2.5 Event Classes

In many cases the description of system behaviour can be stated concisely by con-
sidering sets of similar changes in conditions. Such sets of events are know as event

classes.

Definition 5.11 An event class, EC, is a subset of the events relevant to the system:
EC C Ev.

For example, the set of instants when the “Pulse” button is pressed is an event
class used in the logic probe SRD. This event class is the set of events in which
the condition ™Pulse(t) = *Up becomes false (or, alternatively, "Pulse(t) = *Down
becomes true).

SCR. uses the notations “QT (p)” and “@F (p)” to characterize the event of
condition p becoming true or false, respectively, and “QT (p;) WHEN(p;)” and
“QF (p1) WHEN(p2)”, to characterize the “conditioned event” of p; becoming true
or false, respectively, under the constraint that py is true. We adopt this notation

and give its semantics in terms of event classes, as follows.

Definition 5.12 An event class expression is a function, f : Ev.— Boolean, that

characterizes an event class.

Some simple event class expressions are defined in Table 5.3. In keeping with the
notation described in Section 1.3, the bolded form of the event class expression is used
to denote the class, and, by convention, the event argument is omitted from event
class expressions, i.e., QT (p;) d {e € Ev | e.c[i] = QT}. The juxtaposition of two or
more event class expressions denotes the conjunction of the expressions (intersection
of the event classes), e.g., “QT (p;) WHEN(ps)” denotes “QT (p;) A WHEN(py)”
(“QT (p;) WHEN(p,)” denotes “QT (p;) N WHEN(p2)”).

Note that since an event describes all changes that occur at an instant, the com-
mon term “simultaneous events” doesn’t make sense. Instants when two or more
significant changes occur at the same time are cases where an event is in two or
more relevant event classes. This can lead to ambiguity if an event class is un-
der specified, for example the event classes “QT (p;)”, “QT (p;) WHEN(—p,)”,
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Table 5.3: Event Class Notation

Notation Event Class
scalar  [tabular Expression
Di
QT (p;) QT e.cli] = QT
QF (p;) QF e.ci] = QF
WHILE(p;) | T ecli] =T
WHILE(—p;)| F ecli| = F

WHEN (p;) t |ecli] =T Ve.c[i] =QF
WHEN(—p;)| f |ec[i] =F Vec[i]=QT
t'  le.cli] = T Ve.c[i] =QT
f'  |e.cli] = F Ve.c[i]| = QF

CONT(p;) — |eci]=Fveci=T
* irue
@ false

“QT (p2)” and “QT (p;) WHEN(—p;)” all contain instants when both p; and p, be-
come true at the same time. The “WHILE(p)” and “CONT(p)” notations, which
are not used in SCR, are introduced to help in specifying disjoint event classes so
that the required behaviour can be concisely described. For example, if the system re-
sponse to "buttonA and/or ™buttonB being pressed is specified using the event classes
“QT (™buttonA = *Down)” and “@T ("buttonB = *Down) WHILE("buttonA =

*Up)”, then the reader can conclude that

e the required response to the buttons being pressed simultaneously is as spec-
ified for “@QT ("™buttonA = *Down)”, since clearly QT ("buttonA = *Down) 2
QT (™buttonA = *Down) QT (™buttonB = *Down), and

e if a different response is specified for “QT (™buttonB = *Down) WHILE(™buttonA =
*Up)” then it does not result in a contradictory specification since
(@T ("buttonB = *Down) WHILE(™buttonA = *Up) ﬂ) — o

QT (™buttonA = *Down)

Note also that these event classes include all events where either button is being
pressed, so the specification covers all cases. This is discussed further with respect to

mode transition relations in the next sub-section.
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Event classes are sets, so standard set notation can be used to define new event
classes in terms of previously defined classes. Set notation can also be used to define

functions that describe properties of event classes.

5.2.6 Mode Classes

The description of a mode «class consists of the set of mode names,
{Mimy, Mim, .., Mim}, and the function, M : Hist — {M%m;, M4m,, ..., Mim,},
mapping each possible history to a mode in the mode class. The mode name is used
to represent the characteristic predicate of the mode, so for a mode, m, and a time,
t, m(t) is a condition that is true if and only if the history on [t;, ] is in m. Note that
by convention ¢ is implicitly ¢f, so this condition is denoted by “m”.

In this thesis we permit two forms of definition for M, as follows.

Direct Definition

In cases where the current mode is a reasonably simple function of recent events, it
may be best to define the current mode function using the standard logic operators
and tabular expressions. For example, as described in Figure 5.6, the logic probe SRD
uses one mode class “!probe comprised of two modes: M?est and “pulse. The mode
Mdplse contains those histories at the end of which the probe tip is being “pulled
low” (< 100 ms after the pulse button was pressed). All other histories are in M%test.

SCR does not use this form of mode class definition.

Finite State Automaton

An alternative form of mode class description, which is used in SCR, is to define a
finite state automaton (FSA) in which the states represent the modes; the transition
function specifies the possible next mode for any combination of current mode and
event; and the initial state of the FSA is defined by a function on the initial conditions.
Thus, MC = (ClM,(S, mo) where

e “M is the set of modes in the mode class,

e §:YM x Ev — “M is the mode transition function, and
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Mode Class : “‘probe

Modes : Mdtest, Mdpylse

Current Mode function :

pr: Hy
rr: G
Normal

QT (™Pulse = *Down) = @ V Mdyoet
Since(QT (™Pulse = *Down)) > 100 ms

QT (™Pulse = *Down) # @ A Mgy
Since(QT (™Pulse = *Down)) < 100 ms pulse

Figure 5.6: Logic Probe Mode Class—Direct Definition

e mo: Cnd — “'M is the initial mode function.

Mode transition functions can be described using any of three types of SCR mode
transition tables. In [2] two of these were said to “not fit the [semantic] model
of tables.” They can be interpreted in the model, however, as follows. The form
illustrated in Table 5.5 is a re-arrangement of the form illustrated in Table 5.4, which
does fit the model, so the same semantics are used. The form illustrated in Table 5.6
can be interpreted in the model by treating it as 3-dimensional table that has been
flattened out for printing as illustrated in Figure 5.4, and rows containing the empty
event class (i.e., transitions that never occur) have been deleted. (Table 5.7 illustrates
Table 5.6 showing all cells.) In this style of table the short-hand notations from the
second column of Table 5.3 are used to denote events. Tables 5.4, 5.5 and 5.6 all
describe the mode transition relation for “probe.

One potential difficulty with modelling a mode class as a FSA is that it is poten-
tially ambiguous in the presence of “simultaneous events”—an event that is in two or
more relevant event classes. If the mode transition function gives different transitions
for two or more event classes that are not disjoint, then the specification is ambiguous
as to the next mode at the instants where the event classes intersect. Such a FSA

does not correctly describe a mode class since, according to Definition 5.8, the modes
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Mode Class : “‘probe

Modes : Mdtest, Mapylse
Initial Mode : Mdtest

Transition Relation :
Mode H Event H New mode ‘

Mdiest QT (™Pulse = *Down) Mdplse
Mdpulse || QT (Since(QT (M?pulse)) > 100 ms) Mdiest

Figure 5.7: Logic Probe Mode Class—FSA Definition

Table 5.4: Mode Transition Table 1
Mdiest false QT (™Pulse = *Down)
Mdpulse || QT (Since(QT (Mpulse)) > 100 ms) false
pr: H NG
rr : Ho Mdest Mdpylse
Inverted

in a class must be disjoint. This potential source of specification errors has been
recognized for some time with respect to the SCR method and several techniques
have been suggested to help avoid such errors (e.g., [11, 10, 29, 30]). As discussed in
Section 5.2.5, this work extends the event class notation of SCR to make description
of disjoint event classes easier, so this problem is not as pronounced here as it is in
earlier work. Also, since we do not define mode classes in terms of the FSA model,
but rather use it as one means to describe equivalence classes of histories, we are free
to use other techniques to describe mode classes where they lead to more concise or

readable descriptions, as illustrated in Figure 5.6.

5.2.7 Controlled Value Relations

The characteristic predicate of the acceptable values of controlled values is given

using standard predicate and relational operators and tabular expressions. These are
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Table 5.5: Mode Transition Table 2
‘ Mode H Event H New mode ‘

Mdiest QT (™Pulse = *Down) Mdpylse
Mdpulse || QT (Since(QT (M?pulse)) > 100 ms) || Mtest

Table 5.6: Mode Tran[git'on Table 3

Since(@QT (M4pulse)) > 100 m

c
=
o
Q
Il
&
PT: H NG 03_
) g H3 g
Decision
Mdiest  |l@QT| * |[M?pulse
Mdpylse x |@QT|| Mitest

expressed in terms of the previous behaviour, current mode in one or more mode
classes, and condition values. Note that controlled value relations may be defined
in terms of past values of monitored or controlled quantities. For example the value
of ™i at time t; is denoted ™i(¢;), and its value § ago is ™i(t; — ). In the logic
probe example, the probe light is required to be *Red whenever the measured voltage
represents a logic “high” signal (™Vtip > 2.0 V), which could be written as ““Light =
*Red & ™Vtip > 2.0 V”. Figure 5.8 illustrates controlled value relations for the logic

probe example.

5.2.8 Merit Functions

It is often the case that, although all behaviours in REQ are acceptable, some are

preferable over others. For example, the following may be figures of merit for a
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Table 5.7: Mode Transition Table 3, all cells

£

(e

(e}

Ao

AN

3

[ 3

15

gl

B

N e

pTZHl/\G 03_ §

rt: Hj g |

Decision

Mdiest  ||l@QT| * |[[M?pulse
0 | @ || Mtest
Mdnulse || @ | @ [[M9pulse
x |@QT|| Mtest

system:

Processing speed : Although a range of delays are acceptable, quicker responses

are preferred.

Soft real-time constraints : Failure to respond within a specified time is not catas-

trophic, but it is undesirable.

Safety margins : It is acceptable for controlled values to approach, but not cross,
certain thresholds, but the larger the safety margin (i.e., difference between the
actual value and the threshold) the better.

Stability : Large oscillations in the controlled values are undesirable.

Definition 5.13 A merit function is a function of a behaviour that indicates which
behaviours are preferred over which others—the higher the merit function value the

more preferred the behaviour.
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Controlled Values
“Vdisp
= "Vtip

‘Light
_‘ Plow ‘ Pfloat ‘ Phigh ‘
~ [*Green | *Off | *Red |

“Requiv
pr : Hy
a | T7: G Mdyest Mdp)lse
| Vector

‘ ‘Requiv | H “Requiv > 500 k{2 ‘ “Requiv < 320 Q ‘

Figure 5.8: Logic Probe Controlled Values

Merit functions allow the specifier to indicate which aspects of the behaviour are
relevant to choosing between behaviours, and to state quantitatively their relation-
ship. This is quite similar to what is done in control systems and optimization where

the goal is to minimize or maximize the value of an objective function.

5.2.9 Environmental Constraints

The NAT relation characterizes the set of possible environmental state functions as
determined by the constraints imposed by the environment. This section presents
some techniques for expressing NAT by describing constraints on the monitored and
controlled quantities. INAT is the weakest relation (largest set) satisfying all the
stated constraints.

Exclusive Conditions

Often some of the conditions used in an SRD are mutually exclusive, i.e., one being

true implies that the other is false. Where these exclusions are not obvious they

should be stated explicitly using logical formulae, e.g., PC; = —PC,.
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Possible Simultaneous Changes

As discussed in Section 5.2.6, SRD authors must ensure that the event classes used
to define mode transition functions are disjoint. Often event classes that may seem
from their definitions to intersect, are actually disjoint due to environmental con-
straints that, for example, preclude certain conditions from changing value simulta-
neously. Knowledge of the possibility or impossibility of such simultaneous changes
can be essential for checking that all possibilities are addressed by the SRD.[30]
One simple notation for describing possible subsets of changes is a matrix repre-
sentation (similar to an adjacency matrix used to represent a graph) that indicates
which pairs of conditions can and cannot change simultaneously. For example Ta-
ble 5.8 denotes that the following sets of conditions may change simultaneously:
{{C1, Ca}, {C4, Cs}, {C4, Co, Cy}, {Cs, Cs}, {Cy,Cs}}. This notation is not general
enough to describe all restrictions on simultaneous changes, for example it can’t ex-
press that the number of simultaneous changes is limited (e.g., only ten buttons can
be pressed at the same time because the operator only has ten fingers), but it is
sufficient for many practical situations. In cases where there are more complicated

restrictions different notation will be needed.

Table 5.8: Possible Simultaneous Changes in Conditions
L [1Ca[C5[C4]

CillYIN|Y

Cy Y|Y

Cs N

5.2.10 Tolerance and Accuracy Relations

The following are some techniques for specifying tolerance and accuracy relations.

Transition Modes

Environmental modes and mode classes are distinct from the “system modes” and
“system mode classes” used in the SCR project and much of the work that has

followed from it (e.g., [11, 29, 41]). System modes are defined to be equivalence
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classes of (target) system states whereas environmental modes are equivalence classes
of histories. Changes in the environmental mode depend only on the occurrence of
events; changes in the system mode depend on event detection and system response
to it. In addition, the initial system mode can be assumed to be fixed, whereas the
initial environmental mode depends on what has happened before the system was
turned on. For the ideal system requirements the system and environmental modes

should be equivalent.

A common form of tolerance relation arises from the fact that it is not possible
for realistic systems to respond instantaneously to changes in the environment, but
it is convenient to describe the modes as if it is, and to specify the controlled values
in terms of those ideal modes, as in Figure 5.8. This form of tolerance relation
specifies the acceptable duration of the periods following a mode transition when
the actual controlled values are permitted to differ from those specified in the ideal
controlled value relations. One useful technique for doing this is to treat the system
modes as controlled variables, and to modify an environmental mode class to include
transition modes corresponding to the periods when the system mode differs from the
environmental mode. The behaviour of the system in the transition modes, including
the maximum (or minimum) period it can remain in the mode and its response to

environmental changes, can be specified in the same manner as for other modes.

In many cases the required behaviour while in the transition mode is the same
as for the source of the transition and only the maximum duration of the transition
is important. Such requirements can be concisely specified by giving either a single
maximum delay for all transitions as part of the mode class definition, as is done in
Figure 5.9, or, if different delays are permissible for different transitions, the maximum
delay for each transition can be presented in a tabular form, similar to the mode

transition table.

Formally this is interpreted as follows. Each mode, m;, in the ideal mode class
is partitioned into a set of sub-modes, one transition mode corresponding to each
transition in the ideal mode transition relation that has m; as its destination, plus one

extra, m;, known as the non-transition mode (i.e., m; = U((mi,E),mj)EJ (Mie,g)) UTT;).
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Mode Class : “‘probe
Modes : Mdtest, Mapy|se
Initial Mode : Mdtest
Transition Relation :
Mode || Event | New mode |
Mdest QT (™Pulse = *Down) Mdplse
Mdpulse || QT (Since(QT (M?pulse)) > 100 ms) Mdiest
Maximum Delay : 2 ms
Figure 5.9: Logic Probe Mode Classes, with Delay Specification
These sub-modes are defined as follows,
(Vt, Last(QF (m;)) <t <t; = H[t] € m;)
Mie,j) 4 { H e Hist ASince(QF (m;)) < Delay(m;, e, m;) (5.2)
A°mode # m;
and
. df
m=mi\ | maes (5.3)

((mai,e)ymj)ed

where H [t] denotes the history on the interval [t;,t], “mode represents the system

mode, and Delay is the maximum delay specified for the given transition. The mode

M) Tepresents the period between the event, e causing a transition from m; to

m;, and the system’s response to e. The mode m; represents the periods when the

environmental and system modes are both m;.

For example, in Figure 5.9, the maximum delay for a transition in “‘probe is

specified to be 2 ms, which means that the probe may take up to 2 ms to respond

to a change in the environmental mode. For illustration, the complete mode class is

described in Figure 5.10, although such a mode class description would not normally
be written in the SRD.
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Mode Class : “‘probe’

Modes : Mdtest, Mdpulse, Mdtest — pulse, Mpulse — test
Initial Mode : M%est

Transition Relation :

Mode | Event | New mode |
Mdtest QT (™Pulse = *Down) Mdtest — pulse
Mdtest — pulse QT (“Requiv < 320 Q) Mdp\|se!

QT (Since(QF (Mtest)) > 2 ms)
Mdglse QT (Since(@T (Mdpm>) > 100 ms) Mdpulse — test

Mdpylse — test QT (“Requiv > 500 k() Mdiest

QT (S’z’nce(@F (Mdp/ugz)) > 2 ms)

Figure 5.10: Logic Probe Complete Mode Classes

When this form of transition mode specification is used, the required behaviour,
including response to environmental changes, during the transition modes is the same
as for the source mode of the transition. Thus, for example, if an environmental
change occurs during the transition mode resulting in another mode transition, the
system mode may never be in the destination mode—the first transition may appear
to be skipped by the system.

Clearly not all transition behaviours can be expressed using such a simple ex-
tension of the ideal mode class. In cases where the behaviour during transition is
important it may be necessary to explicitly identify these periods (as modes) and
specify the acceptable behaviour during them. In such cases the mapping between
the ideal mode classes and the acceptable mode classes may be complex.

Note also that, since the definition of transition modes treats system modes as a
controlled quantity, a monitor system must be able to determine the current system
mode in order for it to evaluate the behaviour of a system specified using this form.
A target system is said to be mode apparent with respect to a mode class ©'C, if it

is always possible to determine the system mode in that class by the value of the
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environmental state function. That is, there is a predicate isSysMode(m), expressed
in terms of the monitored and controlled variables, such that, for every mode ?m

in ©'C, isSysMode(M?m;) is true if and only if the current system mode is M?m;.

Timing Requirements

For real-time systems, time relative to some initial time is always a monitored variable,
whether it is explicitly used by the system or not. Although a continuous model
of time is used in this work, the requirements should be such that it is possible to
produce acceptable implementations of the target systems using a discrete clock. Such
requirements can be concisely stated by specifying the required resolution—smallest

significant increment—of time. Specifying that the resolution of time is § implies:

e the system clock frequency is required to be at least %,
e it is sufficient to sample monitored quantities at a rate of %,

e changes in the environment that occur within ¢ of each other may be considered

to be simultaneous,

e the system can only be required to detect conditions that have held for at least
9,

e instants may be measured with a maximum accuracy of +0/ — 4,

e durations of time intervals can be measured with a maximum accuracy of +4,

and

e the delay tolerance for response to any event must be at least d.

These points have some subtle implications with regards to what can be imple-
mented in real systems. Consider the time lines in Figure 5.11, in which the vertical
dashed lines represent hypothetical sample points. If the system is required to respond
to PC1 being true for the duration d — a, then it must also be allowed to respond to
it being true for duration g — f and cannot be required to detect duration j —i—i.e.,
it must allow non-deterministic behaviour for durations, D, such that 0 < D < §.

Similarly, if the system is required to not respond to PC2 being true for duration ¢ —b,
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b?c e h
t : :
C2 H :
f | i
a§ d f i
S I T |
Cl | | H
f B e
time
5

Figure 5.11: Time Resolution

then it must be allowed to not respond to it being true for duration & —e. In general
any time interval, A, in the specification should be such that A = nd for some integer
n and the system must be allowed to behave non-deterministically for intervals, D
such that A — 6 < D < A+ 6. Note that from the point of view of the given sample
points the histories for PC1 and PC2 are the same.

In the logic probe example, specifying the required resolution for time as 0.1 ms
would mean that the probe is allowed to not respond to the ™Pulse button be-
ing pressed for periods of less than 0.1 ms and to respond to events in the class
“@QT (Since(QT (M4pulse)) > 100 ms)” anywhere between 100.0 ms and 100.1 ms
after the events in “QT (Mpulse)”.

5.2.11 Standard Functions

The following standard functions, some of which are adapted from [102], are useful
and will be used in the sequel. As stated above, all these functions are implicitly in-
terpreted with respect to a particular behaviour on the interval [¢;, t7]. By convention,

when referring to the “current” time (i.e., t7) the time argument will be omitted.
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Definition 5.14 For an event class, e, and time, t, Prev(e,t) is the set of events in

e that occur prior to t, i.e.,

Prev(e, t)
d:f{a:Ee\x.t<t}

Definition 5.15 For an event class, e, and time, t, Last(e,t) is the time of the latest

event from e before t.

Last (e, t)

df

Prev(e,t) # @

Prev(e,t) = @

max({z | Jy € Prev(e,t),y.t = z}) 0

Definition 5.16 For an event class, e, and time, t, First(e,t) is the time of the

earliest event from e before t.

First(e,t)

df

Prev(e,t) # @

Prev(e, t)

=0

min({z | Jy € Prev(e,t),y.t =zx}) 0

Definition 5.17 For a condition, p;, and time, t, such that t; <t < t;, Drin(p;,t)
is the duration of time that p; has been continuously true if p;(t) is true, otherwise,
if pi(t) is false, then Drin(p;,t) = 0.

Drin(p;,t)

df

pPT: H1 A HQ
rr: G
Normal

pi(t)

—p;(t)

Prev(QT (p;) ,t) # ©

t — Last(QT (p;) , t)

Prev(QT (p;) ,t) = @

t—1;

Definition 5.18 For a condition, p;, and times, t, and ty such that t; <t <ty < ty,

totalDrtn(p;, t1,t2) is the total amount of time that p; has been true between t, and

to.



60 5. Specifying System Requirements

totalDrtn(p;, t1,t2)
df ot .
= [, onTime(p;, t)dt
where onTime(p;, t)
pr: H;
rr: G
= | Normal
pi(t)

Definition 5.19 For an event class, e, and time, t, Since(e,t) is the time elapsed

since the latest event in e before t.

Since(e, t)
gy Last (e, t)

5.3 Limitations

The chosen requirements model, as described in Section 1.1, limits the classes of
properties that can be described using these techniques. In order for the requirements
to be expressible using this method, both of the following statements must be true,

as discussed below.

1. The environmental quantities can be expressed as functions of time that are
either piecewise-continuous, for Real valued quantities, or finitely variable for

discrete valued quantities.

2. The acceptable behaviour can be characterized by a relation on the environ-

mental quantities.

5.3.1 Environmental Quantities

Piecewise-continuous functions of time are an appropriate model for describing envi-
ronmental quantities relevant to many engineering systems, such as process control,

automation, and embedded systems, where the environmental quantities represent



5. Specifying System Requirements 61

physical properties (e.g., temperature, pressure, current, position). Quantities that
are modelled as partial functions of time can be easily modelled by total functions,
for example, with range consisting of pairs, where one element is a Boolean indicating
if the other element is meaningful at that time.

For other systems, particularly so called “information processing” systems, some
or all of the relevant environmental quantities cannot be modelled because they either
cannot be effectively described mathematically, or are not usefully viewed as functions
of time.

The Monitor Generator tool, described in Chapter 6, is an example of such a
system that cannot be effectively modelled using these techniques. In that case the
relevant environmental quantities are specifications and program code, which cannot
be effectively related using mathematical and logic notation. These quantities can be
modelled, for example, as arrays of characters, and many mathematical statements
could be made about them, but such expressions would not provide a useful model
for describing the behaviour of the tool. Also, only two instants are relevant to the

tool behaviour: when it is started, and when it terminates.

5.3.2 Requirements Relation

Clearly non-behavioural properties (e.g., maintainability, code size) cannot be ex-
pressed in REQ, and internal properties (e.g., restrictions on the number of times
a particular instruction is invoked) can be expressed only if appropriate quantities,
which may not be externally observable, are included in the environmental quantities
(e.g., count of the number of invocations of a particular instruction). A less obvious
limitation is imposed by the interpretation of REQ—if (m!, ¢!) € REQ then (m!, ¢')
is an acceptable behaviour. As is pointed out in [1] and [64], this interpretation is not
sufficient for those requirements that are not “preserved under sub-setting” (i.e., if
the possible behaviours of system A are a subset of the possible behaviours of system
B, B may be acceptable but A not).

One form of such requirements specifies properties of all behaviours actually ex-
hibited or possible, such as “the average response time must be 7”. Note that this
is different from properties on the lifetime of a particular system, which can be mod-

elled as a single behaviour, or properties that must be always true for a particular
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execution (e.g, “at all times the average of the response times must be 7'+ 10%”),
both of which can be expressed. These requirements constrain the set of possible
behaviours, rather than any particular behaviour.

While statistical properties such as “average response time” can usually be ap-
proximated, and specified, reasonably well with reference to one sufficiently lengthy
execution, there are some requirements for which this is not sufficient. For exam-
ple, requirements—called possibilistic properties in [64]—such as “if behaviour A is
possible, then behaviour B must also be possible”. Such requirements are necessary
when security is a concern, so that, for example, intruders cannot infer information
from the possibility of A and not B. Although it is easy enough to express that
A € REQ < B € REQ), this does not have the desired interpretation—it only states
that A is an acceptable behaviour if and only if B is acceptable. Several examples
of this class of requirement are discussed in [64], including non-interference, integrity

and availability.



Chapter 6
Monitor Generation

This chapter describes the technique and prototype tool—the Monitor Generator
(MG)—that, using an SRD as input, generates those modules of a monitor that are
directly dependent on it. The tool is implemented as part of the Table Tool System
(TTS) project[73, 96] and makes extensive use of the services that it provides. A
particular monitor is described in Chapter 7.

6.1 Input Format

The following is an overview of the format of the input to the monitor generator. A
more complete description is given in Appendix B.

The input to the monitor generator consists of the following:

1. A “TTS context” file (see [96]), which contains the expressions that make up
the SRD, and

2. optionally, the name of a file containing the System Interface Declarations.
The context file contains the following expressions:

Environmental variables For each environmental variable used in the SRD an
expression must be given containing just that variable. This serves to inform

the MG of the set of environmental variables.
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Conditions All conditions that are used in defining event classes in the SRD must

be named and defined as separate expressions.

History expressions All expressions (typically simply variables), excluding condi-
tions, for which ‘previous’ values are needed in the SRD must be listed sepa-
rately. Approximation of the value of variables at times prior to the most recent
sample point is accomplished by the timefunc class template as described in Sec-
tion 6.3.1. A few functions of past values are also provided (e.g., dBYdt, before),

and other functions (e.g., numerical integration) could be added if needed.

Dictionary expressions Any non-standard functions or predicates that are defined

in the dictionary section of the SRD must be given.

Mode Classes For each mode class a special mode class definition expression must
be given. It lists the set of modes in the mode class. In addition, expressions
must be given to define the initial mode, mode transition relation, transition

delay relation and mode apparency predicate.

Controlled Value Relations Definitions must be given for all controlled value re-
lations used in the SRD.

Merit Function (optional) If a merit function is used its definition must be given.

Behaviour expression An expression, labelled “Behaviour”, that gives the charac-
teristic predicate of the acceptable behaviour. This expression is usually simply

the conjunction of the characteristic predicates of the controlled value relations.

The MG, like all tools in the T'TS, manipulates and interprets expressions using
the “table holder” modules, which store an abstract representation of expressions.
The exact syntax of the expressions used in the SRD is thus determined by other
componnents of the T'TS. In particular, since the test oracle generator is the primary
tool used to convert expressions into C++ code, it limits the form of expressions that
can be used as described in [79]. Expressions are entered into the TTS using the

“table construction tool”, so that tool determines the syntax accepted [96].
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6.2 Monitor Modularization

The monitor software is divided into three top level information hiding modules,[74]
as follows.

Monitor Control This module hides the design decisions relating to how users (pos-
sibly including other software) can interact with the monitor and how the user’s
commands are implemented through calls to other monitor components. This
module may need to be changed if the manner in which the monitor is to be

used is changed.

System Behaviour This module hides the design decisions related to the required
behaviour of the system to be monitored. This module will need to be modified
if either the definition of acceptable behaviour (i.e., REQ) of the system, or

the interface to the System Interface module are changed.

System Interface This module hides the interface between the monitor system and
the target system. It will need to be changed if the set of monitored and
controlled quantities is changed, or if the means of observing the value of these
quantities (i.e., INmon) is changed. The implications of the system interface

design on the effectiveness of the monitor are discussed in Sections 3.3 and 4.1.

6.3 System Behaviour Module Components

The system behaviour module is made up of the Behaviour module, which contains
all of the automatically generated code, and the Monitor Library, which is not au-
tomatically generated and contains class and class template definitions used by the
Behaviour module. Both of these are implemented in C++, so the terminology of

that language is used in the following sections.

6.3.1 Monitor Library

The monitor library defines two classes, Condition and Timestamp, and two class

templates,! Timefunc and ModeClass, which implement the standard functions defined

LA class template is a class that has types, possibly including other classes, as parameters.
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in Section 5.2.11 and the interpretation of mode classes. These are briefly described

below. Detailed documentation is given in Appendix C.

Conditions

Secret Representation of condition histories.

Service Allows programs to determine if an event is in a given event class.
Modules used Time Functions, Time Stamp.

Files condition.cc, condition.h

This module implements the Condition class, which is derived from
timefunc<bool> (a Boolean valued Time Function), for keeping a history of changes
in the value of a condition. In addition, the programs described in Table 6.1 are

implemented.

Table 6.1: Condition Module Programs
Program ‘ Description

Timestamp Last(Change ch, Condition& cnd) |Most recent event in the given event

class. ch is either AtT (represent-

ing QT (cnd)) or AtF (representing

QF (cnd)).

Timestamp First(Change ch, Condition& cnd) |Earliest event in the given event

class.

double Since (Change ch, Condition& cnd, |Time elapsed between an event in

Timestamp& t) |the given event class and time t.

double Drtn (Condition& cnd, Timestamp& t)|Amount of time that cnd has been

continuously true up to time t.

double totalDrtn (Condition& cnd, Total amount of time that cnd has
Timestamp& t1, Timestamp& t2) been true between times t1 and t2.

bool AtTrue(Condition& cnd, Timestamp& t) |Je € QT (cnd),t = e.t.

bool AtFalse(Condition& cnd, Timestamp& t)|Je € QF (cnd),t = e.t.

bool When(Condition& cnd, Timestamp& t) de € WHEN(cnd), t = e.t.

bool While(Condition& cnd, Timestamp& t) [Je € WHILE(cnd),t = e.t.

bool WhenF(Condition& cnd, Timestamp& t) |Je € WHEN(—cnd),t = e.t.

bool WhileF(Condition& cnd, Timestamp& t) |de € WHILE(—cnd),t = e.t.
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Mode Classes

Secret Method for determining the actual system mode from an ideal mode transi-

tion function and tolerance function.
Service Provides access to the current mode in each class.
Modules used Time Functions.

File modeclass.h

This module implements ModeClass<T>, a class template that models a mode class,
including transition modes. The initial mode function, ideal mode transition function,
transition delay tolerance function and mode apparency function are assumed to be
defined in the parameter class, as described in Table 6.3. The public members are
listed in Table 6.2.

Table 6.2: Mode Class Members

‘ Member ‘ Description
M update (void)? Update the system mode.
M operator() (void) Returns the current system mode.

double Since (ModeChange ch,|Returns the time elapsed since the most recent oc-
Mg& m, Timestamp& t)|currence of the given change. ch is either Enter or
Leave, and m is the mode.
double Drtn (const M& m, If the current system mode is m then it returns the
Timestamp& t) time elapsed in that mode.

Time Functions

Secret Method for maintaining a history of samples of a function of time.
Service Provides access to the value of the function at any time in the past.
Modules used Time Stamp.

File timefunc.h

2M is a type name for T: :mode.
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Table 6.3: Mode Class Parameter Members

|Member |Description |

mode Enumerated type specifying the possible modes.

mode init(void)

Initial mode function.

mode trans(mode m)

Ideal mode transition function. Global conditions
are evaluated to determine the event classes con-
taining the current event.

double delay(mode s, mode d)

Maximum delay for a transition between mode s
and d.

bool isSysMode(mode m)

Mode apparency function. True if and only if the
current system mode is m.

This module implements the Timefunc<T> class template that retains a sequence of

samples of a quantity, of type T, so that it can be treated as a function of time. Clearly,

since a sampled representation of the function is used, the value of the function

between samples can only be approximated. For instants between two samples, the

value is approximated by the value of the earlier sample. The public members are

given in Table 6.4. The parameter type must have a copy constructor, assignment

operator and stream output operator (<<).

Time Stamp

Secret Representation of time in the system.

Service Operations on time values (e.g., addition, subtraction, comparison).

Modules used none.

Files timestamp.cc, timestamp.

h

This module implements the Timestamp class, which is used to represent time

values within the monitor. The public members are given in Table 6.5.

6.3.2 Behaviour Module

The behaviour module contains all of the code directly generated from the SRD. The

interface to this module consists of three access programs, as described in Table 6.6,
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Table 6.4: Time Function Members

|Member

|Description

Timefunc(int len,
bool keepInit)

Constructor. Keep len samples. If keepInit is true
always keep the oldest sample. If len is 0 then keep
all samples.

Timefunc (double oldest,
bool keepInit)

Constructor. Keep all samples less than oldest sec-
onds old.

Timefunc&
addPoint (Timestamp t, T v)

Add a sample point to the history.

T operator() (void)

Get the most recent value.

T operator() (Timestamp t)

Get the value at time t.

T after(Timestamp t)

Get the value immediately after time t

T before(Timestamp t)

Get the value immediately before time t

T oldest(void)

Get oldest value.

T dBYdt (void)

Return an estimate of the rate of change of the func-
tion using the most recent two function values.

bool empty ()

True if there are no sample points in the history.

iterator begin()

Iterator pointing to the start of the history.

iterator end()

Iterator pointing past the end of the history.

and the variables representing the environmental quantities, which can be accessed

directly.

The implementation of the module contains the following sections.

System Interface Declarations Code needed so that the behaviour module can

access the system interface module is copied directly from a file specified by the

user. This allows any appropriate C++ type or function to be defined elsewhere

and used by the behaviour module. This is similar to the “user definitions”

included in a test oracle implementation in [79].

Environmental Variables Each environmental variable is represented by a global

variable declared here.

Conditions A Condition object is declared to represent each condition that is used

in the SRD.

History An appropriate Timefunc object is declared to represent the past values of

each environmental variable for which previous values are used in the SRD.
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Table 6.5: Time Stamp Members

‘ Member ‘ Description

Timestamp(int sec = 0, int usec = 0)|Constructor.

Timestamp(timeval t) Constructor.

Timestamp (double d) Constructor.

int seconds(void)

Get the seconds component of the time
stamp.

int useconds(void)

Get the microseconds component of the
time stamp.

Timestamp& set(int s, int u)

Set the value of the timestamp.

Timestamp& operator+=(Timestamp t) |Increment.
Timestamp& operator+=(double sec) Increment.
Timestamp& operator-=(Timestamp t) |Decrement.
Timestamp& operator-=(double sec) Decrement.

operator double()

Convert to floating point representation.

Table 6.6: Behaviour Module Programs

Program ‘ Description

void MON_update(void) Update all time functions, conditions, and mode classes
using the current values of the environmental quantities.

bool MON_behaviour(void)|Returns true iff the current behaviour is acceptable ac-
cording to the SRD.

void initOracle(void) Initialize the behaviour module.

Mode Classes A class with members as described in Table 6.3 is defined for each

mode class, and it is used as a parameter, T, for the ModeClass<T> template to

instantiate an object to represent the mode class.

Controlled Value Relations The characteristic predicate of each of the controlled

value relations defined in the SRD is implemented as a separate C++ function.

Dictionary Each of the functions and predicates defined in the dictionary section of
the SRD is implemented as a C++ function.

Interface programs The implementation of the interface programs described in

Table 6.6.
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6.4 Code Generation

In my previous work [79, 80], I have shown how an oracle can be automatically gener-
ated from relational program documentation, which gives the characteristic predicate
of the relation describing the acceptable start and stop state pairs for a single pro-
gram. This oracle determines if the values of the program variables in the starting and
stopping states of the program execution are in the relation by evaluating its char-
acteristic predicate. A major component of that work is a procedure for generating
C-++ code to evaluate the predicates or functions defined using tabular notations. A
slightly modified version of that procedure is used here to generate code for evaluation
of the functions and predicates defined in the SRD.

The modifications to existing T'T'S modules are described in the remainder of this

section. The following section describes the new Monitor Generator modules.

6.4.1 TTS Modifications

Three TTS modules are involved in generation and execution of code that evaluates
tabular expressions: the Table Evaluation Module (liboracle.a), Test Oracle Gen-
erator (TOG), and Generalized Table Semantics (GTS). These have been modified

to support a wider variety of tables, as follows.

e Cell expressions may include constants representing other grids. To evaluate
the table these constants are replaced by the appropriate expression from that
grid. The cell expression can thus be constructed from expressions from more

than one grid.

e Table rules may contain variables, function applications and arbitrary scalar

logical operators.

The primary motivating example for this change is the form of mode transition
table, illustrated in Table 5.6, in which the notation “@QT” in the main grid is taken as
a shorthand notation for “QT (H,)”, where H, is a constant representing the header
that contains conditions in its cells. With these extensions, the condition from the
appropriate cell of Hy is substituted into the main grid expression to form a mode

class expression. The changes needed to effect these extensions are described below.



72 6. Monitor Generation

Table Evaluation Module

The table evaluation module has been completely replaced by a new version with
members as described in Table 6.7. This version makes extensive use of the C++ tem-
plate facility and the Standard Template Library.[94, 98] An instance of the Cel1<T>
class is used to represent each of the guard and value components of each raw ele-
ment for the table. These are stored in map<Index, Cell<T> > objects, which allow
the index for a true guard element to be found and used to select the appropriate

value expression.

Table 6.7: Table Evaluation Module Members
‘ Member ‘ Description ‘

template<class T> class Cell |Cell class template. Represents the relation de-
fined by a raw table element.

T operator () (int ...) Cell value function.
T operator ()(va_list) Cell value function.
Index ‘Table index type.

template<class T> class Table |Table class template.

T operator ()(int ...) Returns value of table.

void setGuardCell(Index& indx,|Set the guard function for indx to be c.
Cell<bool>& c)

void setValCell(Index& indx, |Set the value function for indx to be c.
Cell<T>& c)

Test Oracle Generator

The only interface change required was to the code generation sub-module of TOG
(TOG_code), which has been substantially revised in those aspects relating to imple-
menting tables, as summarized in Table 6.8. Extensive internal changes were required
in the expression sub-module (T0G_expn) with respect to the interpretation of tables.

Generalized Table Semantics

Table components (grids) are represented in the rule expressions used by the GTS
semantics module (GTS_semantics) by constants “H1”, “H2”, ..., “H10” and “G”,

rather than by their grid number as stated in [2]. This is required to allow numbers
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Table 6.8: TOG_Code Changes

Program |Description/Change |

TOG_codeNewTable Generates code to instantiate an appropriate instance of
Table<T>.

TOG_codeTableCell Implements a table raw element expression as an in-

stance of Cell<T>.

TOG_codeTableSetRules New program. Generates code to invoke setValCell and
setGuardCell as appropriate for the table.
TOG_codeTableGuardInterp|Removed.

TOG_codeTableValueInterp|Removed.

TOG_codeTableSetHeader |Removed.

TOG_codeTableSetMain Removed.

TOG_codeInterpSetGuard |Removed.

TOG_codeInterpSetValue |Removed.

to appear in the table cell and rule expressions without them being treated as repre-
senting table grids. The constants “H1” etc., however, are keywords and should only

appear in expressions where they represent grids.

6.5 Monitor Generator Modules

This section gives an overview of the design of the monitor generator tool, which is
part of the TTS. Appendix C gives more detailed design documentation.

6.5.1 Monitor Constructor
Secret Procedure for generating a monitor from a SRD.
Service Monitor generation.

Modules used Requirements, Specification Object, TOG Interface, Exceptions,
TOG.

Files MG_monitor.h, MG_monitor.cc

This is the main monitor generator module. It has only one access program,

MG_monBuild, which generates a monitor using the given MG_Req object. It invokes the



74 6. Monitor Generation

specification object methods to generate appropriate code for each, and invokes the
TOG to implement the auxiliary definitions.

6.5.2 Requirements

Secret Interpretation of a T'TS context as an SRD.
Services Implements MG_Req class. Allows access to the components of the SRD.
Modules used Specification Objects, TTS Context Manager.

Files MG_requirements.cc, MG_requirements.h

This module is responsible for the interpretation of the T'TS context file as de-
scribed in Section 6.1. It determines the appropriate MG_SpecObj derived class for each
expression and instantiates an appropriate object. The public members are given in
Table 6.9.

Table 6.9: Requirements Members
|Member |Description |

MG_Reqg(const CHandle c) |Constructor. Interprets ¢ as an SRD.

CHandle getAuxDefns(void) |Returns the auxiliary function and predicate definitions
from the SRD dictionary section.

Expn getBehaviour(void) |Returns the behaviour predicate from the SRD.

iterator Iterator type. Dereference to pointer to MG_SpecObj.
iterator begin(void) First specification object in SRD.

iterator end(void) Past the last specification object in SRD.

bool empty(void) true if the SRD contains no objects.

6.5.3 Specification Objects

Secret The method for declaring and implementing the class of specification object.
Service Code generation for each type of object.

Modules used TOG Interface, Exceptions.
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Files MG_specObj.cc, MG_condDefn.cc,

MG_specObj .h, MG_condDefn.h,
MG_histDefn.cc, MG_histDefn.h, MG_envVar.cc, MG_envVar.h, MG_modeClass.cc,

MG_modeClass.h,

This module implements a base class, MG_SpecObj, and four derived classes,
MG_EnvVar, MG_CondDefn, MG_HistDefn and MG_ModeClass, for environmental variables,
conditions, history expressions, and mode classes, respectively. Each derived class
overrides the codeDefinition, codeDeclaration and codeUpdate methods to generate
appropriate code for each type of specification object. Any expression implementation
is done by invoking the TOG.

Table 6.10: Specification Object Members

|Member

|Description

MG_SpecObj(const char *n,
const Expn e)

Constructor. n is the name, e is the def-
inition.

MG_SpecObj (const MG_SpecObj&)

Copy constructor.

operator= (const MG_SpecObj&)

Assignment operator.

Id getId(void)

Return the Id of the defined object.

Expn getDefn(void)

Return the definition of the object.

string getName(void)

Return the name of the object.

ostream & codeDefinition(ostream & s,
const TOG_Cntxt cntxt)

Write the object implementation to s.

ostream & codeDeclaration(ostream & s,
const TOG_Cntxt cntxt)

Write the object declaration to s.

ostream & codeUpdate(ostream & s,
const TOG_Cntxt cntxt)

Write to s the code to update the ob-
ject’s state.

6.5.4 TOG Interface

Secret Test Oracle Generator data types.
Service Access to TOG.
Modules used TOG.

Files MG_tog.cc, MG_tog.h
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This module is essentially a wrapper on TOG to allow the monitor generator
to use it in a C++ style. It implements one class, MG_TogProc, which encapsu-
lates a TOG_Cntxt, and two access programs: MG_togExpn, which is analogous to its
TOG counterpart, TOG_expn, only it writes to a stream rather than T0G_Line, and

MG_togVarDecl, which uses TOG to implement a variable declaration.

6.5.5 Exceptions

Secret Handling of T'T'S error status.
Service Means to throw exceptions that carry T'TS status tokens.

Modules used TH_error, TOG_error, TIF _error.

File MG_exceptions.cc, MG_exceptions.h

This module implements exception classes MG_Fail (base class), TIF_Fail,
TOG_Fail and TH_Fail, which are thrown by MG modules with appropriate TTS

status information when errors occur.

6.6 Limitations

Some of the limitations of this prototype system are as follows.

e Transition modes (see Section 5.2.10) are the only form of tolerance relation for
which the tool provides explicit support. Other forms of tolerance and accuracy
relations can be used, but they must be explicitly written in the SRD expressions
(e.g., “x = ™y+0.01” must be written as “"y—0.01 < “x < ™y+0.01"). Support
for such standard forms of tolerance relation could reasonably easily be added

in future versions.
e Since behaviours not in NAT are not possible, the MG does not consider NAT.

e Since all expressions in the SRD are implemented using the code generation
modules of the TTS, the form of the expressions must be acceptable to those

modules[2, 79] with the extensions described in Section 6.4.1. In particular all
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variables must be given appropriate C++ data types, and only available oper-
ations on those types are permitted (although, since C++ has powerful type
and operation definition mechanisms, this is not a significant restriction). Also
quantification is limited to the Inductively Defined Predicate (IDP) form de-
scribed in [79]. While this is a limitation, it is also a feature of the tool, since any
future enhancements to the T'TS code generation facilities will automatically be
available to the monitor generator.

The monitor is assumed to be a software monitor as described in Section 3.2.
For this reason it does not consider non-determinism due to event orders being
perceived differently by the monitor and target system, and it does not take
into account any error introduced by IN,on- The monitor is thus an optimistic
monitor in the sense of Section 3.2 unless the error introduced by the input
devices is accounted for by the system interface module or in the controlled

value relations.

6.6.1 Real-Time Evaluation

Since the application domain for this work is real-time systems, it would be useful

if the monitor could be assured to meet some real-time constraints, for example

reporting if the behaviour is acceptable or not within a fixed time. Unfortunately it

is impossible to make any such claims, for the following reasons.

1.

The computation required to evaluate the behaviour is not, in general, bounded,

as discussed in Section 4.4.

. The choice of system interface will have significant impact on the computation

required by the monitor software, as discussed in Section 4.3.

. The relevant deadlines are dependent on the target system.

. The monitor operating environment (i.e., operating system, processor, etc.) is

unknown.

However, as illustrated in Chapter 7, the set of target systems for which the

monitor does operate in real-time is likely to include many practical systems.
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Sample Application

This chapter presents a monitor for a realistic target system—the Maze-tracing
Robot—and discusses its use in testing of implementations of that system. The
implementations were produced by undergraduate students, under the instruction of
Dr. Martin von Mohrenschildt, as the course project for Computer Engineering 3VA3
in the Fall semester of 1997. The students were given a version of the SRD in Sec-
tion A.4 and required to implement software to control a robot such that it behaved
consistent with that specification. The behaviour of the student projects was recorded
to be used as input to a monitor.

The implementation of the monitor is presented in the following section. Sec-

tion 7.2 discusses the results of testing the student projects using the monitor.

7.1 Monitor Implementation

The monitor described in this section is a software monitor in the sense of Sec-
tion 3.2—it observes the values of the target software input and output variables as
described in Section 7.1.2.

7.1.1 Monitor Control

The monitor control module is quite simple for this example. After initialization of the
behaviour module, it uses the system interface module to read the maze description

from a file, and then read each sample in turn from the file containing the recorded

78
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target system behaviour. After reading each sample it calls MON_update to update the
monitor and then checks that the behaviour is acceptable by calling MON_behaviour.
If the behaviour is not acceptable, it stops reading samples, reports the time of the
failure and exits. If it gets to the end of the file, it outputs the value of the merit

function.

7.1.2 System Interface

For the course project the students were provided with a library of programs, as
described in Table 7.1, through which their software could control the robot and read
the state of the buttons.! The behaviour of each target system was recorded using
a version of this library modified to write the values of all of the state variables,
including the current time, to a log file on completion of each invocation of an access
program. The resulting log files contain a series of samples of (i*,0') in the form
of a tuple: (i_t,arms, o_penDown, o_powerOn, i stopB, i homeB, i backB, o message).
These samples are assumed to be related to (m',c!) by Eq. (7.1). The value of

“message is assumed to indicate the system mode.

pr : true
rv:H =|G
Vector
it = || ™t £ 0.01 seconds
arms | || |“penPos — Posn(arms)| < 0.5 mm
o_penDown = || ™*penDown (7.1)
o_powerOn = || “powerOn

i_stopB = || "stopButton

i_homeB = || "homeButton
i_backB = || ™backButton
o_message = || “message

The description of the maze (i.e., the values of ™mazeWalls, ™mazeStart and
™mazeEnd) was provided in the form of a data file that could be read by the stu-

dent programs.

!The library and their description in Table 7.1 are due to Dr. von Mohrenschildt.
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Table 7.1: Robot Interface Programs

Program ‘ Description ‘
short o_init(void) Initialize the library and robot.
short o_power(int pow) Turn the robot power on (pow = 1) or off (pow = 0).

Returns 0 if successful, non-zero otherwise.

short o_penDown(int pen) |Move the robot pen down (pen = 1) or up (pen = 0).

Returns 0 if successful, non-zero otherwise.

short o_penPos(short a, Move arm 1 to angle a and arm 2 to angle b, where
short b) —% <ab< %. Returns 0 if successful, non-

zero otherwise.

short o_message(char* mesg) |Output a message.

short i_homeButton(void) Return 1 if the Home button is pressed, 0 otherwise.

short i_stopButton(void) Return 1 if the Stop button is pressed, 0 otherwise.

short i_reverseButton(void)|Return 1 if the Reverse button is pressed, 0 otherwise.

The monitor accesses this data using three sub-modules: Maze, Geometry and
Position, as described below.
Maze module

Secret Representation of the maze.

Service Algorithms for reading a maze description. Programs to evaluate predicates

on the maze.
Modules used Position.

Files maze.cc, maze.h

This module provides access to ™mazeWalls, ™mazeStart and ™mazeEnd, which
it gets by reading the maze description from the same data file as was used by the
target system software. It also implements two predicates used in the SRD: “wall”

and “connected”. The class members are described in Table 7.2.

Geometry module

Secret Geometry of robot as it determines the relationship between angular positions

of the robot arms and the position of the pen tip (™“penPos).
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Table 7.2: Maze Class Members

|Member

|Description

Maze (istream& ins)

Constructor. Read the maze description from ins.

void addWall(const Posn& el, |Add all points on a straight line between el
const Posn& e2) |and e2 (inclusive) to the set of maze wall points

("mazeWalls).

istream& operator >>
(istream& ins, Maze& m)

Read the maze description from ins.

Posn mazeStart(void)

Return the start position for the maze

(™mazeStart).

Posn mazeEnd(void) Return the finish position for the maze
(™mazeEnd).

bool wall(const Posn& p) wall(p)

bool atStart(const Posng& p) |p € tol(™mazeStart)

bool atFinish(const Posn& p) |p € tol(™mazeEnd)

bool safeMove(const Posn& el,|— (dg € straight line between el and e2) (wall(q))
const Posn& e2)

bool connected(void)

connected (" mazeStart, "mazeEnd)

Service Algorithms to convert between angular positions of arms and ™penPos.

Modules used Position.

Files geometry.cc, geometry.h

This module implements the RobotArm class, the public members of which are

described in Table 7.3.

Table 7.3: Geometry Class Members

|Member

|Description

RobotArm(void)

Constructor.

operator Posn (void)

Convert angular positions to Posn.

istream& operator >>
(istream &s, RobotArm& a)

Read angular positions.

Position module

Secret Representation of a point in space (Posn), interpreted as a vector.
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Service Algorithms for operating on positions.
Modules used none.

Files position.cc, position.h

This module implements the Posn class, the public members of which are described
in Table 7.4. In addition it implements the operations on positions described in
Table 7.5.

Table 7.4: Position Class Members
‘ Member ‘ Description

Posn(int x, int y) Constructor.
Posn& operator+=(const Posn& p) |Increment.
Posn& operator-=(const Posn& p) |Decrement.

Posn& operator/= (double d) Divide.

void set(int x, int y) Set value.

int x(void) Return x component.

int y(void) Return y component.

double mag(void) Calculate distance from origin.

Table 7.5: Position Operations

‘ Program ‘ Description
ostream& operator << (ostream& s, Posn t) Output operator.
istream& operator >> (istream& s, Posn& t) Input operator.

Posn operator + (const Posn& 1, const Posn& r) |Addition.
Posn operator - (const Posn& 1, const Posn& r) |Subtraction.

Posn operator / (const Posn& n, double d) Division.
bool operator < (const Posn& 1, const Posn &r) |Less than.
bool operator == (const Posn& 1, const Posn &r)|Equality.

7.1.3 Behaviour Module

The majority of the Behaviour module is automatically generated from the SRD as it

appears in Section A.4. The exceptions to this are the predicates wall and connected,
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and the functions tol and path. These were implemented manually since an automat-
ically generated version of these would be highly inefficient. This is particularly true
of path, which involves constructing a set of points from the history of "“penPos—an

operation that can be done quite easily using the C++ STL iterator concept.

7.2 Discussion

The monitor was used to evaluate 10 test executions of the same target system—
considered to be the best of those submitted by teams of students enrolled in the
course—using eight different mazes. The results are summarized in Table 7.6, in
which Fail indicates that the monitor reported that the behaviour is unacceptable.
This target system had been evaluated by the course instructor and teaching assistants
using manual testing methods—visual observation of the behaviour—and was thought
to conform with the requirements. As can be seen from the table, this system does
not, in fact, behave in an acceptable manner in many cases. Each of these failures is
confirmed by examining the log files at the point of failure, and closer investigation
suggests a possible source of the problem: in all cases the failure occurred when
MepenPos.x = 0—a point of discontinuity in the equations for calculating the angles
of the arms. These results clearly illustrate a strength of such automated testing
methods over manual techniques: they detect subtle and short-lived violations of the
requirements, which humans will often miss (in this case all of the violations lasted
about 0.5 seconds or less).

Unfortunately, since this testing was done using recorded system behaviour when
the target system was no longer available, it was not possible to attempt to correct
the behaviour and conduct further testing.

This trial also highlighted the strengths of these techniques as a method for syntax
and type-consistency verification and validation of the SRD. Since the monitor code
is generated directly from the SRD, syntactic and type-consistency errors are either
detected by the monitor generator tool, or propagated to the monitor code where
they are detected by the compiler used to compile the monitor. Using the monitor
to evaluate behaviour that is known to be acceptable or not helps to gain confidence
that the specification is correct, or finds errors when it is not. Initial runs of the test

cases for this system helped to isolate several errors that remained in the Maze Tracer
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Table 7.6: Maze-Tracer Test Results

|Log File |[Results

mazelgen |Fail at i_t = 63036.280. forward is false due to pen re-tracing over
some points.

mazelagen |Fail at i_t = 61521.330. forward is false (as above).

maze2gen |Fail at i t = 61349.410. wall is true—pen tip comes too close to a wall.
maze3gen |Fail at i t = 61412.190. forward is false (as above).

mazedgen |Fail at i_t = 39064.930. forward is false (as above).

mazebgen |Fail at i t = 39157.040. forward is false (as above).

mazebgen |Success. ‘merit = 96.52.

mazedgen |Success. “merit = 0 (no path).

mazel2gen |Fail at i_t = 39379.210. forward is false (as above).
maze3fudge|Success. ‘merit = 99.87.

SRD despite it being previously carefully reviewed by several well qualified people.

7.2.1 Monitor Execution Time

As discussed in Section 7.1.1, the monitor control module calls MON_behaviour af-
ter each sample is read to determine if the behaviour up to that time is accept-
able. For this specification, the amount of processing done by this function, and
hence its execution time, varies significantly depending on the history. For exam-
ple, if “!direction = M4Starting then the processing is trivial, whereas if “‘direction =
MdForward A—PHolding then the “forward” predicate will be evaluated using the “path”
function, which has O(nlogn) complexity, where n is the number of sample points
since First(QT (M?Forward)).

To determine if the monitor could evaluate the behaviour in the time that it
takes to occur, the execution time of the monitor is measured and compared with
the elapsed time between samples in the log file. Processing of a sample, s;, is said
to be on-time if for all previous samples, s;, the time elapsed between the monitor
processing s; and s; is less than the timestamp difference, s;.i_t — s;.i_t for the
samples. The initial sample is on-time. If processing for a sample is not on-time
then it is over-time. The percentage of the samples that are over-time for the test
cases are given in Table 7.7. Also the total execution times for the monitor and

target system are given. All times are in seconds, and for the monitor running on a
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266 MHz Pentium-based PC running Linux 2.0.34. The optimized results are for the
monitor compiled using the optimization option of the compiler (GNU gcc version

egcs-2.91.66, eges release 1.1.2). In this case all processing was on-time.

Table 7.7: Maze-Tracer Monitor Timing

% over-time Monitor Time
Log File |Samples|(non-optimized) Robot Time|Non-optimized|Optimized
mazelgen 210 5.7 29.05 3.23 0.60
mazelagen 588 30.4 59.71 22.55 3.92
maze2gen 157 0 22.30 0.33 0.11
maze3gen 108 0 15.49 0.29 0.09
mazedgen 147 0 20.54 0.46 0.13
mazedgen 196 0 25.05 1.36 0.29
mazebgen 300 22.3 42.24 11.63 2.02
maze9gen 2 0 0.38 0.004 0.002
mazel2gen 153 0 20.71 0.49 0.14
maze3fudge 299 4.3 41.03 3.50 0.68

No generally applicable conclusions can be drawn from these execution time re-
sults, only that this monitor can operate on-time for these test cases, under these
conditions. However, since this monitor requires relatively complex computation, it
does suggest that there is a large class of systems for which these techniques will
produce monitors that can operate in real-time. Applications where real-time pro-
cessing is critical will require careful analysis of the worst-case processing times for
each sample, which cannot be guaranteed in this case since the monitor is executed

on a pre-emptive operating system.

7.2.2 Alternative System Interface Design

As mentioned in Section 4.3, the choice of system interface design can have a signif-
icant impact on the processing that the monitor software must do. An alternative
design for this system, which would significantly improve performance, would use

sensors to directly evaluate the following predicates.

e "™penPos € tol({™mazeStart})
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e ™penPos € tol({"mazeEnd})

e ™penPos € tol({ (“HOME_X, “HOME_Y) })

e wall(™“penPos)



Chapter 8
Conclusions

This work has demonstrated that practical monitors for real-time systems can be
automatically derived from system requirements documents written in a notation
that is both expressive and reletively readable. Such monitors are useful both as
oracles for system testing, where they are clearly superior to manual methods, or as

redundant supervisors for safety critical systems.

8.1 Contributions

The main contributions of this work are as follows.

e It gives a precise definition of a monitor for a real-time system, and identifies

some necessary conditions for a monitor to be feasible and useful.

e It describes a notation for writing system requirements documentation method
based on [102] and gives an interpretation of this notation on behaviours as

functions of continuous time.

e It introduces the use of transition modes as a technique for describing permitted

deviations from ideal behaviour.

e [t demonstrates a technique for generating a monitor from system requirements
documentation and illustrates how such a monitor can be used to evaluate the

behaviour of a realistic system.

87
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8.2 Applicability of This Work

The specification techniques presented in Chapter 5 are best suited to so called “reac-
tive systems” —those that continuously observe environmental quantities and respond
to changes in their value. Such systems are common in process control and industrial
automation applications, where they are often safety critical. These techniques are
less well suited to “information processing systems”, which transform or manipulate
data.

Monitors, such as described in this work, are well suited to automated testing of
systems, where they function as an oracle, reporting if the behaviour is acceptable
or not. This application offers significant improvement over non-automated testing
since test cases can be evaluated quickly and errors in behaviour are quickly and
reliably detected. It also offers significant improvements over methods where the
oracle is implemented manually since testers can be assured that the oracle and the
SRD agree, and any changes in the requirements can be quickly translated into a new

oracle.

In a similar way, monitors can be used as supervisors to observe the behaviour of
the target system in operation and report failures if they occur. Such a supervisor
could be used as a redundant safety system to initiate corrective or preventative action

in the case where a failure is detected.

Monitor generation is also a good way to perform some simple checks on the
SRD, since many common types of error (e.g., type consistency, syntax errors) will
be detected either by the monitor generator or the compiler used to compile the
monitor implementation. In addition, a monitor can be used to validate the SRD by
executing it using behaviours that are known to be acceptable or not, thus increasing

confidence that the SRD specifies the behaviour correctly.

Since the monitor is generated directly from the documentation, it gives more
incentive to get the documentation right, and keep it up to date, so that it can be
used for future system testing. Knowing that the system requirements documentation
is accurate makes that documentation much more valuable to system designers and

maintainers since they can rely on it to accurately describe the required behaviour.
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8.3 Future Work

Application of these techniques to the specification and testing or supervision of
different systems will further illustrate their usefulness and may allow us to draw
more conclusions about what classes of systems can be monitored in real-time. Also,
further application will undoubtedly suggest further enhancements to the specification
and monitor generation techniques.

Further investigation of the monitor input relation, what classes are typical for
realistic devices, and the relationship to monitor feasibility would be useful. Ide-
ally such investigation would lead to a useful expression of necessary and sufficient

conditions for monitor feasibility.

8.3.1 Monitor Generator and Library Enhancements

Since the Monitor Generator is a prototype tool, certain features that would be de-
sirable in a more generally applicable tool were intentionally left out in the interest
of expediency. The tool could certainly be enhanced by implementing these features,
some of which are discussed below.

The most significant weakness of the monitor generator is that it does not take
the monitor input relation into account, but requires that this is done by the sys-
tem interface module or explicitly encoded in the SRD (e.g., by specifying tolerance
functions that allow fewer behaviours). It may be possible to enhance the tool to
automatically account for the effect of the input devices for a restricted set of device
behaviours. For example, if REQ allows controlled variable °c to be z = “T, and
IN hon specifies that s.c = °c = “E then, assuming that ©T > “E, the monitor should
check that s.c =z 4 (°T — “E).

Another weakness is that the order of expressions in the TTS context file is
significant—it is used to determine the order of updates to conditions and mode
classes. While determining the required order is usually not difficult, it should also
be reasonably easy to automate using dependency analysis techniques such as pre-
sented in [39, 41]. Removing the restriction on the order of expressions in the SRD,
and thus allowing the author to structure the specification logically will enhance

readability.
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Some other technical enhancements that would help to make the monitor generator

more ‘user-friendly’ are as follows.

e The “behaviour expression”, which is required in the MG input, is usually
simply the conjunction of the characteristic predicates of the controlled value

relations, in which case it could be generated automatically.

e It may be possible to automatically determine which “condition expressions”
are needed by searching the SRD for event class expressions. This would remove

the requirement that conditions be named separately in the context file.

e Similarly, it may be possible to automatically extract the “history expressions”
from the SRD, although identification of these may not be as easy as for con-

dition expressions.

e The monitor generator libraries support only a very limited set of functions
of history expressions. This set could be extended, for example to include

numerical integration.

e For both condition and history expressions, the monitor software retains all of
the previous values that it has seen (i.e., all of the history). This may impose
unnecessary demands on the monitor software, and will certainly eventually lead
to problems due to lack of computer memory if a monitor is used to evaluate a
very long behaviour. Usually it is not necessary to keep all of this history, so
this problem could be overcome in many situations by introducing a method to
specify the amount of history needed. In some cases it may also be possible to

determine this automatically by analysis of the SRD.

e The use of global variables, as is done in the monitor implementation, is usually
seen as a poor programming technique and has particular problems with respect
to C++ objects (see, e.g., [65]). This could probably be overcome by either using
the notion of “namespace” to encapsulate these variables and objects, or by
implementing the behaviour module as one or more object classes, of which the
monitor control module would be required to instantiate appropriate instances.

This latter technique has the advantage that it would remove the need for the
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initOracle access program since its behaviour could be encapsulated in the

object constructor function.

This work has also highlighted some possible enhancements to the code generation
modules of the TTS, as follows.

e In the implementation of tabular expressions the guard expression is, in some
cases, trivially always false for a particular table index (e.g., in mode transition
relations for source and destination modes for which no such transition occurs).
These expressions, and the corresponding value expressions, need not be imple-
mented since they will have no effect on the value of the tabular expression. The
new Table Evaluation module, described in Section 6.4.1, does not require that
there be a guard expression for all valid table indices, and only requires value
expressions for those table indices for which the guard expression may be true.
Reducing the number of guard expressions implemented will reduce the search

space for table evaluation, and hence will make the evaluation more efficient.

e The “Inductively Defined Predicate” implementation could be significantly im-
proved by using the C++ template mechanisms, which have recently become
available, to support arbitrary types. In addition the interface to an IDP could
be made to conform with the STL concept of “Inputlterator” and the imple-
mentation of quantified expressions could be modified to use the STL find_if
algorithm, which is likely to be highly optimized. These changes would have

the following advantages.

1. Quantification would be supported over all types conforming with the “In-

putlterator” concept.

2. IDPs could be used in other STL algorithms.

8.3.2 Verification

One goal when using mathematical documentation techniques, such as those presented
in Chapter 5, is that the documentation can be formally verified by proving that it has,
or does not have, certain properties. To do so requires that the specification language

be strictly constrained and that the underlying logic model be made explicit, which
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has not been done in this thesis. The ability to do such analysis, particularly if
supported by tools, can greatly enhance a documentation technique and will increase
confidence that specifications are correct.

One potential approach to this is to define a translation from the specification
notation into the notation used by an existing proof system that is based on an

appropriate formal model (e.g., Duration Calculus[85]).



Appendix A

Example Requirements Documents

This appendix illustrates the requirements documentation method used in this thesis
by presenting complete requirements documents for some realistic sample problems.
Two of these examples are popular sample problems found in the literature, while the

third was developed by the author and his colleagues.

A.1 Notational Conventions

The same notational conventions are used in all of the examples, as follows.

Table A.1: Notational Conventions
[Ttem Style |
Monitored variable ™mvar
Controlled variable cvar
Monitored and controlled variable |™“mcvar
Mode Class “mclass
Mode Mdmode
State Sstate
Constant Cconst
Set set
Sequence seq
Data type datatype
Function (defined in this document)|func
Standard function kfunc

93
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A.2 Generalized Railroad Crossing

The Generalized Railroad Crossing (GRC) problem was first proposed as a benchmark
problem by Heitmeyer et al. in [40] and has since been used to illustrate several
different methods for specification and verification of real-time systems (e.g. [11, 27,
42, 43)).

A.2.1 Preliminaries

In the following informal description, which is quoted from [43], I and R are sets of

points on the ground.

The system to be developed operates a gate at a railroad crossing. The
railroad crossing I lies in a region of interest R, i.e., I C R. A set of trains
travel through R on multiple tracks in both directions. A sensor system
determines when each train enters and exits region R. To describe the
system formally, we define a gate function g(t) € [0,90], where g(¢) = 0
means the gate is down and g(¢) = 90 means the gate is up. We define a
set {\;} of occupancy intervals, where each occupancy interval is a time
interval during which one or more trains are in I. The 7' occupancy
interval is represented as \; = [7;, 4], where 7; is the i® entry of a train
into the crossing when no other train is in the crossing and v; is the first
time since 7; that no train is in the crossing (i.e., the train that entered
at 7; has exited as have any trains that entered the crossing after 7;).

Given two constants & and &, & > 0, & > 0, the problem is to
develop a system to operate the crossing gate that satisfies the following

two properties:
Safety Property : ¢ € |J; \i = g(t) = 0 (The gate is down during all
occupancy intervals.)

Utility Property : ¢t € |, [ — &, vi + & = g(t) = 90 (The gate is up

when no train is in the crossing.)



A. Example Requirements Documents 95

A.2.2 Environmental Quantities

Table A.2: Railroad Crossing Environmental Quantities

Monitored
Controlled

Variable |Description Value Set  |Notes

mt Current time o |Real 1
"trainDist | Distance from train to crossing. e| |[0, “RSIZE]|2
‘gate Gate arm position. e [0, 90] 3
Notes

1. Time is represented as the amount of time elapsed since some fixed arbitrary
time before the system is started (only time differences are relevant to the

requirements). The required resolution is 0.1 seconds.

2. The shortest distance from any point on any train to any point in the crossing.

The required resolution is 0.1 m.

3. Angle, in degrees, between gate arm and the horizontal. The required resolution

is2°.
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A.2.3 Mode Classes

Cltrain
Modes : M4InX, MAEmpty, M¢Approach, M?Leaving, MStopped

Mode function :

pr: Hi A Hy
rr:G %mtrainDist
Normal
<0 =0 >0
"trainDist = 0 MdnX Md|nX Md|nX
0 < ™trainDist < “R_SIZE || M4¢Approach | M4Stopped | M?Leaving
™trainDist > “R_SIZE MAEmpty MdEmpty | MYEmpty

A.2.4 Controlled Value Functions

‘gate
Md|nX false true false
Md ™trainDist " trainDist
ApproaCh %(mtrainDist) < §1 false %(mtrainDist) > 51

Md| eaving || Drtn(=M2InX) < & | false | Drtn(="4InX) > &

MAEmpty false false true
MdStopped true false false
pr: HANG
rr: Hy lrue ‘gate =0 ‘gate = 90
Inverted

A.2.5 Environmental Constraints

The following two equations are implicit in the given description, but should be made
explicit.

‘%(mtrainDist)‘ < °TRAIN_MAX (A1)
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(Trains move at less than some speed.)

< “GATE_MAX (A.2)

‘%(cgate)
(The gate has a fixed maximum speed.)

In addition, we make the following assumptions with respect to the given con-
stants.

“RSIZE S 90

A.
CTRAIN_.MAX — ¢GATE_MAX (A-3)
90
> A4
$1 2 GGATE MAX (A4)
90
> A.
$2 2 GGATE MAX (A-5)
(The gate can be raised or lowered in the given time limits.)
A.2.6 Dictionary
Constants
Name Constraints Interpretation
& & >0 Amount of time prior to a train entering the cross-
ing that the gate is permitted to not be up.
& & >0 Amount of time after all trains have left the cross-
ing that the gate is permitted to not be up.
CGATE_MAX |°GATE_MAX > 0 |Maximum (angular) speed of gate.
“RSIZE CRSIZE >0 Distance from crossing to edge of “region of inter-
est”.
CTRAIN_MAX|“TRAIN_MAX > 0|Maximum speed of trains.
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A.3 Steam-Boiler Control

The Steam-Boiler Control (SBC) problem was developed by LtCol. J. C. Bauer for
the Institute for Risk Research of the University of Waterloo, and has been used
as a case study for a number of papers and workshops (e.g., [4]). The description
presented in [3] gives the software requirements document for the boiler-controller,
which includes the input and output relations, and so is more implementation specific
than intended for this work. The description given here is the system requirements
document for the boiler-controller, which hides the behaviour of the messaging sys-
tem and inter-component communications specified in [3]. Also, since the “program
modes” described in that document are not externally observable (i.e., the system is

not mode apparent with respect to those modes), they are not used here.

A.3.1 Preliminaries

The system consists of a boiler equipped with four pumps for adding water, a valve
for removing water and sensors to measure the quantity of water in the tank and
the rate at which steam is coming out of the tank. In addition there is an operator
console where outputs may be displayed and commands issued by a human operator.
Each of the devices (pumps, sensors) is capable of detecting and reporting its own
operational status (i.e., *Ok or *Fail). A failed pump may be pumping or not. A failed
sensor gives no useful information. The problem is to control the amount of water
in a steam-boiler tank such that it operates safely, and to shut down the boiler if it
cannot continue to do so.

During operation the amount of water must always be between a lower and upper
limit, “LowCrit and “HighCrit, respectively, which are chosen such that the boiler
could reach an unsafe condition (assuming maximum flow rates imposed by the sys-
tem) in five seconds from the time the water volume reaches either “LowCrit or
CHighCrit. In the event that system failure prevents the water volume from con-
tinuously being maintained between these limits, the controller is required to shut
down the boiler. Under “normal” circumstances the water volume in the tank should
be maintained between the volumes, “LowNorm and “HighNorm.

On startup the tank is either drained or filled, as required, to a normal operational

volume before the boiler is started.
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A.3.2 Environmental Quantities

Table A.3: Steam-boiler Environmental Quantities

oS
<5}
==
Ol o
={=
EE
Variable Description ~|O|Value Set Notes
Mt Current time e |Real 1
"water Current volume of water in the|le| |Real, [0, CCap} 2
tank.
Msteam Rate at which water is evaporating|e| [Real, [0, “MaxSteam| |3
from the tank.
™flow Rate at which water is being added|e| [Real, [0,4“PumpRate] |3
to the tank.
Mrequest The operator requested boiler|e| |{ *Off, *On }
state.
"levelStat | Water level sensor status. o |{°Ok, °Fail }
MsteamStat |Steam sensor status. o| |{*0Ok, *Fail }
mpumpStat[i]|Pump status. i € [1...4] o |{ 50k, *Fail }
mcommStat |Communications network status. |e| |{ *Ok, *Fail }
“boiler The boiler status. e [{ *Off, *On }
cpumpli] The control state of pump i. i €| |e|{ *Open, *Closed }
[1...4]
‘valve The valve status. e [{ *Open, *Closed }

Notes

1. Time is represented as the amount of time elapsed since some fixed arbitrary
time before the system is started (only time differences are relevant to the

requirements). The required resolution is 0.1 seconds.

2. The volume is represented as litres of water in the tank. The required resolution
is 0.1 litres.

3. Flow and evaporation rates are represented in litres of liquid water per second.
The required resolution is 0.1 litres/second.
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A.3.3 Mode Classes

Clcontroller

Modes : M?nit_Drain, M?nit_Fill, M4Run, M20Off
Initial Mode function : M40Off

Transition relation :

e
15| 5|«
12|25
ool ool 2 2
A AR ME=AE-
s | A A VI VIO = |
Clalg| gl gl 0]
BRI AR A R:
. - = Tl =Rl dH
rp: Hy gIZI2|2|=2|812|5
e e | | |2 7] O
Decision g S| 8| 8| g |&g |&
Md Qe QT| x|t [ f | f |t ]|t ]|t ||[MnitDrain
QT £ | f |t | x|t ]|t |t | MinitFil
QT| f | f|f|f |t ]|t ]|t MdRun
Mdlnit Drainv||— | f | f |QF| f |t | t | t MdRyn
Mdnit Fill || — | f |QF| f | f |t |t |t
QF| % | « | % | | % | % | % MdQyff
— | x| x| x| %= |QF| * | %
— | x| x| x| x| x |QF]| %
— x| x| x| x| x| x |QF
MdRyn QF| % | % | % | * | x| x| MdQff
— | f | £t |QT| * | * | %
— QT t | £ | f | x| x| %
—|F| x| x| F|lQF| f | T
—|F| x| |F|f|@QF| T
— | F| x| x| F |QF|QF| T
— F |l x| x| F| x| *x |QF

Maximum Delay : < 5.0
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A.3.4 Controlled Value Functions

“boiler
pr : Hy
rr: H =G || MRun | =M?Run
| Vector
boiler *On SOff
“valve
pr: Hy
rp: Hy =G || Mnit_Drain | =™?nit_Drain
| Vector
‘valve *Open *Closed
‘pump
pr: HoNG My .
- Init_D Vv
vy H Md]nit Fill MdRyn e
MdQff
Inverted
Vi,(1<i<4)= estMaxWater
. false L true
¢pumpli] = *Closed — > “HighNorm
(Fi, ™pumpStat[i| = *Ok) = estMinWater
I o true c false
(34, pumping(7)) < “LowNorm
estMinWater >
“LowNorm
true false A false
estMaxWater <
“HighNorm
Merit
‘merit

&1/ card(UL,@T (pumpli] = *Open))
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A.3.5 Environmental Constraints

All environmental quantities are restricted to the range of values given in the appro-

priate row of Table A.3. In addition, the following assumptions can be made.

Pump Behaviour

The pumps have the property that “after having been switched on the pump needs

Y

five seconds to start pouring water into the boiler.” This constrains the value of

"flow, as follows.

card({i | Drtn(°pumpli] = *Open) > 5.0 A ™pumpStat[i] = *Ok }) < %‘;‘gate
card({i | °pump[i] = *Open V ™pumpStat[i| = *Fail})

Steam

The rate of change of ™steam is bounded above and below by the quantities “MaxGrad
and “MinGrad, respectively.

“MinGrad < %(msteam) < “MaxGrad (A.6)

A.3.6 Dictionary

Functions

estMaxFlow :— Real
estMaxFlow

& CpumpRate x card ({z

¢pumpl[i] = *Open V ™pumpStat[i] = *Fail })
estMinFlow : Real — Real

estMinFlow (6)

af “PumpRate x card ({z . Stat]i] = *Ok
pumpStat[:| =

Drtn(°pump[i] = *Open) + 6 > 5.0 A })

estMaxSteam : Real — Real
estMaxSteam(d)

& msteam + CMaxGrad X &
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Table A.4: Summary of Functions

[Name | Interpretation |

estMaxFlow |an estimate of the maximum value of ™flow at a time in the next 5
seconds.

estMinFlow |an estimate of the minimum value of ™flow at a time in the next 5
seconds.

estMaxSteam |an estimate of the maximum value of ™steam at a time in the next 5
seconds.

estMinSteam |an estimate of the minimum value of ™steam at a time in the next 5
seconds.

estMaxWater |an estimate of the maximum value of ™water at 5 seconds from the
current time.

estMinWater |an estimate of the minimum value of ™water at 5 seconds from the
current time.

pumping true if pump is pumping.

estMinSteam : Real — Real

estMinSteam (9)

& msteam + CMinGrad x &

estMaxWater :— Real

estMaxWater

& myvater + f05 (estMaxFlow — estMinSteam(d)) dd

estMinWater
estMinWater

:— Real

& myater + f05 (estMinFlow(d) — estMaxSteam()) dé

pumping : Integer — Boolean

pumping(7)

4 Drin(°

pump[i] = *Open) > 5.0 s A ™pumpStat[i] = *Ok
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Constants

Name Constraints Interpretation

“Cap 0 < “Cap Capacity of boiler tank, litres.
“HighCrit  |“HighNorm < “HighCrit < “Cap Critical maximum volume of wa-

ter in boiler, litres.

“HighNorm |“LowNorm < “HighNorm < “HighCrit| Maximum ‘normal’ volume of wa-

ter in boiler, litres.

CLowCrit |“LowCrit < “LowNorm Critical minimum volume of wa-

ter in boiler, litres.

“LowNorm |“LowCrit < “LowNorm < “HighNorm |Minimum ‘normal’ volume of wa-

ter in boiler, litres.

CMaxGrad |0 < “MaxGrad Maximum rate of increase in
"Msteam. See Eq. (A.6)
“MaxSteam |0 < “MaxSteam Maximum rate of steam evacua-

tion, litres/second.

“MinGrad |0 > “MinGrad Maximum rate of decrease in
"steam. See Eq. (A.6)
“PumpRate [0 < “PumpRate Nominal flow rate for pumps,

litres/second.
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A.4 Maze-tracing Robot

The Maze-tracing robot is based on a course project for a software design and docu-
mentation course taught to undergraduate computer engineering students at McMas-
ter University. Although it is a contrived example, it is “real” in that the software is
expected to control real hardware using vendor supplied interface libraries, and the
safety requirements are strictly enforceable and have potentially costly consequences

if violated (i.e., damage to laboratory equipment).

A.4.1 Preliminaries

The environment relevant to the target system consists of
e a draw-bot, which is a robot that is capable of moving a pen to mark on paper,
e a two-dimensional maze placed within reach of the draw-bot,
e three momentary contact buttons labelled “stop”, “home” and “back”, and
e a human operator.
The target system consists of

e a computer (with software) capable of controlling the robot, interpreting com-

mands from the operator and displaying messages, and
e interface hardware to interface with the robot and the buttons.

The system is required to control the draw-bot such that it traces a path on the
maze from the beginning to the end (if such a path exists) without coming too close
to any maze wall. The goal is to complete the path as quickly as possible and the
maximum speed of the draw-bot is fixed so a shortest path through the maze should

be chosen.

Pen Position

We represent the location of the draw-bot pen tip using a Boolean, ™“penDown,

to indicate if the pen is touching the maze surface or not, and a pair,
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("™penPos.x, ™*penPos.y) of reals, representing the location in the horizontal plane
where the pen tip is touching the maze (if ™*penDown is true) or would touch the
maze if lowered (if ™“penDown is false). The location is specified by the distance, in
millimetres, from the respective axis, which are parallel (x = 0) and perpendicular
(y = 0) to the front edge of the robot arm base. The extent of the region of interest
is defined by the constants “MIN_X, “MAX_X, “MIN_Y and “MAX_Y. The origin is
the centre of the robot base post. The home location of the pen-tip (to which it is
returned on initialization of the draw-bot) is (“HOME_X, “HOME.Y).

Maze

As illustrated in Figure A.1, the maze is contained within a “M_WIDTHmm x
C“M_HEIGHT mm region of the horizontal plane bounded by the lines z =
—C“M_X_OFFSET, y = “M_Y_OFFSET, z = —*M_X_OFFSET + “M_WIDTH and y =
CM_Y_OFFSET +“M_HEIGHT, which are the external walls of the maze. The internal
walls of the maze are segments of the lines x = —“M_X_OFFSET +n x “M_CELL_SIZE
mm and y = “M_Y_OFFSET + n x “M_CELL_SIZE mm, where n is an integer (i.e.,
a square grid with line spacing “M_CELL_SIZE mm). The endpoints of the walls
lie at intersections of these grid lines. Figure A.2 is a sample maze (actual size for
M WIDTH = “M_HEIGHT = 150 and “M_CELL SIZE = 10), with dashed lines indi-
cating the possible wall locations.

Informal Description

Safety Requirements If at any time the stop button is pressed (™stopButton =
sDown) the robot must stop moving within “RESPONSE_TIME seconds and must
remain stationary until the stop button is released ("stopButton = *Up).

When the pen is down (™“penDown = true) the pen tip must never come within
CWALL _SPACE mm of a wall point (wall(™penPos) = true).

Messages Whenever a significant event occurs (i.e., a button is pressed or released,
the pen reaches a significant point in its journey, or an error is detected) the system
must display a diagnostic message describing the event and the system’s response to
it.
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Performance The performance goal for the system is to minimize the time between

the pen first touching the paper and it being returned to its home position.

Initialization When the system is started it must attempt to find a legal path
through the maze. If an error occurs (e.g., maze read failure) or if there is no path
through the maze, then an appropriate diagnostic message must be output and the

system must halt without turning on the robot power (“powerOn = false).

Starting After it has been determined that there is a path through the maze, the
robot power must be turned on (‘powerOn = true), which initializes the pen to the
home position ("*penPos = (“HOME_X, “HOME_Y)) with the pen up (™*penDown =
JM). The pen must then be moved to the start position of the maze (™°penPos €
tol({™mazeStart})).

Forward Once the starting position has been reached (™°penPos €
tol({™mazeStart})) the pen must be lowered (™°penDown = ¢true) and a path
traced through the maze to the end (™°penPos € tol({™mazeEnd})). When the
pen reaches the end of the maze (™°penPos € tol({™mazeEnd})) it must be raised

(™penDown = false) and returned to the home position.

Reverse If at any time while the path is being traced the “back” button is pressed
(™backButton = *Down) the Draw-bot is required to reverse the direction of its tracing
within “RESPONSE_TIME seconds and begin to re-trace its path back to the begin-
ning (™°penPos € tol({™mazeStart})). It should continue to re-trace its path only
as long as the “back” button is held down—when it is released the Draw-bot should
continue in the forward direction. If, while reversing, it reaches the start position it
should stop there until either the “back” button is released or the “home” button is

pressed.

Home If at any time while the path is being traced (in either direction) the “home”
button is pressed (™homeButton = *Down) the Draw-bot is required to stop tracing
within “RESPONSE_TIME seconds, raise the pen (™‘penDown = false) and return to

the home position, without making any further marks.
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Done When the pen has been returned to the home position, the power must be

turned off (“powerOn = false) and the system must halt.

A.4.2 Environmental Quantities

Table A.5: Maze-tracer Robot Environmental Quantities

Monitored
Controlled

Value Set |Notes

mt Current time Real 1
"™mazeWalls |The set of points that make up the walls of| | |set of Posn|2
the maze. Note that the exterior walls (i.e.,
the perimeter) are included.

Variable Description

"mazeStart |Start position for the maze. e |Posn 2
™mazeEnd Finish position for the maze. e |Posn 2
MstopButton |Status of the “stop” button. e| |buttonT
"homeButton|Status of the “home” button. e| |buttonT
™backButton |Status of the “back” button. e| |buttonT
™¢penPos The position of the pen relative to the origin| e |e |Posn 2

(0,0), which is the centre of the robot base

post.

MpenDown  |{rue iff the pen is touching the plane contain-| e | e |Boolean
ing the maze. Assumed to be initially false.

“powerOn true iff the robot power is on. Assumed to be| |e |Boolean
initially false.

“message The message displayed on the operator con-| |e|string
sole.

Notes

1. Time is represented as the amount of time elapsed since some fixed arbitrary
time before the system is started (only time differences are relevant to the

requirements). The required resolution is 0.1 seconds.

2. Positions are represented using (x,y) coordinates as described in Section A.4.1.

The required resolution is 0.5 millimetres.
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A.4.3 Mode Classes

Cldirection
Modes : MdStarting, M4Forward, M?Reverse, ¥4Home, M?Done

Initial mode :

pr: H;
rr: Hy =G Cldirection

Vector

connected (™mazeStart, "mazeEnd) ||M9Starting

—connected (MmazeStart, "mazeEnd)|| “?Done

Transition relation :

mepenPos € tol({ (“HOME_X, “HOME_Y) })

= —~
€3
3| €
0| w
NN c
©| ®© = g
£| € B3
g | & g5 =)
| o~ g -
3|3 =
= | = s c
| S|E| &
. o =]
Pr: H1 NG D? D? ] % o
: H. S| @ S| E|S
T3 ala gl o|
. . Q Q Q = 0
Decision E|E £ |8 |8
MdStarting ||t | * | * |@QT| * | * ||™?Forward
MdForward ||  |QT| % | * | * | * || M?Home

QT| * || MiHome
x | %+ | F |@QT| M9Reverse
MdReverse || | x | x | x |QT| % || M4Home
x| % | * | *x | F|QF|9Forward

MdHome x| % |@QT| = | * | % || MeDone

*
Fr
*
*

*
S
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Maximum Delay : “RESPONSE_TIME s

A.4.4 Controlled Value Functions

m¢penPos
| (holding A £(™penPos) = 0) V
( pr : Hy
I G
Normal
MdF orward —wall(™“penPos) A inMaze(™“penPos)
A forward(™penPos)
—|h01d' /\ — mc 3 mc
MEA | MaReverse wall("°penPos) A inMaze(™penPos)
A reverse(™¢penPos)
MdgGtarting ,
rue
vMiHome -
“HOME_X
MdDone mepenPos € tol( 1)
\ “HOME_Y )
™¢penDown
pr : Hy
rr: Hy =G || MForward V M9Reverse | M4Starting V ¥4Home V Y?Done
| Vector
™¢penDown true false
‘powerOn

| = (M?Done V M4Starting) < “powerOn
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“message

| (holding A °message = “Stop button pressed, holding”)

V(—holding A

connected (™mazeStart, "mazeEnd)

pr: H;
rr:Hy =G “message
Vector
MdStarting “Path found, starting.”
MdForward “Tracing forward.”
MdReverse “Tracing backwards.”
MidHome “Tracing complete, returning to
home position.”
MdDgneA

“Shutting down.”

MdDonen

—connected (™mazeStart, "mazeEnd)

“No path found, shutting down.”

Merit Function

°merit

pr : H;
rr: G

Normal

=|QT (MdForward =

)
)
QT (M?Forward)
)

CMAX_TIME

movingTime

A.4.5 Environmental Constraints

Since the home position is guaranteed to be outside the maze and ™mazeStart and
™mazeEnd are inside the maze and more than “POS_TOL mm from the maze wall,

the pen cannot be within “POS_TOL mm of both the home position and either of
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"™mazeStart or ™mazeEnd, i.e.,

mc P 1 m
mepenPos € tol({ (CHOME X, CHOME.Y) }) = ( penPos ¢ tol({™ mazeStart})/\ )

™penPos ¢ tol({™mazeEnd})

The pen tip can move at a maximum of 2.0 mm/s, i.e.,

penPos‘ <2.057

A.4.6 Dictionary
Types
pathT = sequence of tuples of (s, f : Posn)
Posn = tuple of (z : [°MINX, “MAX X] ,y : [CMINY, °MAX_Y])

buttonT = { *Up, *Down }

Functions

connected : Posn x Posn — Boolean

connected (b, e)

[ b=p[0].sAe=plp|—1].FA

(Vie[0...|p|—1))

(i <Ipl=1) = @[].f =pli+1].5)A )

(plil.sx=p[i].fxVvpli].sy=pli.fy)A
& (3p € pathT) B (jvilf(ljosn)
pli].s.x < gz <pli.fzA v
plil sy <qy<plil.fy
pli].fx <qx<pli.s.xA
\ \ plil fy<ay<pli.sy ] )

dist : Posn x Posn — Real
dist(p, q)

2
-—¢px—qm + (py — q-y)
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forward : Posn — Boolean

forward(p)
p & tol(

pr: H;
rr: G
Normal

Prev(QT (MReverse)) = @

path (First(QT (M?Forward)),lagTime)

Prev(QT (M?Reverse)) # @

First(QT (M9Forward)),
path
Last(QT (M?Reverse))

tol (path (Last(@T (MdReverse)),)>

Last(QT (M“Forward))
Upath (Last(QT (M?Forward)), lagTime)

~—

holding :— Boolean
holding
pr: Hi A Hy
rr: G ‘message = “Stop button pressed, holding.”
Normal
true ‘ false
my _
df Zs:([);livuntton true Last ( QT (Zi;iifton))
> CRESPONSE_TIME
my _
MstopButton Last (@F (mstopButton>> false
=Up = *Down
< ®RESPONSE_TIME
inMaze : Posn — Boolean

inMaze(p)

1

—CM_X_OFFSET < p.z < —“M_X_OFFSET + “M_WIDTH A
“M_Y_OFFSET < p.y < “M_Y_OFFSET + “M_HEIGHT
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lagTime :— Real
lagTime

pr: HHANG
rt : Hy

qf | Inverted

Last(QT (holding))

mt — “RESPONSE_TIME
—CRESPONSE_TIME

Last(QF (holding)) > Last(QF (holding)) <
mt — CRESPONSE_TIME | ™t — “RESPONSE_TIME
holding true false

—holding

movingTime :— Real
movingTime
& (First(QT (M4Done)) — First(QT (M4Forward)))
—totalDrtn (holding, First(QT (9Forward)), First(QT (M¢Done)))

path : Real x Real — set of Posn
path(t;, ty)
L {qgePosn|(3Bt) (t; <t < t; A q="cpenPos(t)) }

reverse : Posn — Boolean
reverse(p)
path(First(QT (M?Forward)), Last(QT (M?Reverse)))\
L e tol (tol(path(Last(@T (MReverse)),lagTime)) )
U{™mazeStart}

tol : set of Posn — set of Posn

tol(p)
a {q € Posn |(EIT' € p) (dist(¢g,7) < “POS_TOL) }

wall : Posn — Boolean

wall(p)
L (3¢ € mmazeWalls) (dist (¢, p) < “WALL_SPACE)
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Constants
Table A.6: Constants

‘Name ‘Possible Values ‘Interpretation

“HOME_X [CMINX...“MAX X] x location of pen ‘home’ position,
millimetres.

“HOME.Y [CMIN_Y...“MAX_Y] y location of pen ‘home’ position,
millimetres.

“MAX_TIME [60 .. .300] Maximum time allowed to trace
the maze, seconds.

“MAX_X [0...500] Maximum valid x co-ordinate,
millimetres.

“MAX_Y [0...500] Maximum valid y co-ordinate,
millimetres.

“M_CELL SIZE [4...25] Width/Height of a maze cell, mil-
limetres.

“M_HEIGHT [“M_CELL SIZE...®MAX_Y] |Height of maze, millimetres.

“MIN_X [-500. .. 0] Minimum valid x co-ordinate,
millimetres.

CMIN_Y [-500. .. 0] Minimum valid y co-ordinate,
millimetres.

“M_WIDTH [°M_CELL SIZE...“MAX X] |Width of maze, millimetres.

“M _X_OFFSET [1...“MAX X — “M_WIDTH] |x distance of maze from origin,
millimetres.

“M_Y_OFFSET [1...“MAXY — “M_HEIGHT]|y distance of maze from origin,
millimetres.

“POS_TOL [1.. SMCELLSIZE Maximum tolerance on locating

2

the start and end positions, mil-
limetres.

“RESPONSE_TIME

2...15]

Maximum delay before respond-
ing to a button, seconds.

CWALL SPACE

2

[1 CM_CELL_SIZE

Minimum distance between the
pen and walls, millimetres.




Appendix B

Monitor Generator Users’ Guide

The Monitor Generator is implemented as a component tool of the Table Tool System
(TTS) as is described in the on-line version of [96]. This appendix describes how the
Monitor Generator can be used to generate a monitor from a System Requirements
Document, represented as expressions in a T'TS context file. The interface to the

generated code is described in Section 6.3.2.

B.1 SRD Format

The SRD is represented by a TTS context file, which contains an ordered list of
named expressions and related symbol information. The order of the expressions in
the context determines the order in which expressions are evaluated by MON_update,
if necessary, so, for example, if a condition depends on a mode class, then it should
be placed after that mode class definition. Table B.1 lists the contents of the TTS
context file representing the SRD in Section A.4.

B.1.1 Environmental Variables

An expression is required to identify each variable that represents an environmental
quantity in the SRD. The name of each such expression is of the form “Env name”,
where name is the name of the environmental variable. The expression is simply the

variable.

118
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For each variable (environmental or not) the following symbol information is re-

quired (numbers in brackets are the information module “info class” numbers):

Name (1) The variable name, which MG translates into the C++ variable name

used in the monitor implementation.
Tag (4) VarTag (= 2)

CType (11) The variable type, formated such that printf ( ctype, name) will print
a valid C++ declaration.

The variable “m_t” is assumed to represent the current time and must always be

present.

B.1.2 Conditions

Each condition used in the SRD must be defined in an expression, the name of which is
of the form “Cond name”, where name is the condition variable name. The expression
is the predicate expression that defines the condition. It is evaluated to update the
condition value in MON_update.

For each condition variable the following symbol information is required:

Name (1) The condition name, which MG translates into the C++ condition vari-

able name used in the monitor implementation.
Tag (4) VarTag (= 2)
CType (11) Condition ¥%s

The value of a condition is referenced in other expressions using the condition

variable. The current value of condition, Pc, is denoted “default(Pc)”.

B.1.3 Histories

A history expression is required for each variable of which previous (i.e., histori-
cal) values are needed in the SRD. The name of the expression is of the form
“Hist nameHist”, where name is an variable name. The expression is the variable.

Histories are accessed in other expressions implicitly when a history function (e.g.,

dBYdt) is invoked with the variable as its argument.
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B.1.4 Mode Classes

A mode class definition is required for each mode class in the SRD. The name of the
expression is of the form “ModeClass clname”, where clname is the mode class name.
The expression is simply a tuple containing the modes in the class, each of which is a
constant with name of the form “clname: : mdname”, where clname is the mode class
name and mdname is the mode.

For each mode class, clname, the following functions must be defined in the dic-

tionary:
® clname: :init Initial mode function.
e clname: :trans Ideal mode transition function.
e clname: :delay Transition delay tolerance function.
e clname: :isSysMode Mode apparency function.

There must also be a variable symbol defined for the mode variable, that has name
“mc_clname”. This variable is used to reference the current mode in this class using
the “default” function, as for conditions, above. The CType of the mode variable

symbol is “clname: :mode %s”.

B.1.5 Behaviour

An expression with name “Behaviour” is required. The expression is the characteristic
predicate of acceptable system behaviour (typically the conjunction of controlled value

relations, defined in the dictionary).

B.1.6 Dictionary

Auxiliary function and predicate definitions, as well as the controlled value relations,
merit function, and mode class functions discussed above are passed directly to TOG
for implementation as ‘auxiliary functions’, and so must conform to the form required
by that tool:

e The ‘root’ of the expression is the special symbol defined.
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e The first sub-expression gives the signature: function name and formal argu-

ments.

e The second sub-expression gives the function definition in terms of the formal

arguments.
The following symbol information is required for each function or predicate name:

Name (1) The function name, which MG translates into the C++ function name

used in the monitor implementation.
Tag (4) FATag (= 3) or LETag (= 5)
Arity (6)

CType (11) The C++ data type of the function (not in printf format as for vari-
ables).

”

Expressions with name beginning with “Std ” are ignored by the generator. This
allows functions to be implemented by hand where appropriate. The function name
symbol must have CForm (12) information defined, which is used to form the function
invocation. It consists of an array of arity + 1 strings, which precede each argument
expression, in turn, and follow the final argument. (e.g., “f( z,y)” is represented by
the strings “£( 7, “, 7, )”.)

Table B.1: Maze-Tracer SRD TTS Context File

Name Expression

Env m_t m

Env m_mazeWalls |™mazeWalls

Env m_mazeStart |™mazeStart

Env m_mazeEnd m™mazeEnd

Env m_stopButton|”stopButton

Env m_homeButton|"homeButton

Env m_backButton|™backButton

Env mc_penPos ™penPos

Env mc_penDown |"“penDown
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Name Expression

Env c_message “message

Env c_powerOn “powerOn

Cond stopPressed MstopButton = *Down

Cond backPressed ™backButton = *Down

Cond homePressed "homeButton = *Down

Cond penDown ™penDown

Cond atHome mpenPos € tol ({ (CHOME_X, CHOME_Y) })

Cond atEnd ™penPos € tol ({"mazeEnd})

Cond atStart ™penPos € tol ({"mazeStart})

Cond holding see Holding on page 115

Hist mc_penPosHist |™“penPos

mc_penPos_cvf see ™°penPos controlled value function on page 112
mc_penDown_cvf see ™°penDown controlled value function on page 112
c_powerOn_cvf see “powerOn controlled value function on page 112
c_message_cvf see “message controlled value function on page 113

mc_penPos_cvf(default(mc_direction)) A
mc_penDown_cvf (default(mc_direction)) A

Behaviour . .
c_powerOn_cvf(default(mc_direction)) A
c_message_cvf(default(mc_direction))

Merit see definition on page 113

ModeClass direction |(M?Starting, ¥?Forward, M?Reverse, ¥Home, ¥?Done)

direction::init see definition on page 111
direction: :trans see definition on page 111
direction: :delay see definition on page 112
direction: :isSysMode|c_message_cvf(m)

Cond forwardMode default(mc_direction) = M?Forward
Cond reverseMode default(mc_direction) = M9Reverse
Cond doneMode default(mc_direction) = ¥4Done
forward see definition on page 115

inMaze see definition on page 115
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Name

Expression

reverse

see definition on page 116

Std tol

see definition on page 116

lagTime

see definition on page 116

movingTime

see definition on page 116

Std wall

see definition on page 116

Std connected

see definition on page 114

Std path

see definition on page 116

B.2 Users’ Interface

The ‘user’ input required by the MG is to specify file names for:

e the System Interface Declarations code,

e the SRD context file, and

e the output files.

The prototype tool described in this thesis uses a simple command-line user

interface, and assumes behaviour.def for the system interface declarations and

behaviour.cc and behaviour.h for the output files. The SRD context file must be

given on the command line.

For integration with the T'TS a graphical user interface should be developed. The

required interface is virtually identical to the existing TOG Users’ interface, so that

should be adapted for use by the monitor generator. The only changes required will

be to text labels on the interface and help text.



Appendix C

Monitor Generator Design

Documentation

This appendix contains design documentation for the Monitor Generator and Monitor

Library.

C.1 Monitor Generator Interface

The relationships between monitor generator classes is given, using the Unified Mod-
elling Language (UML) class diagram notation[84], in Figure C.1. The interface
between the MG and other TTS tools is through the Requirements and Monitor

Constructor modules, which are described in the following sub-sections.

C.1.1 Requirements

The Requirements module is responsible for interpreting a TTS context (CHandle)
as a requirements document, determining if each expression is a specification object,
the behaviour expression, or an auxiliary definition. The MG_Req constructor method

constructs the following from the context, as illustrated in Figure C.2,
e a list of MG_SpecObj objects,
e a TTS context containing the auxiliary definitions, and

124
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MG_TogProc MG_Req
proc : TOG_Cnixt 1 [ auxDef - CHandle
make(void) 1 ——
addBody(string) behaviour : Expn
setValue(string)
setValue(void)
getCntxt(void) {ordered)| *

MG_SpecObj

MG_Fal defn : Expn

A name : string
L | TH_Fail

codeDefinition(ostream&, TOG_Cntxt)
codeDeclaration(ostream&, TOG_Cntxt)

| TOG_Fail codeUpdate(ostream& , TOG_Cnitxt)
—{ TIF_Fail MG_Enwar MG._CondDefn
MG_ModeClass MG_HistDefn

Figure C.1: Monitor Generator Class Diagram

e the behaviour expression.

C.1.2 Monitor Constructor

The Monitor Constructor module consists of one access program,
MG_monBuild (MG_Req& req, string& codefilename, string& userdef), which
invokes methods in the appropriate order to generate the monitor implementation as

illustrated in Figure C.3.
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defs = empty list
for all e expression in ch do
if name of e begins with “Env ” then
0 = new MG_EnvVar object
add o to defs
else if name of e begins with “Cond ” then
0 = new MG_CondDefn object
add o to defs
else if name of e begins with “Hist ” then
o0 = new MG_HistDefn object
add o to defs
else if name of e begins with “ModeClass ” then
o = new MG_ModeClass object
add o to defs
else if name of e = “Behaviour” then
behaviour =e
else if name of e begins with “Std ” then
// ignore this expression
else // it’s an auziliary definition
add e to auxDef
end if
end for

Figure C.2: Requirements Object Constructor (MG_Req(ch)) Algorithm

C.2 DMonitor Library Interface

Figure C.4 is a UML class diagram illustrating the relationships between the monitor
library classes. The remainder of this section gives semi-formal interface specifications

for the monitor library classes.
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initialize TOG, passing userdef
for all 0 in req.defs do
o.codeDeclaration into “codefilename.h” file.
end for
TOG oracle(req.auxDef) // generate auziliary definition implementations
update = MG_TogProc(“MON _update”)
for all 0 in req.defs do
o.codeDefinition into “codefilename.cc” file.
o.codeUpdate into update
end for
behave = MG_TogProc(“MON behaviour”)
implement req.behaviour into behave using TOG_expn
close all files.

Figure C.3: Monitor Generation (MGmonBuild) Algorithm

‘ ‘ ‘
ModeClass P Timefuﬁl: o Timefunc<bool>
1 Timefunc<Spec::mode> /:\
e -
Sample - Condition

Timestamp é:I_’ 1 T

Figure C.4: Monitor Library Class Diagram
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C.2.1 Timestamp
Exported Types

class Timestamp

Imported Types

Type |Defined in

ostream

iostream.h

istream|iostream.h

timeval|sys/time.h

Member Functions

Name Value Type|Arg. 1 Type|Arg. 2 Type
Timestamp Timestamp& |int int
Timestamp Timestamp& |timeval

Timestamp Timestamp& double

set Timestamp& |int int
operator+= Timestamp& | Timestamp
operator+= Timestamp& |double

operator-= Timestamp& | Timestamp
operator-= Timestamp& |double

seconds int

useconds int

operator double|double

Non-member Functions

Name Value Type|Arg. 1 Type|Arg. 2 Type
operator <<|ostream& |ostream& Timestamp
operator >>|istream& istream& Timestamp
operator + |Timestamp |Timestamp |Timestamp
operator + |Timestamp |double Timestamp
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Name Value Type |Arg. 1 Type|Arg. 2 Type
operator + |Timestamp |Timestamp |double
operator - |Timestamp |Timestamp |Timestamp
operator - |Timestamp |double Timestamp
operator - |Timestamp |Timestamp |double

now Timestamp *|Timestamp *

operator < |bool Timestamp |Timestamp
operator ==|bool Timestamp |Timestamp
Representation

df .
R = (sec, usec : int)
Behaviour

Timestamp(int s, int u)
L r= (s,u) Avalue = R

Timestamp(timeval )

LR = (t.tv_sec,t.tv_usec) A value = R’

Timestamp(double d)
L R = (int(d), (d — int(d)) * 10%) A value = R’

R.set(int s,int u)
L r= (s,u) Avalue = R’

R+=(Timestamp t)
LR = (‘R.sec + t.sec, 'R.usec + t.usec) A value = R’

R+=(double d)
LR ="R+= Timestamp(d) A value = R’

R—=(Timestamp t)

L p= (‘R.sec — t.sec,'R.usec — t.usec) A value = R
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R—=(double d)
LR ="R—= Timestamp(d) A value = R’

R.seconds()

af
= R' ='R A value = 'R.sec

R.useconds|()

af
= R' ='R A value = ‘'R.usec

double(R)
& R =R A value = 'R.sec + 'R.usec/10°

ostream& s << Timestamp ¢
df . . .
=5 ="'s << tsec << “." << t.usec (fixed precision, 6 decimal points)A

value = ¢’

istream& s >> Timestamp ¢

dt
=g ='s >> t.sec >> “. >> t.usec

Timestamp [ + Timestamp r

df .
= value = Timestamp(/.sec + r.sec, [.usec + r.usec)

Timestamp [ 4+ double r

& value = 1 + Timestamp(r)

double [ + Timestamp r

4 value = Timestamp(l) + r

Timestamp [ — Timestamp r

df .
= value = Timestamp(/.sec — r.sec, [.usec — r.usec)

Timestamp [ — double r

& value =1 — Timestamp(r)

double [ — Timestamp r

4 value = Timestamp(l) — r
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now(t)

df .
= *t' = current system time A value =’

Timestamp [ < Timestamp r

df
= value = [.sec < r.sec V l.sec = r.sec A l.usec < r.usec

Timestamp | == Timestamp r

df
= value = [.sec = r.sec A l.usec = r.usec

Implementation Files

timestamp.h, timestamp.cc
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C.2.2 Time Function

Exported Types

template class Timefunc<T>

Imported Types

Type Defined in
ostream iostream.h
istream iostream.h

template class 1list<T>

list.h (STL)

class Timestamp

timestamp.h

Member Types

template class Timefunc<T>::iterator

template class Timefunc<T>::const_iterator

template class Timefunc<T>::Sample

template class Timefunc<T>::UnknownVal

Member Functions

Name Value Type Arg. 1 Type |Arg. 2 Type|Arg. 3 Type
Timefunc<T>|Timefunc<T>& int bool
Timefunc<T>|Timefunc<T>& double bool
Timefunc<T>|Timefunc<T>& Timefunc<T>&|Timestamp& |Timestamp&
addPoint Timefunc<T>& Timestamp& |T

operator() |T

operator() |T Timestamp&

after T Timestamp&

before T Timestamp&

oldest T

dBYdt T

begin Timefunc<T>::iterator
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Name

Value Type

Arg. 1 Type

Arg. 2 Type

Arg. 3 Type

begin

Timefunc<T>::

const_iterator

end

Timefunc<T>::

iterator

end

Timefunc<T>::

const_iterator

empty

bool

Non-member Functions

Name

Value Type

Arg. 1 Type

Arg. 2 Type

Arg. 3 Type

operator <<

ostream&

ostream&

Timefunc<T>&

operator <<

ostream&

ostream&

Timefunc<T>: :Sample&

template
<class T, class P>

findPrev

Timestamp&

Timefunc<T>&

Pred&

int

template
<class T, class P>

findFirst

Timestamp&

Timefunc<T>&

Pred&

int

Representation

Sample 4 (time : Timestamp;val : T)

hist : sequence

maxLen : int;

of Sample;

maxDur : double;

keeplnit : bool
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Behaviour

Timefunc(int /, bool k)

pr : Hy
it Hi =G lrue
Vector
df R.hist’ || empty list
B R.maxLen’ l
R.maxDur’ 0
R keeplnit’ k
value R

Timefunc(double d, bool k)

pr : Hy
it Hi =G true
Vector
df R.hist’ || empty list
B R.maxLen’ 0
R.maxDur’ d
R keeplnit’ k
value R

Timefunc(Timefunc& f, Timestamp& ¢, Timestamp& ty)

pr: Hy
it Hi =G true
Vector
df R.hist’ || copy of ‘f.hist[i] | £, < f.hist[z].time < t,
a R.maxLen’ ' f.maxLen
R.maxDur’ ' f.maxDur
R keeplnit’ ' f .keeplnit
value R’
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addPoint(Timestamp& t,T v)

pr : Hy
rr:Hi =G tooLong(‘R, t) —tooLong(‘R, t)
Vector
df R.hist’ || dropIt(‘R, t) + (t,v) | ‘R.hist + (¢, )
a R.maxLen’ ‘R.maxLen
R.maxDur’ ‘R.maxDur
R keeplnit’ ‘R .keeplnit
value R
R()
pr: Hy
rr Hi =G 'R.hist| > 0 'R.hist| = 0
4 Vector
value || ‘R.hist[|'R.hist| — 1].val | throw UnknownVal

AR' =R

R(Timestamp ?)
pr : Hy
rr: Ho=G value

Vector

‘R.hist[i].time =

‘R.hist| > 0 A
at| [hist \R.hist[i].val 3j,t, = “R.hist[j].time
‘R.hist[0].time < ¢ maz | < ts <

'R.hist| =0 Vv
. . throw UnknownVal
‘R.hist[0].time > ¢
AR =‘R

R.after(Timestamp ?)
L R@t)
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R.before(Timestamp ?)

pr : Hy
rr:Ho=G value

Vector

‘R.hist[i].time =

‘R.hist| > 0 A o
£ | . st ) ‘R.hist[i].val 3j,t; = ‘R.hist[j].time
‘R.hist[0].time < ¢ maz | < ts sy

I'R.hist| =0 Vv
‘R.hist[0].time > ¢
AR' ='R

throw UnknownVal

R.oldest()

pr: H)
rr: Ho=G value

qf | Vector
|'R.hist| > 0 ‘R.hist[0].val
|'R.hist| = 0 || throw UnknownVal
AR =R

R.dBYdt ()

pr : Hy
rr: Ho=G value

q | Vector

v ——
\ . R.hist[' R.hist|—1].val—"'R.hist[|' R.hist|—2].val
| R'hISt‘ > 1 ‘R.hist[|' R.hist| —1].time—' R.hist[|' R.hist|—2].time

I'R.hist| < 1 throw UnknownVal
AR =R

R.begin()
& value = &(‘R.hist[0]) A R’ =R

R.end()
& value = &(‘R.hist[|'R.hist|]) A R ='R
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R.empty()
& value = ('Rohist| = 0) A R' =R

ostream& s << Timefunc f

df

= ¢ ='s << (all samples) A value =

ostream& s << Sample f

f .
& o =5 << ftime << “\t' << f.valA

value = ¢’

findPrev(Timefunc f,Pred p,int n)

T: H;
rp o Hy =G value
Vector
d card ({3 | p(*f.hist[i].val)}) \f hist[i].time card ({‘7 ;(‘zflhl/;t[]]vao })
zn = n A p(‘f.hist[i].val)
card ({¢ | p('f-hist[i].val)}) throw UnknownVal
<n

findFirst(Timefunc f,Pred p, int n)

T Hy
v Hy=G value
Vector
a |7 <A
=| card ({i | p(‘f-hist[d]. va')}) \f hist[i] time card ({] p('f hist[j].val) })
> n = n A p(‘f.hist[i].val)
card ({i | p('f histi].val)}) throw Unknownval
<n

Implementation Files

timefunc.h
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Auxiliary Definitions

tooLong : Timefunc X Timestamp — Boolean

tooLong(f,t)

PT - H1 A H2
rr: G
Normal

f -keeplnit

— f.keeplnit

ar | f.maxLen >0

|f-hist| > f.maxLen

|f-hist| > f.maxLen

f.maxLen =0 A
f-maxDur > 0

f-hist[1].time <
t — f.maxDur

f-hist[0].time <

t — f.maxDur

f.maxLen =0 A
f-maxDur =0

false

false

droplt : Timefunc X Timestamp — sequence of Sample

droplt(f,?)

PT: H1 A HQ

rr: G f -keeplnit — f.keeplnit

Normal
ar| f.maxLen > 0 f'h!St[O] * _ f.hist[1...|f.hist| — 1]
= f-hist[2...|f.hist| — 1]

f-hist[0]+
f.maxLen =0 A 1 >0A £ histl] f-hist[i].time >
f.maxDur > 0 || f.hist[z] | f.hist[:].time > t — f.maxDur

t — f.maxDur
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C.2.3 Condition

Exported

Types

class Condition

Member Types

enum Change

Imported Types

Type Defined in
Timestamp timestamp.h
template Timefunc<T>|timefunc.h

Inherits: Timefunc<bool>.

Member Functions

Name Value Type|Arg. 1 Type|Arg. 2 Type
Condition|Condition& |int bool
Condition|Condition& |double bool

addPoint |Condition& |Timestamp |bool

Non-member Functions

Name Value Type|Arg. 1 Type|Arg. 2 Type|Arg. 3 Type
Last Timestamp |Change Condition&

First Timestamp |Change Condition&

Since double Change Condition& |Timestamp&
Drtn double Condition& |Timestamp&
totalDrtn|double Condition& |Timestamp& |Timestamp¥
AtTrue double Condition& |Timestamp&

AtFalse |double Condition& |Timestamp&

When double Condition& |Timestamp&
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Name |Value Type|Arg. 1 Type|Arg. 2 Type|Arg. 3 Type

While |double Condition& |Timestamp&

WhenF |double Condition& |Timestamp&

WhileF|double Condition& |Timestamp&

Representation

Sample A (time : Timestamp; val : bool)
hist : sequence of Sample;

ar | maxLen : int;

R =
maxDur : double;
keeplnit : bool
Behaviour

Condition(int /,bool k)

pr : Hy
rr: Hi =G true
Vector
df R.hist’ || empty list
B R.maxLen’ l
R.maxDur’ 0
R keeplnit’ k
value R’

Condition(double d,bool k)

pr: Hy
rr:Hi =G true
Vector
df R.hist’ || empty list
a R.maxLen’ 0
R.maxDur’ d
R keeplnit’ k
value R’
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R.addPoint(Timestamp& ¢, bool v)

pr: Hy

Vector

rp: Hi =G ‘R.hist[|'R.hist| — 1].val = v

false

true

R' || Timefunc<bool>(R).addPoint(t,v) | ‘R

Last(Change d, Condition& f)

pr : Hy
| g HQ =G
Vector

value

Ji, IsChange(d,‘f,4) || ‘f.hist[i].time|i = maz ({j | IsChange(d,"f,j)})

—3i, IsChange(d, "\ f, 1)

throw UnknownVal

Change d, Condition& f)
pr : Hy
rr: Ho=G
Vector

value

3i, IsChange(d,‘f,4) || ‘f-hist[i].time|i = min ({j | IsChange(d,‘f,7)})

—3i, IsChange(d, " f, 1)

throw UnknownVal

value

Change d, Condition& f, Timestamp t)
pr: Hy
I'p . .H2 =G
Vector

Ji, IsChange(d,‘f,i) ||t — Last(d, f)

—3i, IsChange(d, " f, %)

0

ondition& f, Timestamp t)

pr: H;
I HQ =G
Vector

value

‘f.hist[|' f.hist| — 1].val

t — Last(AtT, f)

= f.hist[|' f -hist| — 1].val

0
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totalDrtn(Condition& f, Timestamp ¢;, Timestamp t5)

af
= value = ZleYesTimes(\f,tth)(I.e —1.b)

AtTrue(Condition& f,Timestamp )
4 value = (34, f .hist[i].time = ¢ A" f.hist[i].val = true)

AtFalse(Condition& f, Timestamp t)
L value = (3i,f hist[i].time = ¢ A f.hist[i].val = false)

When(Condition& f, Timestamp t)

4 value = ‘f.before(t)

While(Condition& f,Timestamp t)
4 value = (‘f.before(t) A'f.after(t))

WhenF(Condition& f, Timestamp ¢)

L value = —'f.before(t)

WhileF(Condition& f, Timestamp )
4 value = (—'f.before(t) A —'f.after(t))

Implementation Files

condition.h, condition.cc

Auxiliary Definitions

IsChange : Change x Condition X integer — Boolean
IsChange(c, f, 1)
pr: H
rr: G

=| Normal
c=AtT | f.hist[i].val
¢ = AtF | —f.hist[i].val
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YesTimes : Condition x Timestamp X Timestamp — set of (b,e: Timestamp)
YesTimes(f,ty,t2)
( f-hist[i].val A

(b= f.hist[i].time A t; < b) V

(b =11 A f.hist[i].time < #;) )

(e = f.histi + 1].time Ae < ty) V

(e =ty A f.hist[i + 1].time > t,) ) )

-~

=9 (b7 6)
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C.2.4 Mode Class

Exported Types

template <class Spec> class ModeClass

enum ModeChange { Enter, Leave }

Imported Types

Type Defined in

class Timefunc

timefunc.h

class Timestamp

timestamp.h

Member Types

Spec: :mode M

Member Functions

Name Value Type|Arg. 1 Type|Arg. 2 Type|Arg. 3 Type
ModeClass ModeClass& |M
ModeClass ModeClass&
init M
update M
operator () M
operator int()|int
Since double ModeChange |M Timestamp&
Drtn double M Timestamp&
Representation
init :(— M;
Spec df trans : M — NM;

delay : M X M — double;

isSysMode : M — Boolean;

df

R = (cur : Timefunc <M>;spec : Spec)
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Behaviour

ModeClass <S> (M m)
pr : Hy
v Hi =G true
q | Vector

R.cur’ || ‘cur.addPoint (0.0, m)
R.spec’ S

value R

ModeClass <S> ()
pr : Hy

rr: Hi =G true
af | Vector

R.cur’ || empty list

R.spec’ S
value R
R.init()
pr: Hy
rr: Hi =G lrue
4 | Vector
- R.cur’ || ‘R.cur.addPoint (0.0, spec.init())
R.spec’ ‘R.spec
value R.cur'()
R.update()
pr: Ho
rr:Hi =G m t € domain(R.spec.trans(R.cur()))
Vector
df true false
R.cur' || ‘R.cur.addPoint (0.0, R.spec.trans(R.cur())) | ‘R.cur
R.spec ‘R.spec
value R.cur'()
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R()
pr : Hy
rp: H =G ‘R.spec.isSysMode(‘R.cur())
ar| Vector
N true false
value || ‘R.cur() | ‘R.cur.hist[|'R.cur.hist| — 2].val
AR' ='R
int(R)

L value = int(‘\R.cur()) AR ='R

R.Since(ModeChange ¢, M m, Timestamp )

pr: H
v Hy=G value
Vector
£ t — ‘R.cur.hist[i].time
Ji, IsMdCh (e, ‘R.cur, m, 1) T .
| i = maz({i | sMdCh(c, R.cur,m,1)})
—3i, IsMdCh(e, ‘R.cur, m, 1) 0
AR'=‘R

R.Drtn(M m, Timestamp ?)

pr : H;
it H, =G value
af | Vector
B ‘R.cur() =m || t —‘R.cur.hist[|'R.cur.hist| — 1].time
‘R.cur() #m 0
AR ='R

Implementation Files

modeclass.h
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Auxiliary Definitions

IsMdCh : ModeChange x Timefunc <M> x M X integer — Boolean
IsMdCh(c, f,m, 1)

pr : Hy
rr: G
4| Normal
¢ = Enter f-hist[i].val = m
¢ = Leave || f.hist[i — 1].val = m A f.hist[i].val # m
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