146 REPRINT FROM: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

Requirements-based Monitors for Real-Time
Systems

Dennis K. PetersMember, IEEE and
David Lorge ParnasSenior Member, IEEE

Abstract—Before designing safety- or mission-critical real-time o expresses the required behavior in terms of the quantities
systems, a specification of the required behavior of the system from the environment in which the system operates (i.e.,
should be produced and reviewed by domain experts. After the external to the system)

system has been implemented, it should be thoroughly tested to en- ¢ inol d notation that is familiar b
sure that it behaves correctly. This is best done using a monitor,a ~ * uses terminology and notation that Is familiar to, or can be

system that observes the behavior of a target system and reports if learned by, the domain experts, and
that behavior is consistent with the requirements. Such a monitor o is structured to permit independent review and application
can be used both as an oracle during testing and as a supervisor of small parts of the document.[13]

during operation. Monitors should be based on the documented . .
requirements of the system. After the system has been implemented, it should be tested

Ifthe target system is required to monitor or control real-valued {0 €nsure that its behavior satisfies the requirements. In safety-
quantities, then the requirements, which are expressed in terms of critical applications the system should be monitored by an inde-
the monitored and controlled quantities, will allow a range of be- pendent safety system to ensure continued correct behavior. To
haviors to account for errors and imprecision in observation and 5chieve these goals there must be a means of quickly determin-

control of these quantities. Even if the controlled variables are dis- . PR - thi
crete valued, the requirements must specify the timing tolerance. ing if the observed behavior is acceptable or not; this can be

Because of the limitations of the devices used by the monitor to ob- duite difficult for complex real-time systems. Several authors
serve the environmental quantities, there is unavoidable potential (€.9., [40]) have suggested that a practical approach to analyz-
for false reports, both negative and positive. ing the behavior of a real-time system is to usmanitor. a
This paper discusses design of monitors for real-time systems, system that observes and analyzes the behavior of another sys
and examines the conqmons under Whlch a monitor will produce tem (thetarget systein Such a monitor could be used either
false reports. We describe the conclusions that can be drawn when . ; . . L
using a monitor to observe system behavior. as an ‘oracle’[43] during system testing, or, for a limited class
of systems, as a ‘supervisor’[36] to detect and report system
failure during operation.
This paper examines the relationship between the target sys-
tem and the monitor, in particular with respect to the means by
|. INTRODUCTION which the monitor observes the system behavior, and the impact
]]] . ofthis on the usefulness of the monitor. It gives some necessary
COMPUTER systems are increasingly being used in situsitions for monitor feasibility. In related work [27] we have
ations where their correct behavior is essential for thgseloped techniques for automatically generating software to
safety of people, equipment, the environment and businessgsyiement a monitor from a System Requirements Document
In many cases there areal-timerequirements on the behav-srp) written in a notation that is based on the method pre-
ior of these systems — failure to satisfy timing constraints is @gied in [41], which developed from the A-7E project at the
costly as responding incorrectly. US Naval Research Laboratory.[14]
When designing such safety- or mission-critical real-ime Tjs work focuses on monitors for computer-based systems

systems, good engineering practice dictates that a clear, Rfgyt are intended to observe and/or control some quantities ex-
cise and unambiguous specification of the required behaviorgfna) 1o the computer. Such quantities are often best repre-
the system be produced and reviewed for correctness by expggisied by continuous, rather than discrete, valued functions. In
in the domain of application of the system. Research suggesi3ticular, the requirements for any real-time systems will in-
that such reviews are more effective if the system behaviogd|,ge time. which we model as a continuous variable.
requirements documentation: The remainder of this section defines the notation and termi-
Dennis Peters is with Electrical and Computer Engineering, Faculty of E_H—Olon used in th'.s paper. Section Il introduces a S.yStem that
gineering and Applied Science, Memorial University of Newfoundland, Sis used as a running example throughout the remainder of the
John’s, Newfoundland, Canada A1B 3X5, E-mail: dpeters@engr.mun.ca aper. Section Il briefly presents the “Four Variable Model”,
David Parnas is with Department of Computing and Software, Faculty gfh. h relat t d soft . tsin t fth
Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4K1, pvhic _re ates sy_s em and sorware reguwemen _S Interms ot the
mail: parnas@mcmaster.ca behavior of the input and output devices. Section IV formally
RManuscrirét rdeCfeived Mar. 2001:b re\’/\i/lsid ﬁept-éOOlé aAccegted I_Sept- 2'Elﬁéfines a monitor and its accuracy, and discusses possible mon-
ecommende or acceptance by Je arro an . Bertolino. r
information on obtaining reprints of this article, please send e-mail t&or con.flgu.ratlons. _Sectlon \ d|scusse§ the Impact of realis-
tse@computer.org, and reference IEEECS Log Number 115154, tic monitor input devices on the conclusions that can be drawn

0098-5589/02/$17.0@ 2002 IEEE

Index Terms—Automated testing, Test oracle, Real-time system,
Supervisor

PETERS AND PARNAS: REQUIREMENTS-BASED MONITORS FOR REAL-TIME SYSTEMS 147

from using the monitor, and gives some necessary conditic| : oo P
that must be satisfied in order for a monitor to be useful. TH--==i--rrorrrpoogrrmriorrdoestosn ooy oo
final section draws some conclusions and suggests future wc

———

A. Notation and Terminology

There are at least two systems of interest in any applicati P . oo
of this work: I S S o
« Thetarget systenis the system to be monitored. Itsre-}—+ -~ ¢ & ¢ ¢ ¢ | bl
quired behavior is specified in the System Requiremer
Document (SRD). R R A b

« Themonitor systenis the system that observes the behay |-+ |1
ior of the target system and reports whether or notitco|....
forms to the SRD.

As discussed further in Section IV-B, in some configuratior| - ‘ oo P oo
these two systems may share components. e R e I S S e e e R e e
The following notational conventions are used in this pape|___ ‘ ' L b

The symbol 4 is used to represent “is defined as”, so, fo|

example f(x) &+ + 5" defines the functiorf. The common
bracketing notation for describing an open or closed range @
real numbers is used, e.dz,y] = {# € Real | z < z < y},
and this is extended to ranges of fixed-precision numb
by replacing “,” with “...”, so, for example,[0.0...0.7] =
{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7}.

For a setR, thecharacteristic predicateR, is the predicate a path exists) without coming too close to any maze wall. The
such thatR(x) is true if and only if z € R, i.e,, R(z) < goal is to complete the path as quickly as possible. Since the
z € R. We say that the predicale characterizeshe setR. maximum speed of the draw-bot is fixed, a shortest path through
By convention sets are denoted in bold font, eRy,,and the the maze should be chosen by the system.
characteristic predicate of the set is denoted with the same namg/e represent the location of the draw-bot pen tip using a

,,,,,,,,,

q._r% 1. Sample Maze

but not bolded, e.gR(z). Boolean, ™¢penDown, to indicate if the pen is touching the
maze surface or not, and a pdif:°penPos.x, "penPos.y) of
II. EXAMPLE: MAZE-TRACING ROBOT reals, representing the location in the horizontal plane where

The Maze-tracing robot is based on a course project fori PEN tip is touching the maze (if*penDown is Lrue) or

software design and documentation course taught to undergrdguld touch the maze if lowered (it“penDown is false). The

uate computer engineering students at McMaster Universik%.Cation is specified by the distance, in millimeters, from the

respective axis, which are parallel (x = 0) and perpendicular (y

Although it is a contrived example, it is “real” in that the soft-" (9) to the front edge of the robot arm base. The extent of the
ware is expected to control real hardware using vendor supplie :
D d PP ion of interest is defined by the constaktiN_X, MAX_X,

interface libraries, and the safety requirements are strictly difd e
forceable and have potentially costly consequences if violat N_Y andMAX.Y. The origin is the _center Of_ the_ rpbot base
(i.e., damage to laboratory equipment) post. The home location of the pen-tip, to which it is returned

The environment relevant to the target system consists of on initialization of the draw-bot, itHOME X, HOME.Y).

o - . As illustrated in Figure 2, the maze is contained within
« adraw-bot which is a three-jointed (two horizontal, one : .
.) ; a M_WIDTHmm x M_HEIGHT mm region of the horizon-
vertical) robot arm on a fixed base that is capable of moy, plane bounded by the lines — —M_X_OFFSET, y —

Ing a pen to mark on paper, L M_Y_OFFSET, # = —M_X_OFFSET + M_WIDTH andy =
« atwo-dimensional maze placed within reach of the dravi(7I Y_OFFSET + M_HEIGHT. which are the external walls of
bot, “ . the maze. The internal walls of the maze are segments of the
« three momentary contact buttons labeled “stop”, Gines z — —M.X OFFSET + n x M.CELL SIZE mm and
and "back’, and y = M_Y_OFFSET +n x M_CELL SIZE mm, wheren is an in-
« a human operator. . T .
h . ‘ teger (i.e., a square grid with line spacilgCELL_SIZE mm).
The target system consists o The endpoints of the walls lie at intersections of these grid lines.

« a computer (with software) capable of controlling the;gyre 1 is a sample maze with dashed lines indicating the pos-
robot, interpreting commands from the operator and digip|e wall locations.

playing messages, and

« interface hardware to interface with the robot and the but-
tons. I1l. THE FOUR VARIABLE REQUIREMENTSMODEL

hom

The system is required to control the draw-bot such that it As pointed out, e.g. in [41], [42], [44], it is important when
traces a path on the maze from the beginning to the end (if stggecifying system and software requirements to distinguish

148 REPRINT FROM: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

M_HEIGHT

M_CELL_SIZE

(B

Fig. 2. Robot and Maze Parameters

quantities that are in the environment, i.e., external to the sysronmental quantities can be modeled by functions of time.
tem, from those that are internal to the system or artifacts of t@éven the environmental quantities relevant to a particular sys-
description of either the requirements or the design. Envirotem, q1, qs, - .., q,, Of typesQq, Qa, ... Qn, respectively, we
mental quantities are those that are independent of the chosan represent the behavior of the system in its environment by
solution and are apparent to the “customer”; they are the bastenvironmental state functiof : Real — Q1 x Q2 X ... X
quantities to use when describing the requirements for the s@;, defined on all intervals of system operation. For conve-
tem since they are the quantities that the customer will be cgflance we definét £ Q; x Q2 x ... x Qx (i.e., St is the set
cerned with and knowledgeable about. These quantities will igf possible environmental states).

clude such things as physical properties (e.g., temperature, presrhe environmental quantities of interest can be classified into
sure, location of objects), values or images displayed on outyh (not necessarily disjoint) sets: thentrolled quantities —
display devices, settings of input switches, dials etc., and stajg§se that the system may be required to change the value of,
of controlled devices. Variables internal to the system are inagq themonitoredquantities — those that should affect the be-

propriate for system requirements specification since they &gior of the systerh. Assuming that the monitored quantities
artifacts of the solution, not the problem, and will be unfamilia&reql’ Go, . .., q;, themonitored state functignn® : Real —

to the custqmer. The requ_iremer!ts for Hodtwarealone can be Q1 x Q2 x ... x Qi is derived from the environmental state
expressed in terms of variables internal to the system, see Sgfetion by including only the monitored quantities. Similarly,
tion llI-D. The “Four Variable Model”, introduced in [24], [41],

[42], gives a model for system requirements and design and i§There may also be environmental quantities that are neither monitored nor

adopted here as a framework for describing requirements controlled but are relevant to the design or analysis of the system. These quan-
" tities are not relevant to the the four-variable model and so are not considered

It is widely accepted (e.qg., see [14], [24], [30], [42]) that enin this presentation.

PETERS AND PARNAS: REQUIREMENTS-BASED MONITORS FOR REAL-TIME SYSTEMS 149

if the controlled quantities are;, ¢;+1, - - ., g, the controlled 4) Initialization: When the system is started it must at-
state functionc® : Real — Qj X Qj+1 X ... X Qn, is tempt to find a legal path through the maze. If an error oc-
derived. In this paper, a pair of functiorig:’, ¢!) will de- curs (e.g., maze read failure) or if there is no path through the
note an environmental state function. With respect to a panaze, then an appropriate diagnostic message must be output
ticular target systemM denotes the set of functions of typeand the system must halt without turning on the robot power
Real — Q; x Q2 x ... x Qj, (type correct for a moni- (powerOn = false).
tored state function) an@ denotes the set of functions of type 5) Starting: After it has been determined that there is a
Real — Q; x Qj4+1 X ... x Qq (type correct for a controlled path through the maze, the robot power must be turned on
state function). The environmental quantities relevant to tifgpowerOn = true), which initializes the pen to the home po-
Maze Tracing Robot are given in Figure 3. sition ("“penPos = (HOME_X,HOME_Y)) with the pen up

We usually are only interested in the environmental stafg“penDown = false). The pen must then be moved to the
function during the periods when the system is operating (i.start position of the maze.
it is turned on). An environmental state function defined on 6) Forward: Once the starting position has been reached the
the (possibly infinite) time interval of a single execution of thgen must be lowered"(penDown = true) and a path traced
system is known as behaviorof the system. A behavior is through the maze to the end. When the pen reaches the end of
acceptabléf it describes a situation in which the system is opthe maze it must be raiset{penDown = false) and returned
erating in a manner that is consistent with the requirements. to the home position.

7) Reverse:If at any time while the path is being traced the

A. System Requirements “pack” button is pressed’{backButton = *Down) the Draw-
bot is required to reverse the direction of its tracing within

. The system behavioral reqwremer(tsr, where th? meaning RESPONSE_TIME seconds and begin to re-trace its path back
is clear from contextsystem requirementsharacterize the set I .)
tQDEhe beginning. It should continue to re-trace its path only as

f tabl haviors. Since th tem is expected t . e
of acceptable pe aviors S nce the system 1S expec ed to ong as the “back” button is held down — when it is released
serve the monitored quantities and control the values of t

e
controlled quantities accordingly, it is natural to express this

e Draw-bot should continue in the forward direction. If, while
as a relationREQ C M x C. A behavior is acceptable if reversing, it reaches the start position it should stop there un-
and only ifREQ(m?, ¢) is true. Note that, since implemen-

til either the “back” button is released or the “home” button is
tations will invariably introduce some amount of unpredictabl%ressed'
delay, or inaccuracy in the measurement, calculation, or othH

f) Home: If at any time while the path is being traced (in ei-
. X . r direction) the “home” button is pressed Button =

of values, for real systemEQ will be a relation that is not) P homeButton

a function, i.e., there will be more than one acceptabler a

sDown) the Draw-bot is required to stop tracing within
givenm/!.

RESPONSE_TIME seconds, raise the pefi"{penDown =

In many caseREQ will be independent of the actual date%&g:ﬁsretum tothe home position, without making any fur-
and time, and will depend only on the time elapsed since someg) Done.' When the pen has been returned to the home po-
event (e.g., the system being turned on). In these cases, quii%fén the power must be turned offppwerOn — false) and
alence classes of behaviors can be represented by the beh?é'é’rs;’/stem must halt —
formed by translation along the time axis such that time = '
or e (6..,day of month, hour of day) are Sgnitcan,time 2. ErVronmental Constaint
0 will need to be chosen to correspond to an appropriate clocklhe possible values of the gnvironmental state function are
time and appropriate functions defined to determine the needl;é’&l‘tSt::amed by [?hysmal laws independent of the system to be
quantities. uilt. For example, . o

The following is an informal description of the system be- ¢ the rate of change (or higher order derivatives) of a quan-
havioral requirements for the Maze-tracing Robot. A formal tity may be constrained by some natural laws,
requirements document is given in [27]. « Some quantities may be related to gach other (e.g., pressure

1) Safety Requirementsif at any time the stop button is and temperature in a closed container), _
pressed'stopButton = *Down) the robot must stop moving + values may be only able to change in certain ways (e.g.,
within RESPONSE_TIME seconds and must remain stationary ~ Positions of selector switches), or

until the stop button is releaseti{topButton = *Up). « certain events may not be able to occur simultaneously.
When the pen is dowd{*penDown = true) the pentipmust ~ These laws are described by the relatSAT C M x C,
never come withiWALL_SPACE mm of a wall point. which contains all values ofm?, ¢) that are possible in the

2) Messages: Whenever a significant event occurs (i.e., &nvironment.
button is pressed or released, the pen reaches the start or efd the case of the Maze-tracing Robot, some environmental
point of the maze or the home position, or an error is detectegfnstraints are as follows:
the system must display a diagnostic message describing the Since the home position is guaranteed to be outside the
event and the system'’s response to it. maze and®mazeStart and”™mazeEnd are inside the maze

3) Performance: The performance goal for the systemisto and more tharOS_TOL mm from the maze wall, the pen
minimize the time between the pen first touching the paper and cannot be withiPOS_TOL mm of both the home position
it being returned to its home position. and either of"* mazeStart or " mazeEnd.

150

REPRINT FROM: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

FE
21
2| £
Variable Description = | G | Value Set Notes
™t Current time . Renl 1
™mazeWalls The set of points that make up the walls of the maze. Note set of Posn | 2,4
that the exterior walls {i.e., the perimeter] are inchided.
™mazeStart Start position for the maze. . Posn 2,4
" mazekEnd Finish position for the maze. » Posn 2,4
MstopButton Status of the “stop™ button. . buttonT
"homeButton | Status of the “home™ button. . buttonT
mhackButton | Status of the “*back™ buttan. . buttonT
mepenPos The position of the pen relative to the origin ((,Q), which | » | » | Posn P
is the centre of the robot base post.
™ pven Drowm troe iff the pen is touching the plane containingthe maze. | » | » | Boolean
Assumed to be initially false.
"poveerOn true iff the robot power Is on. Assumed to be initially » | Boolean 3
false.
‘message The message displayed on the operator console. » | string
Notes

1) Time is represented as the amount of time elapsed since some fixed arbitrary time before the system is
started {only time differences are relevant to the requiremnents). The required resolution is 0.1 seconds.
2) Positions are represented using (%, #)} coordinates as described in Section II. The required resolution is

0.5 millimetres.

3) This is the power for the robot motors only. It is independent of the power for the controlling computer

systerm.

4) The maze is constant throughout a particular execution of the system, but may be different for differ-
ent executions. The maze is described in a file on the computer system disk that is to be read during
inttialization.

Fig. 3. Maze-tracing Robot Environmental Quantities

« The pen tip can move at a maximum of 2un/s.

C. System Design

The environmental quantities cannot usually be directly oY
served or manipulated by the system software, but must be
measured or controlled by some devices (e.g., sensors, actu-
ators, relays, buttons), which communicate with the software
through the computer’s input or output registers, represented
by program variables. Thiaput quantities are those program_.

variables that are available to the software and provide i'r:1'—g' 4. System Design

REQ

IN
i

Input
Devices

SOFREQ

Software

ot c(t
Output
Devices

ouT

Target System

formation about the monitored quantities. For input quanti-

ties,ih 12, ..

., in, Of typesly, I, . ..
state functioris a function;’ : Real — I; x I x ...

, In, respectively, amput
X In;

is denotedO. The behavior of the interface between the en-

representing the values of the input quantities during system dfonment and the software is described by the input relation,

eration. Similarly, theutputquantities are those program varid

C M x I, which characterizes the possible values'dbr

ables through which the software can change the value of f#&Y instance ofn’, and the output relatiorQUT € O x C,

controlled quantities. For output quantities, oo, . .
typesO1, 0., ...

* OTVL! Of

which characterizes the possible valueg’dbr any instance of
, O, respectively, aroutput state function o'. Figure 4 illustrates the data flow between the components in

is a functiono : Real — Oy x Oz x ... x O, representing the system design, and the relations that describe the behavior
the values of the output quantities during system operation. Fjithese component.
convenience, with respect to a particular system being specifiedi-or the Maze-tracing Robot system, the interface with the
the set of functions of typReal — I xI»x...xI, isdenoted draw-bot is through a vendor-supplied software library, which

I, and the set of functions of tyfeeal — O; xO2 x...x Oy,

allows a program to query the state of the input buttons and to

PETERS AND PARNAS: REQUIREMENTS-BASED MONITORS FOR REAL-TIME SYSTEMS 151

set the angle of the joints in the draw-bot arm, and thus cont@mparing it to that required by its specification. Making this

the position of the pen tip. The maze information is representedmparison can be quite difficult since the requirements may
in a data file listing the locations of the maze walls and thge complex. Amonitor is a system that observes the behav-

start and stop positions. The input and output state functioios of a system and determines if it is consistent with a given
thus represent the values of these variables as functions of tispecification. That is, we consider a monitor to be ideal if it

(e.g., the angle that each joint has most recently been set t@aturately reports the value of the predicBiBQ (m!, ¢t) for

any time) and th&N andOUT relations relate these values taeach observed behavior.

the actual maze, draw-bot position, and button status.

A. Using Monitors

D. Software Requirements A monitor can be used to check the behavior of a target sys-
In [24] the actual software behavior is described bydbft- tem either while the target system is executing or post-facto,

ware behavior relationSOF, and an expression is given forusing a recording of the behavior. In either case, the monitor

software acceptability. In this work, as in [12], we are interesteghould report ifall behaviors exhibited by the target system are

in characterizing all acceptable software, so we ussdftware acceptable (i.e., iIREQ). For a given behaviofm!, c!) on

requirements relationfSOFREQ, which characterizes the setsome intervalt;, t;] and anyt, € (t;,t,], the prefix behavior,

of acceptable behaviors of the software — those péjl‘sgt), (@25), formed by consideringm?, c!) on [t;, o] only, i.e.,

such that any possible environmental state function, with re-

spect to the given input and output devices and environmental (', ") (t) df { (mt, ct) (t) fort € [t;, to]

constraints, is acceptable. This is fully determinedREQ, — 1= undefined otherwise

IN, OUT andNAT, as follows
is also a behavior of the system. Thus(if’,¢') ¢ REQ,

SOFREQ df the system has behaved unacceptably and the monitor should
report a failure. That is, since a behavior captures the sequence
{(z’t,gt) | (th,gt, (IN (m*,i) AOUT (o', ") A of actions by the target system from some initial time up to

NAT (mt ct)) the prgsen?, once a pehavior has failed,'no c.ontinugtion of that
== behavior will be considered acceptable since it too will not be in
- REQ (mt,gt)>} (1) REQ. For example, any behavior of the Maze-tracing Robot is
unacceptable if the pen has touched a maze wall at some time,
To understand the difference betwe8@FREQ andSOF, regardless of how long it operates without touching the wall
consider the simple requirements given in [11], where ¢!, after the collision.
i*, ando’ are all taken to b®eal valued (which is not realistic ~ This interpretation restricts these techniques to what [1] calls
for i* ando') and the environment, requirements and systesafety properties— if a behavior is unacceptable then no ex-

design are as follows: tension of that behavior is acceptable. Once a monitor has de-
tected a failure, no further analysis of that behavior will give a
NAT ¥ (Vt,c'(t) > 0 Amt(t) <0) different result. In applications such as supervision[36], where
df " ' continued analysis of the behavior may be needed following de-
REQ = (W’Q (t+3)=-m (t)) tection of a failure, some intervention, either automatic or man-
N & (vmt(t +1) = mt(t)) ual, will be required before the monitor will report acceptable
df . . behavior again. For example, if corrective action is taken in re-
ouT = (W»Q t+1)=0 (t)) sponse to the failure, and the target system is restored to some

known state, then the monitor will need to be re-initialized to

. .)) correspond to that state. If, on the other hand, the target sys-
SOF describes the behavior of a particular software implemeps, is such that it can be assumed to return to some known

tation, whereaSOFREQ characterizes all acceptable softgaie following an error, then the monitor can be designed to
ware behaviors. For this example, sSiREQ, IN andOUT re-initialize itself correspondingly. Both of these cases can be

are all functions SOFREQ contains only relations that are,ie\veq as a new behavior beginning when the system returns
f“ﬁf"‘;r‘s on a,ltl possible (|.e.t, negative) |ntpuSt)FREQ — to a known state and hence the behavior would be reported as
{(&0") |2, (i'(1) < 0) = (o'(t +1) = ~i'(¢))}. In partic- acceptable until a new failure occurs.

ular, theSOF given in [11]is not NSOFREQ, since, as the |11 ‘safety properties are distinguished fréimeness prop-

authors correctly point out, it does not represent acceptable s%%es— those requirements such that, for a given requirement

ware behavior. . ., andany finite duration behavior, the behavior can always be ex-
Note that in many caseBEQ (m',¢") = NAT(m',c'). anged such that it satisfies the requirement. These include the
_FL_thher, any qbserveql behavior must bNAT' since, by def- common notions of liveness (the system must respond eventu-
inition, behaviors not INAT are not possible. ally) and fairness (if requested often enough eventually a given
response will occur) as well as statistical properties on the be-
IV. MONITORS FORREAL TIME SYSTEMS havior (e.g., the average response time must be lessZhan
Testing a real-time system typically involves running the taNo monitor can determine that a target system does not satisfy
get system in a test environment, observing its behavior asdch a requirement, since that can only be determined using

152 REPRINT FROM: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

REQ INon is related tdN andOUT as follows.
IN SOF ouT
INmon = {((m', &), (&",0%)) [IN (m, ') A
m) | ' ot g0 OUT (d',¢")} (2)
Input Output Software monitors include all of the monitor “architec-
Devices Software Devices tures” discussed in [39].

2) A system monitois a monitor that observesn!, ¢t) us-
ing its own input devices as illustrated in Figure 6.

For the Maze-tracing Robot system, a software monitor ob-
serves the maze data file together with the sequence of calls,
including argument and return values, to the draw-bot interface
library. From these, the monitor can determine exactly the in-
v put and output state functions. A system monitor, on the other

Report hand, requires some additional sensor hardware. For example
Fig. 5. Software Monitor the maze could be placed on a digitizing tablet so that a monitor
could detect the position of the pen tip.

The software component of the monitor determines if the tar-
infinite behaviors (e.g., a pending request could be servicedd@t system behavior is consistent WRIEQ under the assump-
the future). For real systems, however, liveness requiremefieg that the monitor system’s input devices are functioning cor-
are rarely strong enough to specify the true requirements, degtly, as described iiNmon. The software must take into
should be converted into requirements that can be checkeddggount the fact thatN .o, is usually a relation that is not a
finite duration behaviors (e.g., the system must respond to fenction, which we characterize by the two extreme approaches
quests within a fixed time limit), which can be checked by @f a pessimistic or an optimistic monitor. A pessimistic monitor
monitor. requires thagll behaviors that could have resulted in a partic-

ular observation of the target system behawbrbe inREQ),
so the monitor software determinessif is in the pessimistic
B. Monitor Configuration monitor setMON,,., which is defined as

Monitor Software

Target System

In this work, the monitor is assumed to consist of some soft- MON,,. df
ware running on a computer system. This software cannot, in

general, observe the environmental state functiot, ¢t), di- {ﬁt € range(INmon) (V (mt,gt) €M x C,

rectly, but must do so through some input devic_e_s that com- (INmon ((mt7gt) 7§t) ANAT (mt’gt))

municate the values of the environmental quantities to input

registers known as thmonitor software inputs For monitor = REQ (n/, gt))} (3)
software inputss, sa, ..., s,, of typesSy, Sa, ... Sy, respec-

tively, amonitor input state functiois a function,s? : Real — If MONpe(s') is true then the behavior is certainly

S1 x Sa X ... Sy, representing the value of the monitor softacceptable, i.e.,(MONc(s") A INpon (', c'),s")) =
ware inputs for the periods of monitor operation. With reREQ (', ¢’). A more optimistic view is to check iény be-
spect to a particular monitor system, the set of all functiof@vior that could have resulted shis in REQ. The optimistic
of typeReal — S; x Sy x ...S, is denotedS. The behav- monitor setMON,,,, is defined as
ior of the monitor input devices is characterized by the mon-
itor input relation,INyon € (M x C) x S. An environ- daf

. . . Lo MON.. =
mental state function—input state function pair is in the mon- op

itor input relation, ((m?, c!),s!) € INmon, if and only if {st € range(TNmon) (EI (m',c) € M x C

st is a possible monitor input state function for the environ- - mon T ’
mental state function represented (ay’, ¢!). Since the mon- INmon ((m',c") ,s") ANAT (m', ")

itor must observe all acceptable behaviors, it is required that P
domain(INmon) 2 REQ N NAT. AREQ (m',)} (4

The design of the monitor will determine, for each monitoregihd includes those observations that may, but do not necessar-
or controlled quantity, whether it is observed independently @ represent acceptable behavior. A monitor that evaluates
the target system (i.e., using different devices) or observed fifON,,,, will not give false negative results — reports that an
reCtly from the target SyStem SoftWare. Th|S resu|tS in two ba%éceptab|e behavior is unacceptab'e — but is not appropriate
monitor Configurations, in addition to the obvious mixtures %r Safety_critica| Systems since it may give false positive re-
these approaches: sults — unacceptable behavior reported as acceptable. The dif-

1) A software monitoris a monitor that directly observesference betwee?MONye andMON,,,, or, more specifically

the target system software input and output variables, i.their inverse image und&N 0y, iS indicative of the appropri-
st = (f,gt), as illustrated in Figure 5. In this caseateness of the monitor input devices as reflectddNg, oy,

PETERS AND PARNAS: REQUIREMENTS-BASED MONITORS FOR REAL-TIME SYSTEMS 153

REQ haviors that are accepted by the optimistic one. Also, if we
IN SOF ouT assume that the input devices are working, i.e., for any ob-
served monitor input state functiost, there is a possible cor-
mo | | i(t) oft <t responding environmental state functiofijm!,c!) € M x
C, (INyon ((m?, ct), st) ANAT (m?, c*)), then the reverse im-
Input Output plication holds, i.e. MON,¢(s") = MON,,(s") — if a be-
Devices Software Devices havior is acceptable using the pessimistic approach, then it is
Target System acceptable using an optimistic approach. Both of these are con-
sistent with our intuition.
L In cases wherdN,,on and IN,,o,~ ! are both functions
p 1t N (i.e., eachim?, ¢*) maps to only ong’, which can be uniquely
mapped back tdm?, ¢!)), and again assuming that any ob-
_Monitor Input Devices) served monitor input state function results from a possible envi-
y SO ronmental state functiodVIONp. = MON,,. As discussed
1 h in Section V, for real input devices and discrete time systems,
| Report bothINon andIN .o, ! are relations that are not functions.
_Monitor Software)
) C. Accuracy
Monitor System
The accuracy of a monitor is determined by the set of pos-
Fig. 6. System Monitor sible false negatives, denot®idN, which is the intersection of
] . REQ with the set of actual behaviors that the monitor may
Possible actual pen locations report as being unacceptable. The behaviors that may be re-
Perceived pen location ported as unacceptable are those in the imadel6fN ., un-
Wall ; derINon . as follows.
P P / i WALL_SPACE
e o Acoatadby NEG £ {(m',¢") € Mx C | (3s' € 8, Ny (12", ') ")
optimistic monitor
\Acc_ept_ed_ by A ﬁMONpe(ﬁt)) }
pessimistic monitor
... — {(mt,gt) cM x C | (IM (mtvgt) ﬂREQ) 7£ @}
wall (5)
Fig. 7. Optimistic and Pessimistic Maze-tracing Robot Monitor whereIM (m!, ¢!) is the image of(mt7§t> underIN o ©
INon
Consider, for example, a system monitor for the Maze- b N df (ot
tracing Robot that uses a digitizing tablet to determine the p&N! (m',c") = {(m &) |
position, and the state illustrated in Figure 7. If the tablet is F— R 1
such that the monitor can determine the pen position to within (') . (2", &) € (TNumon © INmon)}
+2 mm, indicated by the dashed circle around the perceived (6)

pen location, then a pessimistic monitor will report a failure if .4 . .
it perceives the pen to be withWALL_SPACE + 2 mm of a M (m_ ,C') represents, for a given actual behavior, the set of

wall, as indicated by the darker shaded region. An optimistlibeha\”OrS that could b_e perc_el_/ed_ the same by the soft_/vare
monitor, on the other hand, would only report a failure if it peﬁomponent O.f the_ momtpr — It |nd|cat_es the set of behawors

ceives the pen to be withWALL SPACE — 2 mm of a wall, as that the peSS|m|sF|c monitor must consider to have possibly oc-
indicated by the lighter shaded region. ClearWiALL_SPACE curred. ThusFN is

is less thar2 mm then this overly optimistic — the wall itself

df
would be inside the region accepted by the optimistic monitor, FN=REQNNEG

and thus accurately reported collisions with the wall would still - {(mt’gt) €M x C‘REQ (m',c)A (7
be accepted.
A realistic monitor may combine these approaches, for ex- (IM (m*, ") NREQ) # (Z)}
ample being pessimistic with regard to some quantities, and
optimistic with regard to some others. Referring to Figure 7FN contains all actual pen positions

In the case of the software monitor configuration, anid the region between the region accepted by the pessimistic
neglecting impossible behaviors (i.e(in?,c!) ¢ NAT), monitor and the linéVALL_SPACE from the wall.
MON,e = SOFREQ — a software monitor determines if ConsiderFN under the best and worst case scenarios with
the target software is behaving in an acceptable manner. respect toIN,,on. In the best cas&N,,., is the identity
From the above definitions we can see thEDN,,(s’) # relation, perfectly relaying the values ¢f, ¢*) to the soft-
MON,,.(s") — the pessimistic monitor will reject some beware component of the monitor. In this ca¥dl (m!, ') =

154 REPRINT FROM: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

{(m',c")}, NEG = REQ andFN = () — the software I Do R
of the monitor can detect exactly if the behavior is accept- ™——4d ‘ m— —d ‘
able or not. In the worst casiN ..., is a constant function, “™? f Actd I
mapping all values ofm!, ¢!) to the same value. In this case ‘T ; 1 1 ‘T 1 1 ;
IM (m!, ct) = domain(INpon), NEG = domain(INpmon) R o
andFN = REQ — under no circumstances can the monitor =™ — 1 1 sm : 1
be sure that the behavior is acceptable. In this case the monl{gF* J Monitor J
will be infeasible S e
Definition 1: A monitor is said to bénfeasiblewith respect mo mI m2 m3time m0 mi m2 m3 time

to a monitor input relationIN 05, System requirements rela- 8 Minimum delay tolerance b) Minimum response time
tion, REQ, and environmental constrain®LAT, if and only ----- Monitor samples Pre-image of s

if MONpe = 0.

Note that infeasibility is an extreme case: it indicates th
the monitor input devices are such that no behaviors will be
accepted. The size &N relative to the operational domain isy opservation Errors

a more precise measure of monitor usefulness.] . .
Clearly if INyon is the identity relation, theMON,, = The choice of devices and/or software used by the monitor to

REQ and so, assuming a non-emEQ, the monitor is fea- observe the environmental quantities is a major design decision
sible. with respect to the monitor system. Design of a general mech-

For an alternative view of accuracy, consider the set of fal@8iSm for observing target system behavior in a non-intrusive

positives that may be reported by a monitor using the optimisfii@nner is beyond the scope of this work — readers interested
approach defined in Eq. (4), as follows. in that topic are referred to [35] for a survey of the relevant lit-

erature. The following are some factors that should be taken
into consideration in choosing monitor input devices.
Assuming that the monitor is a discrete-time system, there

g{'g. 8. Time Accuracy

POS & {(m',¢') e M x C| (3s' € S, Nuon ((m", ') ,5")

A MON,, (ét))} are two basic approaches to observing behavior:
. . « Sample (i.e., observe the instantaneous value of) the rele-
={(m'.c) | (IM (m’,c') "REQ) # 0} vant quantities at intervals.

(8) « Modify the behavior of the target system, and/or the sys-
tems that interact with it, to have them notify the monitor
k system of the values of relevant quantities (c*, i* or o?)
is thus as they read or change them. Such notification is assumed
to include aimestampndicating the time at which the re-
ported value was observed by the target system.
= {(mt,gt) € M x C|-REQ (m',c") A (9) 1) Discrete Time: Regardless of whether sampling or noti-
fication is used, time can only be measured at discrete points: if
(IM (m', ") NREQ) # (Z)} sampling is used then the sampling period determines the small-
est relevant clock increment, whereas if notification is used it is
In Figure 7,FP contains all the actual locations in the regionletermined by the precision of the naotification timestamp. If
between th&VALL_SPACE line and the edge of the region acwe assume that the monitor receives notifications for all rele-
cepted by the optimistic monitor. Considering #¥,,,, SCe- vant changes, then the notification approach is not significantly
narios from above, in the best caB® = () and in the worst different from a sampling approach where the sampling period
caseFP = domain(INmyon) — the monitor will report all is the precision of the notification timestamp and uninterest-
observations as acceptable behavior. ing samples discarded. Thus, the results from sampling theory
For realistic caseEIN andF P will be non-empty and should (e.g., see [29]) can be applied here to show that, for infinite du-
be used during monitor system design to determine if the mation signals (behaviors), it is sufficient to sample at twice the
itor is accurate enough for the particular application. This imaximum frequency of change in the environmental quantities.
discussed further in the next section. However, the monitor is typically concerned with what has hap-
pened between the most recent two samples, and so the discrete
clock will introduce some error in the perceived time of events,
which is referred to as théme error. For real-time systems,
Practical monitors are likely to be implemented using eitherrors in measuring time are particularly important.
general- or special-purpose digital computers. This technologyConsider the behaviors illustrated in Figure 8, in which the
implies certain characteristics of the monitor input relation, anclues ofm andc represent that a condition of, respectively, a
monitor behavior, which influence the conclusions that can beonitored and controlled quantity is eithfaise (low) or true
drawn from the monitor output. This section discusses the@egh). Similarly, the values of m ands_c represent the values
characteristics, and states some conditions which must holdagthey appear to the software component of the monitor, and
order for the monitor to produce meaningful results. the shaded regions represent the image of these changes under

whereIM is as defined in Eq. (6). The false positive $€F,

FP £ REQ N POS

V. PRACTICAL MONITORS

PETERS AND PARNAS: REQUIREMENTS-BASED MONITORS FOR REAL-TIME SYSTEMS 155

INon ' — from the point of view of the software all that is Continuous Discrete Continuous Discrete
known is that the changes occurred at some time in the shaded,, | o[
regions. Leb,,,, represent the monitor sampling interval (i.e., Bl
m; —m;_1) andd be the elapsed time between the change in _'ﬁ_‘_’::-v3 'Zj‘.:- v,
andc, as illustrated. Assuming that the change is a correct hol
target system response to the changeninconsider the two h,=1,7=. lz”
cases illustrated. 3
a) The monitor sees distinct changes. The monitor can de- Y Y
termine only that) < d < 24,,0,. This behavior will be | + hL;._,,:
rejected (considered unacceptable) if the specified ma>t<]}— 2l e L,
mum delay for that change is less th&y),,,,. This results "":;;.-.Vl ':;;;. v,
in Condition 1, below. e
Condition 1: The maximum time error introduced by the I, + | ,,
monitor input devices for a particular event must be less 2 Perfect Ouantization b) Buantization with Error

than}min(Delay), whereDelay is the set of maximum
delay tolerances for the dependegtiantities given in the Fig. 9. Quantization and Error
SRD.
b) The monitor sees simultaneous changes. Here the mon- o)
itor can determine that 8,0, < d < dymon (i.€.,c could N addition to quantization, so the actual error will be larger, and

change beforen); hence this behavior will be rejected if INmon Will be a relation that is not a function.

¢ is only permitted to change following:. The implica- For a monitor to be feasible, there must be some monitor in-
tion is thats,.., must be less than the minimum responsRut state functionss’, for which all images undefN o0~

time of the target system. This constraint can be weaRl€ acceptable. Because of the variety of ways that quantities
ened, however, by noting that, in order for the target sy81ay be used in the SRD, we cannot state generally applicable
tem to have responded to the changerinit must have conditions onIN,,,,, that will ensure that a monitor is feasi-
observed its value between the changesiandc, so this ble. Condition 3 is a necessary, but not sufficient condition for

case can be avoided by ensuring that the monitor sampfgasibility.
in that interval as well. Thus we have Condition 2, below, Condition 3: The maximum error in observing a particular
which can be satisfied by ensuring that sampling by tik@ntrolled quantity must be less than the difference between
target and monitor systems is synchronized to within tf{ge maximum and minimum values of that quantity permitted
minimum target system response time. If event notific®y REQ.
tion from the target system is used, the monitor and targetAs an example, consider the digitizing tablet used by a Maze-
systems are assured to be synchronized. tracing Robot system monitor, as mentioned above. If the
Condition 2: The maximum difference between the timdablet is such that the error in the perceived pen positiafeis
error in the target system and the time error in the morifien the monitor will be infeasible ife + WALL_SPACE) >
tor system for the same event must be less than the mipM-CELL_SIZE since the pen could not touch the paper such
mum time in which the target system might respond to th#tat the monitor is sure it is not too close to a wall.
event.
With respect to a particular event and the systems response to -
it, @ monitor system that does not satisfy Condition 2 may gi\% Non-determinism
false negative results for target systems responding too quicklyAs mentioned in Section IlI-A, practical requirements docu-
A monitor system that satisfies Condition 2, but does not satisfyents will specify relations that are not functions, so that they
Condition 1, will consider all behaviors containing that everdllow for unpredictable delays or errors in calculation or mea-
and response to be unacceptable, so it will be practically infeatrement. In particular, if the target system is to be imple-
sible with respect to that event. mented using a discrete-time system, then, for some small time,
2) Quantization and Measurement ErrorAs with time, r, REQ must allow events that occur withinof each other to
other values observed by the software component of the mee-treated as either a single event (i.e., simultaneous) or distinct
itor must be of finite precision, sReal valued environmen- events (i.e., non-simultaneous). The timés known as the
tal quantities must be quantized, such that, for example, difime resolutiorfor the target system and must be stated as part
crete valuev; represents all continuous values, such that of the requirements specification. The required time resolution
l; < x < h;. Whereas time is continuously increasing, so Will depend on the system being specified. For systems where
know something about the error, other quantities do not necggnultaneous, or almost simultaneous, events may be treated in-
sarily have this property. As illustrated in Figure 9, if the quantividually in any order; can be comparatively large, whereas
tization is perfect, i.e; = l; 11, the worst case error is half thesystems that make a significant distinction between simulta-
quantization step sizé, —[/;, and no non-determinism is intro- neous and non-simultaneous events, or for which the order of
duced. Practical devices will exhibit some measurement ergfents is important, will require a smaller value. The monitor
2A quantity c is dependent om if the value ofc may be required to change system must take the non-determinisnRIEQ due to the time
as a result of a change in the valuerof resolution into account when evaluating behavior.

156 REPRINT FROM: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

3 W : 3 3 ! ; ; D. Computational Resources
2| : A : W

Actua | ‘ ‘ ‘ Actua | ‘ ‘ ‘ Using any notation that is expressive enough to describe re-
TR\ al NN\ alistic target system requirements, it is certainly possible to

‘ express requirements such thdON . (s') is either not com-
Monnocrz f Monimcrz ; putable, or is computable only using an impractical amount of

al a| [computational resources. Some possible causes of this are:

o REQ (m!,ct) or NAT (m?,ct) may not be practically

mo mi - m2 - m3time momi m2 m3 dme computable. As in [26], this may result from specification

~ Monitor samples Preimageofs \\ Target resolution errors such as infinite recursions in function or predicate
definitions, or from computation &flON,,.(s’) requiring
quantification over large sets. Specification authors must
take care to avoid these situations, if possible.

IN.on May be such that the pre-image &fis not eas-

ily computed. Since real-valued monitored and controlled
guantities are permitted, the pre-imagesbfvill often be
infinite, but, for most practical input devices, will be easily
described by simple predicates, characterizing a range of
possible values, for example. If this is not the case, how-
ever, it may be impractical to determine if all elements of

Fig. 10. Event Resolution

Consider the behavior illustrated in Figure 10, and the target'
time resolution as indicated — the hatched regions indicating
the period following each event during which the requirements
allow other events to be treated as simultaneous with it, but
also allow them to be treated as non-simultaneous. Thus, the
requirements allow the changes@ andC2 to be treated as
either simulta_neous or not in both cases iIIu_strated.. Assqmir)g the pre-image are acceptable.
that the monitor system samples at the indicated times, it will . o . .
observe the changes either simultaneously (left figure) or notCarefu! review of the SRD f"md JUd'C'.OUS _ch0|ce of monitor
(right figure), but can certainly tell that they occurred withifPUt devices may help to avoid these situations.
20m0n Of €ach other. 19,,,, is less than half the time resolu-
tion required for the target system, which is required to satisfy VI. RELATED WORK
Condition 1, then in both cases allimagesofindeIN yon
allow the changes to be interpreted as happening in either ordefhe design of a system to automatically generate software
or simultaneously, sMON,,. accepts a behavior in which themonitors from a formal system requirements document is dis-
target system interprets them in either way. The monitor mug{ssed in [27].
take this non-determinism into account. In the case where theThis work does not address the challenges associated with
change inC2 is a result of the target system’s response to tigathering accurate and sufficiently precise information about
change inC1, then Condition 2 requires that a monitor sampl#éhe run-time behavior of a target system without changing its
occur between the changesih andC2, i.e., the situation illus- behavior. These issues are addressed in [10], [20], [21], [39],
trated in right figure in Figure 10, so the events will be observddd], among others.
as non-simultaneous. In [5], Brockmeyeret al. discuss a tool for “monitoring and

In the case of the software monitor configuration, as illugssertion-checking” as part of the Modechart toolset. The mon-
trated in Figure 5, the software Components of the monitBﬁr in that work is an additional modechart state machine that
and the target system are assured to see the same values ig.8imulated concurrently with the target system specification

st = (f,gt)), so the monitor implementation can require delo determine if the specification has certain critical properties.
terministic behavior. Since that monitor observes the behavior of fpecification

rather than the target system, it is not a monitor in the sense of
this work, although it could possibly be used as a monitor if an
appropriate interface with the target system were added.

Fickas and Feather [9] propose thequirements monitorise

Clearly the delay introduced by the monitor input deviceigistalled as components of systems. These monitors collect and
will impose a lower limit on the monitor response time — theeport information about the run-time behavior of the system,
maximum time between a failure occurring and the monitor reg¢shich can be used to determine if it conforms with the require-
porting it — since a monitor cannot report a failure before it imients. They advocate this as a technique for gathering informa-
evident inst. The choice of input devices can also affect thtton about changing requirements or environmental conditions,
amount of processing required by the software componentasfd suggest that certain operating parameters could be automat-
the monitor, which will also affect response time, although lessally adjusted by the monitor. They propose that the monitor
predictably so. For example, input devices may be availabméserve specific aspects of the behavior that are likely to in-
that can directly report the value of relevant conditions (e.glicate that assumptions about the environment are no longer
sensors to detect if the Maze-tracing Robot pen has touchedadid.
wall) whereas a different choice of input devices would require Systems that address the oracle problem (see [3] for an ex-
that the software perform some, possibly expensive, calcutzllent survey) can be classified by the subset of properties that
tions (e.g., search a list of wall locations to determine if the pehey consider, most restricting their analysis to one of the fol-
is touching any). lowing classes:

C. Response Time

PETERS AND PARNAS: REQUIREMENTS-BASED MONITORS FOR REAL-TIME SYSTEMS 157

1) Functional properties— the values of the outputs for ACKNOWLEDGMENTS

given inputs, which can be checked either by observing \jany friends and colleagues at McMaster University have
the start and stop states for a program, as in [28], [3§]e|ped to improve this work through informal discussions and
[19], [32]; by comparing the behavior of an abstract dage|nful comments offered on earlier versions. In particular Drs.
type with that specified in a model-based specificatioRyszard Janicki, Jan Madey, Martin von Mohrenschildt, Emil
notation, as in [37], [16], [22], [31]; or by comparing thesekerinski and Jeffery Zucker have each offered helpful and
run-time behavior of a reactive system with a finite staigynstructive comments. Dr. von Mohrenschildt also collabo-
machine model, as in [36]. rated in the development of the Maze Tracer system used as an

2) Temporal properties— the order of events, which can béayample in this paper. Comments from the anonymous referees
checked by comparing the sequence of observed evepise aiso helped to improve this paper.

with that specified by either a temporal logic [7], [8]; constance Heitmeyer and her group at the US Naval Re-
a finite state machine model [15], [6]; or a context-fregearch Laboratory, Center for High Assurance Computer Sys-

grammar [2]. _ tems, were helpful in the initial formulation of the problem
3) Timing constraints— the time elapsed between eventssiatement.

which can be expressed using a real-time logic [23], [17]; The financial support received from the Natural Sciences and

or as extensions on a finite state machine model [2%ngineering Research Council (NSERC), Communications and

[34] Information Technology Ontario, (CITO), the Telecommunica-
This paper contributes to this body of work in two waystions Research Institute of Ontario (TRIO), McMaster Univer-

Firstly, it considers all three of these classes of propertiegty and Memorial University of Newfoundland is gratefully ac-
which we have only seen done in one other work [18]. Segnowledged.

ondly, it considers system, rather than just software, monitors.
That is, it views the monitor as an external device, which does

not have access to the internal variables of the target system. REFERENCES

[1] B. Alpernand F. B. Schneider, “Defining Livenesk)formation Process-
ing Letters vol. 21, pp. 181-185, Oct. 1985.
VIl. CONCLUSIONS [2] M. Auguston and P. Fritzson, “PARFORMAN—AnN Assertions Language
for Specifying Behavior When Debugging Parallel Applicationst’l
This paper presents a precise definition of a monitor for a J. of Software Engineering and Knowledge Engineerivm. 6, no. 4,

real-time system, and identifies some necessary conditions fo([3? pp. 609-640, 1996.

. . L . L. Baresi and M. Young, “Test Oracles,” Tech. Rep. CIS-TR-01-02, Uni-
monitor to be feasible and useful. The conditions are not partic-" yersity of Oregon, Dept. of Computer and Information Science, Aug.

ularly surprising, and it would seem likely that they have been = 2001. Available at http://www.cs.uoregon.edu/ michal/pubs/oracles.html.
; ;] J. P. Bowen and M. Hinchey, edZUM The Z Formal Specification No-

observed before, for example in relation _tO control theory, bdﬁ tation, no. 260 in Lecture Notes in Computer Science, Springer, 1995.

we have not been able to find them formalized elsewhere. Thegg M. Brockmeyer, F. Jahanian, C. Heitmeyer, and B. Labaw, “An Approach

conditions can be used to help determine if a particular monitor to Monitoring and Assertion-Checking of Real Time Specifications in

P - Modechart,” inProc. Workshop on Parallel and Distributed Real-Time
design is sufficient for the target system. Systemspp. 236-243, Apr. 1996.

Monitors, such as described in this work, are well suited tgs] M. Diaz, G. Juanole, and J. Courtiat, “Observer—A Concept for Formal

automated testing of systems, where they function as an ora- On-Line Validation of Distributed SystemdEEE Trans. Software Engi-
’ neering vol. 20, no. 12, pp. 900-912, Dec. 1994.

cle, reporting if the behavior is acceptable or not. This apphcam L. K. Dillon and Y. S. Ramakrishna, “Generating Oracles from Your Fra-
tion offers significant improvement over non-automated testing vorite Temporal Logic Specificaitons,” Bymposium on the Foundations
since test cases can be evaluated quickly and errors in behavior of Software EngineeringhCM SIGSOFT, Oct. 1996. published in Soft-
. . ware Engineering Notes, vol. 21, no. 6.
are quickly and reliably detected. [8] L. K. Dillon and Q. Yu, “Oracles for Checking Temporal Properties of
In a similar way, monitors can be used as supervisors to ob- Concurrent Systems,” iBymposium on the Foundations of Software En-

serve the behavior of the target system in operation and report 9'"€e1ing pp. 140-153, ACM SIGSOFT, Dec. 1994. published in Soft-
ware Engineering Notes, vol. 19, no. 5.

failures as they occur. Such a supervisor could be used as a [§- s. Fickas and M. Feather, “Requirements Monitoring in Dynamic Envi-
dundant safety system to initiate corrective or preventative ac- ronments,”inProc. Intl Symp. Requirements Eng. (RE '98p. 140-147,

. . . IEEE, Mar. 1995.
tion when a failure is detected. [10] C.Fidge, “Fundamentals of Distributed System Observati@EE Soft-

ware, vol. 13, no. 6, pp. 77—-83, Nov. 1996.
A E Work [11] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave, “A Reference
. Future Wor Model for Requirements and Specification&EE Softwarepp. 37—-43,
We have conducted some investigations using a few soft- May/June 2000.

. . . . ng] C. L. Heitmeyer, A. Bull, C. Gasarch, and B. G. Labaw, “SCR*: A Toolset
ware monitors, including one for the Maze-tracing Robot syS- " for specifying and Analyzing Requirements,” Rroc. Conf. Computer

tem, that were automatically generated from system require- Assurance (COMPASS|Gaithersburg, MD), pp. 109-122, National In-
ments documentation.[27] Further study, using different targeg, > of Standards and Technology, June 1995.

.] K. L. Heninger, “Specifying Software Requirements for Complex Sys-
systems and using the system monitor configuration discussed tems: New Techniques and their ApplicatiotEEE Trans. Software En-
in Section 1V-B would undoubtedly lead to new insight. | %nfegng_vol- Sg-?_, rll)o. 1, pijElg,hJan- 19533- Kallander. “Soft &

H . . L. Aeninger, D. L. Parnas, J. E. ore, an . Kallander, “Software Re-
i ,Further work I_S also_ needed to enhance_ techmques for Spgé quirements for the A-7E Aircraft,” Tech. Rep. MR 3876, Naval Research
ifying the behavior of input and output devices, and to develop Laboratory, 1978.
analysis techniques that will permit designers to easily detd¥>] M. Hlady, R. Kovacevic, J. J. Li, B. R. Pekilis, D. Prairie, T. Savor, and

ine if ticular set of monitor input devices is sufficient for R. E. Seviora, “An Approach to Automatic Detection of Software Fail-
mine It a parucu p ures,” in Proc. Int'l Symp. Software Reliability Eng. (ISSRBEp. 314—

the monitoring task at hand. 323, IEEE Computer Society Press, Oct. 1995.

158

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]
(31]
(32]
[33]
(34]

(35]

(36]

(37]

(38]

[39]

[40]

[41]

(42]

REPRINT FROM: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

H. Horcher, “Improving Software Tests using Z Specifications,” in Bowefd3] E. J. Weyuker, “On Testing Non-testable Prograrig Computer Jour-

and Hinchey [4], pp. 152-166. nal, vol. 25, no. 4, pp. 465-470, 1982.

F. Jahanian, R. Rajkumar, and S. C. V. Raju, “Runtime Monitoring d#4] P. Zave and M. Jackson, “Four Dark Corners of Requirements Engineer-
Timing Constraints in Distributed Real-Time SystemRgal-Time Sys- ing,” ACM Trans. Software Eng. and Methodologgl. 6, no. 1, pp. 1-30,
temsvol. 7, no. 3, pp. 247-273, 1994. Jan. 1997.

I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan, “Runtime

Assurance Based On Formal Specifications,Pioc. of Int'l Conf. on Dennis K. Petersreceived the BEng (electrical) de-
Parallel and Distributed Processing Techniques and Applicatidhsie : h - . 9 :
1999. gree from Mer‘r_10r|a| University of Newfoundland in
D. Luckham, F. von Henke, B. Krieg-Bckner, and O. OweANNA A 1990. He received the MEng degree (compu_ter) and
Language for Annotating Ada Programs Reference Mandd. 260 in g]grshl?tgregge?g;%rmhea?&%a,\;t;gf:rt (L)anigféﬂcagﬁ.d
Lecture Notes in Computer Science, Springer-Verlag, 1987. mp 9 g - ersity, n
M. Mansouri-Samani and M. Sloman, “Monitoring Distributed Systems tario, in 1995 and 2000, respectively. He is an assis-

' : : 9 Y y tant professor of Electrical and Computer Engineer-
(A Survey),” Research Report DOC92/23, Imperial College, Dept. g ing at Memorial University of Newfoundland, where
Computing, 180 Queen’s Gate, London SW7 2BZ, UK, Apr. 1993. he has been since 1998. He is currently ’research-
M. Mansouri-Samani and M. Sloman, “GEM: A Generalised Event Monig1 .

|

=

toring Language for Distributed Systems,” Tech. Rep. DOC95/8, Imperi ing documentation, design and analysis techniques

: . for software and computer systems, with particular
College, Dept. of Computing, 180 Queen’s Gate, London SW7 2BZ, Ulﬁﬂterests in real-time systems. He also has a strong interest in software engi-

July 1995. neering education. He is a licensed Professional Engineer in the province of

E. Mikk, “Compilation of Z Specifications into C for Automatic Test Re- ;
sult Evaluation,” in Bowen and Hinchey [4], pp. 167—180. Egv\’\;lfosﬂggeggfnd a member of the IEEE, IEEE Computer Society, ACM, and

A. K. Mok and G. Liu, “Efficient Run-Time Monitoring of Timing Con-
straints,” in RTAS '97 [33].

D. L. Parnas and J. Madey, “Functional Documentation for Computér David Lorge Parnas received his PhD in electri-
Systems,"Science of Computer Programmingl. 25, no. 1, pp. 41-61, cal engineering from Carnegie Mellon University,
Oct. 1995. and honorary doctorates from the ETH in Zurich,
B. R. Pekilis and R. E. Seviora, “Detection of Response Time Failures Switzerland, and the Catholic University of Louvain,
fo Real-Time Software,” irProc. Int'l Symp. Software Reliability Eng. Belgium. Dr. Parnas is a professor in the Faculty of
(ISSRE)IEEE Computer Society Press, Nov. 1997. Engineering Computing and Software Department at
D. K. Peters, “Generating a Test Oracle from Program Documentation,” McMaster University, Ontario, where he is Director
M. Eng. thesis, McMaster University, Dept. of Electrical and Computer of the Software Engineering Program; he is also an
Engineering, Hamilton, ON, Apr. 1995. associate mem_ber o_f the Department of Electrical and
D. K. Peters,Deriving Real-Time Monitors from System Requirements Computer Engineering. The author of more than 190
Documentation PhD thesis, McMaster University, Hamilton ON, Jan. papers and reports, Dr. Parnas is interested in most
2000. aspects of computer system design. Dr. Parnas won an ACM Best Paper Award

D. K. Peters and D. L. Parnas, “Using Test Oracles Generated from pi3-1979, and two Most Influential Paper awards from the International Con-
gram DocumentationJEEE Trans. Software Engineeringol. 24, no. 3, ierence on Software Engineering. He is the 1998 winner of ACM SIGSOFT's
pp. 161-173, Mar. 1998. Outstanding Research award. He is licensed as a Professional Engineer in the
J. G. Proakis and D. G. ManolakBjgital Signal Processing Principles, Province of Ontario. Dr. Parnas is a fellow of the Royal Society of Canada, a
Algorithms and ApplicationsMaxwell Macmillan, second ed., 1992. fellow of the ACM, a senior member of the IEEE, and a member of the IEEE

A. P. Ravn, H. Rischel, and K. M. Hansen, “Specifying and Verifying ReSCMPuter Society.
quirements of Real-Time Systems$EEE Trans. Software Engineering
vol. 19, no. 1, pp. 41-55, Jan. 1993.

D. J. Richardson, S. L. Aha, and T. O. O'Malley, “Specification-based
Test Oracles for Reactive Systems,”moc. Int'l Conf. Software Eng.
(ICSE) pp. 105-118, May 1992.

D. S. Rosenblum, “A Practical Approach to Programming With Asser-
tions,” IEEE Trans. Software Engineeringol. 21, no. 1, pp. 19-31, Jan.
1995.

Real-Time Technology and Applications Symposilune 1997.

T. Savor and R. E. Seviora, “An Approach to Automatic Detection of
Software Failures in Real-Time Systems,” in RTAS '97 [33].

U. Schmid, “Monitoring Distributed Real-Time SystemRgal-Time Sys-
temsvol. 7, no. 1, pp. 33-56, July 1994.

D. Simser and R. E. Seviora, “Supervision of Real-Time Systems Using
Optimistic Path Prediction and Rollbacks,”Rtoc. Int'l Symp. Software
Reliability Eng. (ISSRE)pp. 340-349, IEEE Computer Society Press,
Oct. 1996.

P. Stocks and D. Carrington, “Test Template Framework: A Specification-
Based Testing Case Study,” Proc. Int'l Symp. Software Testing and
Analysis (ISSTA '93)pp. 11-18, ACM SIGSOFT Software Engeering
Notes, vol. 18, no. 3, June 1993.

Sun Microsystems IncADL Language Reference Manual for ANSI C
programmers, Release 1document reference miti/0002/d/r1.1 ed., Dec.
1996.

J.J. Tsai, Y. Bi, S. J. H. Yang, and R. A. W. Smith, e@sstributed Real-
Time Systems : Monitoring, Visualization, Debugging, and Analysisn
Wiley & Sons, 1996.

J. J. Tsai and S. J. Yang, edslonitoring and Debugging of Distributed
Real-Time SystemtEEE Computer Society Press, 1995.

A. J.van Schouwen, “The A-7 Requirements Model: Re-examination for
Real-Time Systems and An Application to Monitoring Systems,” Tech.
Rep. TR 90-276, Queen’s University, Kingston, Ontario, 1990. also
printed as CRL Report No. 242, Telecommunications Research Institute
of Ontario (TRIO).

A. J. van Schouwen, D. L. Parnas, and J. Madey, “Documentation of Re-
quirements for Computer Systems,” roc. Int'l| Symp. Requirements
Eng. (RE '93) pp. 198-207, IEEE, Jan. 1993.

