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Abstract—This paper illustrates how software can be described precisely using LD-relations, how these descriptions can be

presented in a readable manner using tabular notations, and one way such descriptions can be used to test programs. We describe

an algorithm that can be used to generate a test oracle from program documentation, and present the results of using a tool based

on it to help test part of a commercial network management application. The results demonstrate that these methods can be

effective at detecting errors and greatly increase the speed and accuracy of test evaluation when compared with manual evaluation.

Such oracles can be used for unit testing, —in situ” testing, constructing self-checking software and ensuring consistency between

code and documentation.
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1 Introduction

The Software Engineering Research Group at McMas-
ter University is studying ways to improve the quality and
maintainability of software systems by using precise design
documnentation. Many authors have found that relational
documentation, written using tabular expressions, is pre-
cise and readable [11], [7], [15], [12], [16], [25], [27]. Such
documentation clearly communicates the intended behav-
ior of the software without the reader needing to read the
code. This contributes to the quality of the system by en-
suring that programmers, reviewers, maintainers and de-
signers of other components can understand the designer’s
intentions. In addition it can be used in testing and thus
we can ensure that the documentation is consistent with
the code, so it can be trusted.

Functional testing involves executing a program under
test (PUT) and examining the output [13].
testing requires an oracle to determine whether or not the

Functional

output from a program is correct [37]. Often the oracle is
a human, but the process can be time-consuming, tedious
and error-prone. If the program documentation is mathe-
matical, it is possible to derive a software oracle from it.
The software oracle makes evaluation of test results inex-
pensive and reliable.

We have developed a Test Oracle Generator (TOG) that
will produce a software oracle from design documentation
that is:

e precise and relatively readable,

¢ a minimal statement of requirements,

e written in terms of the data structure, and

e written using a relatively expressive notation.

The generated oracle meets the following criteria.
¢ For any test result (input, output pair) the oracle can
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be used to determine whether or not the PUT satisfied
the specification.

e It can be used to determine whether or not the spec-
ification allows termination for a particular test case,
and, if it does, if the program is required to terminate
for that case.

e It does not require precalculated “expected results”
for the test cases.

e It does not require that there be a unique correct an-
swer.

¢ It does not assume the existence of a previous version
of the PUT that can be assumed to be correct.

Other authors have addressed the problem of generating

an oracle (e.g., [2], [18], [32], [35]), but our approach has
four characteristics that make it unique.

1. We use documentation that is separate from the code
rather than embedded in it. This documentation sum-
marizes the program for people who will not read the
code.

2. We can use other tools to manipulate or check prop-
erties of the specifications.

3. We use tabular notations, which make our specifica-
tions much more understandable and easily reviewed.

4. Since we use LD-relations for our specifications,
rather than the more popular precondition and post-
condition pairs, we are able to express, and detect,
those cases for which a specification either requires or
allows a program to be nonterminating.

2 Program Documentation Method

As described in [23], design documentation for a com-
puter system should comprise the following documents.
Treating the
complete computer system (hardware and software) as

e System requirements document.

a “black-box”, it describes the relationships between
the values of environmental quantities that should be
maintained by the system.

¢ System design document. Identifies the computers
within the computer system and describes how they
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communicate with each other and with peripheral de-
vices.

+ Software behavior specification. Describes the re-
quired behavior of the software.

+ Software module guide. Describes the division of
the software into modules by stating the responsibili-
ties of each module.

Each treats

a module as a “black-box”, identifying those pro-

e Module interface specifications.

grams that can be invoked from outside the module
(the access-programs), and describing the externally-
visible effects of using them.

¢ Module internal design documents. Each de-

scribes a module’s data structure, the intended inter-
pretation of that data structure, and the effect of each
access-program on the module’s data structure.

In this work we are interested in generating oracles from
the part of a module’s internal design document that de-
scribes the behavior of a single access-program. Other au-
thors have discussed producing oracles from module inter-
face specifications for abstract data types (ADTs) specified
using algebraic, or “trace” specifications, e.g., [3], [5], [8],
[36].

The remainder of this section describes the relational
program documentation method used in this work (which
is based on that described in [24]) and discusses the appli-
cability of this method.

2.1 Program Variables and State Descriptions

We view a digital computer as a state machine consisting
of a finite set of memory locations and input and output
registers, each of which is itself a finite state machine. The
state of the computer is a function of the states of all of
its components.

The following terminology is adopted from [24], [27].

ezecution. A (possibly infinite) sequence of states of the

machine.

starting state. The first state in an execution.

terminating execution. A finite execution.

stopping state. The last state in a terminating execu-

tion.

executions of a program. The set of possible executions

described by the program text.

Frequently, intermediate states of an execution are not of
interest—we only require that the stopping state be correct
for each starting state. For such cases we define:

execution summary. A pair containing only the initial

and final states of a terminating execution.

We define the following terminology for describing pro-
gram behavior:

program variable. A state machine that is a component

of the computer.

program variable value. The state of the program vari-

able.

data structure. The set of program variables whose val-

ues affect, or are affected by a program or set of pro-
grams. In this paper the term state is assumed to refer
to the state of a program’s data structure.
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state description. A tuple giving the value of each pro-
gram variable in the data structure. Note that for
some programs the length of this tuple may vary dur-
ing execution.
program variable name (identifier) . A string used to
identify a program variable in a program text (i.e.,
code). Note that in some languages a program vari-
able may have more than one name and several vari-
ables may be referred to by the same name.
We adopt the following convention from [10], [24], among
others.
Let P be a program and zg, ...,z be the names of pro-
gram variables used in P, then
o “z!” (to be read “z; after”) denotes the value of the
program variable z; in the stopping state.
o “‘z;” (to be read “z; before”) denotes the value of the
program variable z; in the starting state.
For describing program testing we define the following.
test case. A description of a starting state for a program.
test ezecution summary. (TES) An execution summary
in which the first state is a test case and the second

state is the state in which the program terminated.

2.2 Relational Specification

The set of acceptable execution summaries for a program
is a binary relation. An LD-relation, L, is a pair (Ry,CL)
where Ry is a binary relation and Cp is a subset of the
domain of Ry, which we call the competence set. [21], [24],
[27] The domain, Dy, and characteristic predicate of L are
the domain and characteristic predicate of Ry .

An LD-relation, L, can be used to specify a program
by letting Ry be the complete set of acceptable execution
summaries, and C7, be the set of starting states for which
all executions of the program terminate. Thus, a program,
P, is said to satisfy a specification, L, if and only if

o when started in any state, z, if P terminates, it does

so in a state, y, such that (z,y) is an element of Ry,
and

o for all starting states in Cr, P will always terminate.

Note that if a starting state ¢ domain(Rz) then P
cannot terminate in a way that satisfies L. For determin-
istic programs, Ry is a function. By convention, when
C'r is exactly the domain of Ry (which is always true for
deterministic programs), C, need not be given.

In this paper a program is assumed to be specified by
an LD-relation referred to as the specification relation.

In addition the documentation may include some text
in the syntax of the programming language defining any
basic symbols (e.g., constant names) and operators (e.g.,
structure element access) that are used in the specification.

2.3

Inductively Defined Predicates

To enable the oracle to enumerate the elements of a set
over which an expression is quantified, we use a special
form of inductive definition for the characteristic predicate
of the set. We define an inductively defined predicate, P,
as the characteristic predicate of a set, S, formed in the
following way. Given a triple, (I, G, Q), where:
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o I (initial) is a finite set of elements,

¢ G (generator) is a function,

e Q (don’t quit) is a predicate, and

(Vz € L, (3m, (¥4, (0 < j < m = G/ (z) € dom(G))) A

—~Q(G™(2))))

‘ ‘ (1)
where G*(z) represents G(G'~*(x)) for i > 1, and G(z) for
1 = 1.

S is the least set formed by the following rules:

1.ICS

2. (Vz,(z € SAQ(z)) = G(z) € 8S)

This least set can be constructed by the following induc-
tive steps:

1. S =1

2. 8541 =S, U{G(z) |z €8S, AQ(z)}

It can be proven that 3IV,Sy4; = Sy and thus S = Sy
and S is finite.

An inductive definition for the predicate, P, is given by
providing appropriate definitions for I, G and Q. For ex-
ample, the characteristic predicate of the set of integers
from MIN to MAX, inclusive, is inductively defined by:

( 1= {MIN}
Glz)=oz+1
| Qlz) =2 < MAX

P(int z) =

2.4 Predicate Logic

We describe an LD-relation by giving the characteristic
predicate of the relation, domain! and competence set. To
ensure that the meaning of the specification is clear, we re-
quire that such expressions be total (i.e., they always have
a clearly defined value, either irue or false, regardless of

the values of their arguments). In writing program spec-
ifications, however, it is often necessary to use functions
which are not total. To overcome this problem we use the
logic described in [26], which allows partial functions while
ensuring that predicates are total.

This logic differs from traditional logic only in that prim-
itive relations—those that are not defined using the logic—
are false if one or more of their argument terms is a func-
tion application with argument values outside the func-

tion’s domain. For example, if F and G are functions, “>"
and “=" are primitive relations, and z is not in the do-
main of F then “F(z) > G(z)” and even “F(z) = F(z)”
are false. Note that in many other logics the expression
“F(z) = F(z)” would be a tautology by the “axiom of
reflexivity”. This definition of primitive relations is use-

ful since it allows expressions using partial functions to be
written as if the functions were total and to have the usual
meaning in most cases, and to have a clearly defined mean-
ing in all cases. A more thorough treatment of this logic
is found in [26], [28].

The standard logical operators are used (A, V, -, =) and
they have their usual interpretation.

1. The domain information is redundant but we don’t have a
tool that derives the domain definition from the relation descrip-
tion. We require the domain information to determine termination
requirements.

Quantification is permitted but, in order to ensure that
oracles terminate, it must be restricted to a finite set. For
our oracles, only the following forms are permitted, where
P(z) must be an inductively defined predicate and Q(z) is
any predicate expression:

Universal. (Vz,P(z) = Q(z))

Ezistential. (3z,P(z) A Q(x))

This restriction does not significantly limit the expres-
siveness of the logic for practical specifications since com-
puter systems are always restricted to finite sets.

Complicated or frequently used expressions can be ex-
tracted from the program specification and used to define
auxiliary predicates or functions, which can be applied in
other expressions. The arguments to an application of an
auxiliary predicate or function are treated as terms in the
usual way and must be evaluated before the auxiliary pred-
icate or function is evaluated. Auxiliary functions may be
partial, in which case the characteristic predicate of the
domain must be supplied.

2.5 Tabular Expressions

We extend the notation for representing mathematical
functions and relations to include the multidimensional
tabular ezpression forms described in [16], [17], [1], [25].
These expressions are equivalent to expressions written in
a more traditional manner, but many people have found
them to be often easier to read and understand. Tabu-
lar expressions are particularly well suited to describing
conditional relations of the forms that frequently occur in
program specifications. In this paper, expressions written
in a conventional (i.e., non-tabular) manner will be called
scalar expressions.

There are several different types of tabular expressions,
which are interpreted as either predicate expressions or
terms. The TOG tool can handle any tabular expression
described using the model presented in [1] as long as the ex-
pressions in the cells conform to the restrictions described
in Section 2.4. The examplesin this paper are of two forms,
which [25] refers to as mized vector and normal predicate
tables. The interpretation of these types of tables is de-
scribed by way of examples.

A tabular expression is constructed from scalar expres-
sions and grids—indexed sets of cells that contain terms
or predicate expressions, which may themselves be tabu-
lar. The table in Fig. 1 is an example of a two-dimensional
mixed vector table. Cells in the column header contain
predicates that are evaluated to determine which column
is applicable—the one for which the column header is true.
Cells in the row header contain a variable name followed
by either “|” (read “such that”) or “=”. Rows that have
“|” in the corresponding row header cell contain predicate
expressions in their main grid cells, while those that have
“=" contain terms.

A mixed vector table is interpreted by selecting the ap-
propriate column (i.e., the one with a true header cell ex-
pression) and conjoining the predicate expressions formed

2. Readers familiar with [16], [17], [25] may want to skip this section.
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| Jlz<o0]z=0[z>0

yl||y>6
z—y| 10 z

true |y =0

z =

(z<0O)A(y>6)A(z=2—y))V
(= = 0) A (= = 10)) V
(= > 0) A (y = 0) A (= = =)

Fig. 1. Mixed vector table and equivalent scalar expression

by that column in the following way: If, for a cell C, the
corresponding row header cell, H, contains “|” then the
predicate expression is simply the predicate expression in
C. If, on the other hand, H contains a string of the form

“z =" (where “z”

is any variable name) then the predicate
expression is “z = C”.

The table in Fig. 2 is an example of a two-dimensional
normal predicate table. It is interpreted by selecting the
row and column for which the respective header cell ex-
pressions are frue and evaluating the predicate expression

in that row and column of the main grid.

| | >0 z <0

2> 10 y<b y>x+2

2<10||lz+y <= y>bh
((z>0)A(z>10)A (y<5B))V
(z>0)A(z<10)A (z+y<z))V
(z<0)A(z>10)0A(y>z+2))V
((z<0)A (2 <10)A (y > 5))

Fig. 2. Normal predicate table and equivalent scalar expression

2.6 Applicability of the Method

These documentation techniques are useful for specify-
ing any imperative program that is required to give output
through program variables upon termination. One class of
programs that is difficult to document using this method
are those that manipulate the data structure in a manner
Ex-
amples of this include dynamic memory allocation (i.e.,

other than simply changing the value of variables.

increasing the size of the data structure), input and out-
put through peripheral devices, and process control. It is
difficult to express the characteristics of the stop state for
these programs since relational operators to represent such
characteristics as “is a valid block of memory on the heap”
do not exist, in general. Some of these problems have been
investigated by other members of our research group.[4]
Programs for which there is a requirement on the inter-
mediate states that the computer may be in during execu-
tion, such as “if condition C is true during execution then
call procedure z” or “don’t call z more than n times” (as
for the Dutch National Flag example discussed in [24]), are
also difficult to document using these methods. This is be-
cause relational specifications do not allow any restrictions
on the intermediate states of an execution. One solution
to this problem is to add to the data structure informa-
tion which represents the relevant information about the
intermediate states (e.g., the number of times procedure

“z"” was called); however, even with this solution another

form of specification (e.g., an algebraic or trace specifica-
tion) must be given for the data structure to state that
the added data structure elements actually represent the
intended information.

3 Oracle Generation

Fig. 3 gives an example of how the program documenta-
tion might be presented. It should be clear that a program
that evaluates the characteristic predicate of the specifi-
cation relation can be used as an oracle. Our prototype
TOG tool, which is part of the Table Tool System (TTS)
described in [34], generates an oracle in the form of C lan-
guage procedures that may use some C++ objects. The
initial version of the tool is described in detail in [30]; ex-
tensions to handle new types of tabular expressions are
described in [1].

Our design allows the TOG to use optimization tech-
niques to reduce the time required for oracle execution.
Since it is likely that a program will be tested for many
test cases, and the oracle will often be much slower than
the PUT, minimizing oracle execution time can be impor-
tant.

Note that the choice of C and C++ as oracle implemen-
tation language was based on the implementation language
of the examples selected for illustration. If the intended ap-
plication were different, the oracle design could be trans-
lated with no significant change.

31

Oracle Interface

The interface to the oracle consists of the four access
programs described in Table 1.

TABLE 1

ORACLE AccEss PROGRAMS

Program |Return
Name Type |Description
initOracle | void |[Initialization program. To be called before

the first oracle program is called.

inRelation | bool |Evaluates the characteristic predicate of the
relational component of the specification re-
lation. Takes the value of the data structure
in the initial state and final state (i.e., the

TES) as arguments.

inCompSet bool |Evaluates the characteristic predicate of the
competence set of the program relation. Tts
argument is the value of the data structure

in the initial state.

bool |Evaluates the characteristic predicate of the

domain of the program relation.

inDomain
Its argu-
ment is the value of the data structure in the

initial state.

The programs inCompSet and inDomain can be used to
avoid executing the PUT using test cases for which either
there is no acceptable result (i.e., the test case is not in
the domain) or the PUT may be nonterminating (i.e., the
test case is not in the competence set). Note that for test
cases that are in the domain but are not in the competence
set, it is acceptable for the PUT to be nonterminating,
but if it does terminate, the results can be checked using
inRelation. The problem of deciding when an execution



PETERS AND PARNAS: USING TEST ORACLES GENERATED FROM PROGRAM DOCUMENTATION

Program Specification

void find(int B[N], int x, int j, bool present)
external varibles:
Dgng = true
Chna = Irue
Rpna = - - - -
(37, bRange(z) A (Vi,bRange(:) =
‘B[’i] = ‘x) —-(‘B[é] = ‘x))
3! | ‘B[j'] = ‘x true
present’ = TRUE FALSE

A NC(‘B, ‘x, B, x')

Auxiliary Predicate Definitions
NC(int ‘a[],int ‘b, int a'[], int b’)
= (Vi,bRange(:) = ‘a[:] = a[¢]) A (‘b = Db')
Inductively Defined Predicates
bRange(int i)
I={o}
= G(l) =141
QW) =i< (N—1)

User Definitions

#include '"defs.h"

#define N 10 /* size of array to search =*/

Fig. 3. Example Specification
is to be considered nonterminating has no good solution,
and is beyond the scope of this work.

Ideally an oracle should indicate why a test execution
fails, so that program (or specification) faults can be eas-
ily isolated. Unfortunately, since we use program specifi-
cations that may allow several correct stopping states for a
particular test case, it is not always possible for an oracle
to determine why a TES has failed.

The following C function prototypes give the syntax of
the oracle access programs for the specification illustrated
in Fig. 3. The convention of translating the variable names

so that “‘x” becomes “p_x" and “x’” becomes “x_p” is

adopted to conform to C syntax rules.

void initOracle(void);

bool inRelation(int p_B[l, int p_x,
int B_p[], int x_p, int j_p,
bool present_p);

bool inDomain(void);

bool inCompSet(void);

3.2 Internal Design

Each of the oracle access programs (with the exception of
initOracle) evaluates a predicate expression. The TOG
generates the appropriate code by traversing the syntax
tree of the expressions in a depth-first order (i.e., innermost
subexpressions are processed first) writing the code to eval-
uate each subexpression into a buffer, which is then used
This

process continues until the root expression has been trans-

to construct the code for the “parent” expression.

lated. The procedure for implementing each type of subex-
pression is described in the following sections. It should be
clear to the reader how the algorithms described in these
code fragments could be easily translated into another im-
perative programming language.

3.2.1 Scalar Expressions

Scalar expressions can easily be represented using the
looping constructs and logical operators included in most
programming languages. This is illustrated below using

the C operators.

Logical Operators. FExcept when they are the root
node of a quantified expression, logical operators are di-
rectly translated to their equivalents as given in Table 2, in

which P and @ represent arbitrary predicate expressions.

TABLE 2

LogicaL. OPERATOR CONVERSIONS

Logical Operator | C Equivalent |

-P 'P

PvQ P Il Q
PAQ P && Q
P=Q (*P) 11 Q

Primitive Relations. The standard programming
language relational operators are combined with informa-

tion about the domain of any partial functions. For ex-

ample, the predicate expression “F(j') = x”, where F is a
partial function, is translated into the following code frag-

ment.
(F_domain(j_p) && (F(j_p) == x))

Inductively Defined Predicates. An IDP is imple-
mented as a C++ object class that provides access meth-
ods to enumerate the elements of the set it characterizes.
This interface is convenient since IDPs are primarily used
to characterize sets for quantification purposes. Our ap-
proach encapsulates (hides) the algorithm for determining
the elements of the set and allows independent copies of
the IDP to be created as needed during execution of the

oracle code.
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An array is used to represent the initial set component
of the IDP definition, and two procedures implement the
generating expression (“G”) and continuation expression
(“Q"). For example, the definition for bRange (see Fig. 3)
is implemented using the following code.

static int bRange_I[]1 = { 0 };

static int
bRange_G(int 1)
{

return(i+1);

}

static bool
bRange_Q(int i)

return(i < (N-1));
}

The IDP object classes have three “methods”: an op-
erator method denoted by the parentheses “()”, and two
named methods: first and next. The operator method
“(e)” returns TRUE if e is in the set characterized by the
IDP, and FALSE otherwise. The method first initializes
the object’s internal variables and returns the first element
of the array representing I. The method next returns the
“next” element of the set, as described by the following
three cases.

1. If the most recently returned element, say e, is such

that Q(e) is true, then G(e) is returned.

2. If Q(e), where e is the most recently returned element,

is false and there are elements of I that have not been

returned, then the next element of I is returned.

3. Otherwise, there are no further elements of the set
so an element not in the set is returned; (e) returns
FALSE.

When an IDP is used in an expression, the oracle code
creates an object from an appropriate class (determined
by the type of the argument). The array and procedures
corresponding to the predicate definition are passed as ar-
guments to the constructor function, which is responsible
for initializing a new copy of an object. This is illustrated
by the object bRange of type IndPred_int, which is used
in the quantification example, below.

Quantification. Quantifier expressions are imple-
mented using loops that invoke the methods to enumerate
the elements of the set characterized by the IDP. The root
node of the quantification expression (i.e., the “A” for ex-
istential or “=" for universal) evaluates its right child ex-
pression for only those elements which make the left child
expression true (i.e., the elements of the set characterized
by the inductively defined predicate). To ensure that eval-
uation is fast, the loops are designed to terminate as soon
as the result of the quantification is known (i.e., first pos-
itive instance for existential quantification, first negative
instance for universal quantification).

For example, the quantification
(3:, bRange(i) A ‘B[i] = ‘x), which is in the first cell
of the column header of the table in Fig. 3, is translated
to the code below.

static bool

table_H2_1(int p_BIN], int p_x)
{
IndPred_int bRange(bRange_I, 1, bRange_G,
bRange_Q) ;
int 1i;
bool result = TRUE;
i = bRange.first();
while (bRange(i) && result) {
result = !'(p_B[i] == p_x);
i = bRange.next();
return(!'result);
¥

3.2.2 Tabular Expressions

Two possible implementations for tabular expressions
were considered:

1. translate the tabular expressions into equivalent
scalar expressions, and then translate them into equiv-
alent C statements as described above; or

2. use a set of procedures that evaluate a tabular ex-
pression using procedures for the cell expressions.

The second option was chosen for the following reasons.

¢ It allows the semantics of tabular expressions to be
hidden in the tabular expression evaluation proce-
dures, so both the TOG and the oracle are less com-
plicated.

e Since the algorithm for interpreting a table doesn’t
change for different specifications, the code can be de-
signed to reduce the number of cell expressions that
need to be evaluated and hence improve performance.

To implement tabular expressions we have four classes
of C++ table objects each of which implements one of the
classes of tabular expressions described in [1] (normal, in-
verted, vector and decision). An object of one of these
classes is instantiated to implement each nonscalar expres-
sion.

Procedures that implement the expressions contained in
each cell of the table are generated and pointers to these
are used by the table object.

Table objects have two methods that are used to eval-
uate the expression: findCell determines if the values of
the arguments are in the domain of the expression repre-
sented by the table, and value evaluates the table.

3.2.3 Auxiliary Predicates and Functions

As mentioned in Section 2.4, auxiliary predicates and
functions are expressions that are either complicated or
used repeatedly. A procedure is created for each auxiliary
predicate or function, with the expression implementation
forming the body of the procedure. If a domain expression
for an auxiliary function is given, a procedure is produced
to implement that expression as well. For example, con-
sider an auxiliary function defined as follows:

b[i]

int guarded_B(int b[], int i) = { domain = 0<i< N

This is implemented by the following procedures:
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static int
guarded_B(int b[l, int i)
{

}

return(b[il);

static bool
guarded_B_domain(int i)

{
}

return((0 <= i) && (i < N));

Appropriate calls to these procedures are used in the
code that implements expressions using the auxiliary pred-
icate or function.

4 Trial Application

We have applied these techniques to the testing of three
programs from a commercial product. We hope that this
will help us to demonstrate the practicality and effective-
ness of these methods, and to gain an appreciation of their
strengths and weaknesses. This section describes the pro-
grams that were tested, the procedure we used and the
results.

4.1 Program Description

The programs used in the trial application are part of a
network management application produced by Newbridge
Networks Corporation of Kanata, Ontario, Canada. To-
gether the programs implement a module (hereafter known
as the hash module) used to store elements (data struc-
tures) for quick retrieval using an integer key. This is
achieved using two hash tables, referred to as table A and
table B. Newbridge provided us with the code (about 350
lines) and an informal description of its intended behav-
ior. We developed the formal specifications for three of
the module’s access programs:

¢ HashAdd, which adds an element to one of the tables,

e HashFind, which retrieves an element from one of the

tables without changing the table, and

e HashRemove, which removes an element from one of

the tables.
Figs. 4, 5, and 6 give the specification for HashAdd. The
specifications of HashFind and HashRemove reuse many of
the same auxiliary predicates and functions that are used
for HashAdd, so the total documentation for the module is
about five pages (cf. about seven pages for the code).

4.2 Test Procedure

A test harness calls the PUT for a set of test cases
and checks the results using the oracle. It may also per-
form such tasks as collecting statistics on the number of
failed tests, etc. Usually test harnesses will not need to be
changed to accommodate modifications to the specification
or PUT.

We used a single test harness together with the oracle
programs generated for the three hash module access pro-
grams. The input to the test harness was a series of com-
mands, each of which instruct it to either add, remove,
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TABLE 3

TEST SUITE DESCRIPTIONS

Number of commands
Suite || Add | Remove | Find || Total
A 3303| 3363 |33341[10000
B 4984 | 2516 |25001[10000
C 498 256 246 || 1000

or find an element in one of the two tables. Each com-
mand, together with the state of the hash module before
the command is executed, forms a test case for one of the
programs. The test case is executed only if it is in the
competence set of the program, as determined by the ap-
propriate inCompSet program. The TES, made up of the
test case together with the description of the state of the
hash module following execution and the values returned
by the program, is passed to the appropriate inRelation
program to determine pass or failure of the test.

Test suites were generated randomly using the C lan-
guage uniform distribution random number generator. The
tests were approximately uniformly distributed between
the two hash tables. Table 3 summarizes the test suites.

To verify that the testing procedures does, in fact, detect
errors when they occur, some errors were introduced into
the hash module. This was done by making small changes
to the code so it no longer satisfied its specification. While
we did not follow any formal procedure for selecting the
changes to be made, we feel they do represent typical pro-
gramming errors (see Table 4). Each modified version of
the hash module (presumably containing only one code
fault) was tested separately using the same test suites.

4.3 Test Results

Table 4 summarizes the results of the testing.

Since the hash module is part of a commercial software
systemn, and had previously been carefully inspected and
tested at Newbridge, it is not surprising that no errors
were detected for the unmodified cases. As can be seen
from tests No. 3 through No. 8, the testing procedures
were successful in detecting all of the inserted errors. The
large number of rejected test cases in tests No. 5 and No.
7 was caused by the fact that the code modifications in-
troduced for these tests destroyed the integrity of the data
structure, resulting in many tests cases that were not in
the competence set of the specification relation.

4.3.1 Performance

To see how quickly our oracles perform, we measured the
execution time for running 10,000 tests of the unmodified
hash module (tests No. 1 and No. 2) on our DEC Alpha
running OSF/1 V2.0. The results are summarized in Ta-
ble 5. Our measurements are total elapsed time for the
whole test suite, so they do not distinguish between execu-
tion of the test harness, the hash module programs or the
oracle programs. These times are much less than the time
it would take to manually verify the results of 10,000 test
executions.
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Program Specification

unsigned int
HashAdd(unsigned int theTable, unsigned int theId, struct hashStruct *thePtr)

external varibles: struct hashStruct *AHashArray[A_HASH_SIZE]
struct hashStruct *BHashArray[B_HASH_SIZE]

Drashada = true
Crashada = (‘theTable = HASH_A V ‘theTable = HASH_B) A

(Vi,ALists(z) = sorted(‘AHashArray[i])) A
(V:,BLists(:) = sorted(‘BHashArray[:]))

RHgshada =
(‘theTable = HASH_A V ‘theTable = HASH.B) A
(Vi, ALists(¢) = sorted(‘AHashArray[:])) A =

(Vi,BLists(z) => sorted(‘BHashArray[:]))

‘theTable = HASH_ A A

inTable (‘AHashArray, A HASH SIZE, ‘theId) | —inTable(‘AHashArray, A_HASH_SIZE, ‘theld)
HashAdd' = FAIL SUCCESS
AHashArray'[hash(‘theId, A HASH_SIZE)]) A
AHashA ! A 1(‘AHashA AHashA ! .sane( ’
ashirray’ | equal(‘AHashArray, AHashArray’) inserted A(‘AHashArray, AHashArray', ‘theld, ‘thePtr)
BHashArray' | Bequal (‘BHashArray,BHashArray') Bequal(‘BHashArray,BHashArray')
‘theTable = HASH.B A
inTable (‘BHashArray, B_HASH_SIZE, ‘theId)| —inTable(‘BHashArray, B_HASH SIZE, ‘theld)
HashAdd' = FAIL SUCCESS
AHashArray’' | Aequal(‘AHashArray, AHashArray') Aequal(‘AHashArray, AHashArray')

sane(BHashArray/[hash(‘theId, B_HASH SIZE)]) A

BHashi ! B 1(‘BHashi BHashA ! .
ashirray’ | equal (‘BHashArray, BHashArray') inserted B(‘BHashArray, BHashArray', ‘theId, ‘thePtr)

Fig. 4. HashAdd specification, Part |

Inductively Defined Predicates

AlLists(unsigned int i) BLists(unsigned int i)
I= {0} I= {0]'
= G(#)=i1i+1 = G(#)=i+1
Q) =i < (A_HASH_SIZE — 1) Qi) =i < (BHASH_SIZE — 1)

Auxiliary Predicate Definitions

Aequal(struct HashStruct * beford], struct HashStruct * after[])
= (V¢, ALists(¢) = listsEqual (before[¢], after[4]))

Bequal(struet HashStruet * before[], struct HashStruct * after[])
= (V3i,BLists(¢) = listsEqual (before]:], after[:]))

inList (struct HashStruct * list, unsigned int Id)
= —(list = NULL) A (list —>identifier = Id V inList (list —>hashNext, Id))

inserted A (struct HashStruet * before[], struct HashStruet * after[], unsigned int Id, struct hashStruct * ptr)
- . . . (—(hash(Id, A HASH_SIZE) = ) A listsEqual(before[:], after[:])) Vv ))

- (VE,ALlStS(”) = ( insertedList(before[:], after[:], Id, ptr)

inserted B(struct HashStruct * before[], struet HashStruct * after]], unsigned int Id, struct hashStruct * ptr)
- . . . (—(hash(Id, B HASH_SIZE) = :) A listsEqual (before[:], after{:])) Vv ))

- (Vs,BLlsts(e) = ( insertedList (before[:], after[z], Id, ptr)

insertedList(struct HashStruct * before[], struet HashStruct * after[], unsigned int Id, struet hashStruct * ptr)
= -(after = NULL) A

[after—>identifier = Id | ~(after—>identifier = Id) |

after = ptr A after—>data = ptr—>data A sameData(before, after) A
listEqual (before, after—>hashNext) insertedList(before—>hashNext, after—>hashNext, Id, ptr)

inTable(struet HashStruet * table[], unsigned int size, unsigned int Id)
= inList (table[hash(Id, size)], Id)

Fig. 5. HashAdd specification, Part Il
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Auxiliary Predicate Definitions (continued)

listEqual (struct HashStruet * left, struct HashStruet * right)

| [[1left = NULL | —(left = NULL) |
right = NULL true false
—(right = NULL) false sameData(left, right) A listEqual (left—>hashNext, right —>hashNext)

sameData(struct HashStruct * left, struct HashStruect s right)
=  (left = NULL A right = NULL)V

(—(left = NULL V right = NULL) A (left—>identifier = right—>identifier) A (left—>data = right—>data))

sane(struct HashStruect = list)
= list = NULL v (

sorted(struct HashStruct x list)
—(list—>hashNext = NULL) =

= list = NULL Vv (
User Definitions

"test.h"
"hash.h"

#include
#include

#define hash(id, size) ((id) & ((size) - 1))

#define SUCCESS 1
#define FAIL

list = list —>sanityCheck A —(list—>hashNext = NULL) => )
((list—>identifier < list —>hashNext—>identifier) A sane(list —>hashNext))

((list—>identifier < list—>hashNext—>identifier) A sorted(list —>hashNext)) )

Fig. 6. HashAdd specification, Part 111
TABLE 4
SuMMARY OF HasH MoDULE TEST RESULTS
Test
No. | Suite Code Modifications Passed | Failed | Rejected

1 A | Unmodified 10000 0 0

2 B | Unmodified 10000 0 0

3 C |Neglect to append existing list to added item in HashAdd 881 119 0

4 C |Neglect to append added item to existing list in HashAdd 511 489 0

5 C |Neglect to set “identifier” in HashAdd 3 6 991
6 C [Always return NULL from HashRemove 737 263 0
7 C |Neglect to rejoin list when element removed in HashRemove 29 14 957

8 C | Use wrong size to calculate hash index for table B 746 254 0
TABLE 5 module programs are specifically designed to give good per-
ORACLE PERFORMANCE formance for large tables. In particular the test harness
_ ! must copy the entire data structure before each command

Test Elapsed Time | Time per command is executed so it will be much slower for large tables.
No. | Suite (min:sec) (msec)
1 [A 2:30 15 4.4 Difficulties

B 5:30 34 The process of using these methods to test commer-

The performance is different for the two different test
suites because the hash module uses dynamic memory, so
the size of the data structure changes depending on the
number of elements stored in the tables, and hence there
is more processing required for larger tables. Test suite B
has about twice as many “add” commands as “remove”, so
the tables will grow during execution of the test suite (the
commands are randomly ordered in the test suite), whereas
with test suite A the tables will not increase in size. This
affects the speed of all of the programs, but is most signifi-
cant for the oracle and test harness components—the hash

cial software highlighted some of the difficulties that might
arise in a realistic software development situation. These
difficulties are discussed in this section.

4.4.1 Specification Faults

One of the recognized dangers of using a formal specifi-
cation to derive an oracle for testing software is that the
oracle is only as good as the specification from which it was
derived. On several occasions, we thought that a fault had
been discovered, only to find that the fault was actually in
our formal specification.

Careful inspection and the use of specification checking
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tools, such as are being developed for the TTS [34], are
obvious methods of removing faults from the specification;
however, if an oracle is generated from the specification,
then other fault detection methods are possible. It is pos-
sible to test the specification by executing the oracle with a
TES for which the results are known (e.g., from a previous
“correct” version of the PUT or a TES that has been man-
ually produced or checked). Documentation for software
that is actively being used is important for maintenance,
so finding an error in the specification can be almost as
valuable as finding an error in the code.

4.4.2 Data Structure Accessibility

The oracle must be able to access the data structure to
check its properties. In cases, such as the hash module,
where the data structure is “hidden” in a module, this
may require some modifications to the PUT. For the hash
module we considered two solutions:

1. Add a program to the hash module to export the data
structure so that the test harness could pass it to the
oracle.

2. Modify the hash module programs to call part of the
test harness, passing the data structure as arguments.
The test harness could copy the data structure and
call the oracle programs as necessary.

The first alternative was chosen since it involved no
changes to the parts of the programs to be tested, whereas
the other alternative would have required several changes.
The programs that are tested should be as close as possible
to those that will be used in the final system.

4.4.3 Complexity of Test Harness

The test harness must provide inRelation with the
value of the data structure in both the starting and stop-
ping states. To do this it must copy the data structure
before executing the PUT. The complexity of such a test
harness is dependent on the design of the data structure.

In the case of the hash module, the data structure con-
sists of an array of sorted linked lists, which is a sufficiently
complex data structure that the program to copy it is itself
a potential source of errors. In fact, in preliminary testing,
some errors were found in that portion of the test harness
code.

4.4.4 Procedures that are not Programs

One of the the

HashOperateOnNext, has an argument that is a pointer

procedures in hash module,
to a procedure that is to be called for some of the
elements in the hash table. According to our definitions,
HashOperateOnNext is not a program since its text does
not determine a set of possible executions. (See [24] for
a further discussion of the distinction between programs
and procedures.) In order to specify the behavior of
HashOperateOnNext, a specification of the program that
is its actual argument is required so that its effect on the
data structure can be determined. Also, as mentioned in
Section 2.6, since the TES does not include information
about which programs were called during the execution of
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the PUT, the oracle can only check the effect on the data
structure of calling the given program, not that it actually
was called the correct number of times. For these reasons
HashOperateOnNext was not tested.

4.4.5 Location Sensitive Data Structures

A field in the hash module data structure, sanityCheck,
is used as a fault detection mechanism by the hash mod-
ule. The value of sanityCheck is set to be equal to the
location in memory of the instance of the data structure
(i.e., it is a pointer to itself). Unfortunately our test har-
ness must copy the data structure to a new location in
memory so that it can be used as part of the start state
in the TES, which means that sanityCheck will no longer
have the desired property. It is impossible to ascertain the
correctness of this value from a copy. For this reason, the
integrity of this field cannot be checked by inRelation for
the “before” values of the data structure, so inRelation
may report some false failures (i.e., TESs that pass are re-
ported as failing). A solution to this problem would be to
add to the start state description a variable representing
the address of the data structure in the start state.

5 Discussion and Conclusions

5.1 Applications for This Work

In addition to the obvious application of this work to
unit testing, it can be used in several other ways, as follows.

5.1.1 |In situ Testing

The code for a software system can be modified by
adding calls to the oracle programs for certain critical com-
ponents, so that failures of these components during sys-
tem operation (e.g., during system testing or beta trials)
are reliably detected and reported. The behavior of the
resulting program is similar to those developed using the
methods described in [18], [32]. For in situ testing, no test
harness need be constructed. Of course, in such applica-
tions the performance of the oracle is a significant issue.
The viability of such an application will depend on the
amount of processing done by the oracle and the perfor-
mance requirements of the system.

5.1.2 Self-checking ADTs

In [3], Antoy and Hamlet describe another application
for executable oracles. They use algebraic specifications of
ADTs and require that the user provide a “representation
mapping” to map from the concrete data structure to the
abstract specification. Their oracles are invoked by the
ADT code to test that the axioms from the specification
are valid following each change to the ADT value. Since
relational program specifications, as used in this work, are
in terms of the concrete data structure, no representation
mapping is needed—the oracle tests that the concrete data
structure is modified in the prescribed manner. Oracles
as generated by the TOG could be used to create a self-
checking ADT similar to Antoy and Hamlet’s by generating

the oracle programs for each access program of the ADT
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and embedding calls to the oracle programs in the ADT
code.

5.1.3 Enforced Documentation Consistency

One factor that reduces the value of most program doc-
umentation is the fact that it cannot be relied upon to be
accurate (i.e., consistent with the code) since programmers
can easily modify the code without updating the documen-
tation. If a TOG generated test oracle is always used to
test a program before it is released, then we are assured
that the documentation is consistent with the code. A
correct program would only pass thorough testing if the
documentation is correct.

5.2 Limitations of the Method

Clearly this work is limited to those programs that can
be specified using relational techniques as discussed in Sec-
tion 2.6. Some other limitations are as follows.

5.2.1 Oracle Termination

It is possible to write a specification for which the oracle
will not terminate, or will only terminate after an unrea-
sonable amount of time. Nontermination can be caused
by a nonterminating recursion in an auxiliary definition,
by errors in the definition of an inductively defined predi-
cate or by a nonterminating “primitive” (i.e., defined in the
programming language) function. Slow termination can be
caused by quantification over large sets. For example, con-
sider the well known “shortest path problem” for which a
specification is given in [29]. An oracle based on this speci-
fication enumerates all possible paths through the directed
graph to ensure that there is no valid path with a smaller
path weight—an O(n!) calculation. Nontermination can
only be avoided by careful definition of auxiliary predi-
cates and functions and by judicious use of well tested, or
well verified primitive functions. For problems such as the
shortest path problem, it is not practical to test the whole
program against the specification for graphs with many
paths. It may be practical in such situations, however, to
test using small graphs or to test some of the subprograms
used by the program and then to use other techniques to
verify the top level code.

5.2.2 PUT Termination

As with any testing process, it is possible for the PUT to
be a nonterminating program. Since the oracle programs
can only be used either before the PUT is invoked or after
it has terminated, there is no means for these programs to
detect that the PUT has not terminated, or has exceeded
Nontermination of the PUT
must be detected by the test harness. Note, however, that

some reasonable time limit.

the oracle programs do provide a means of detecting test
cases for which the PUT should not terminate (i.e., those
not in the domain of the program relation) or might not
terminate (i.e., those in the domain but not in the compe-
tence set) through inDomain and inCompSet, respectively.
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Inaccessible Data Structure

An assumption in any testing method that checks prop-
erties of the data structure is that all elements of the data
structure can be accessed by the oracle. In some cases this
is not a valid assumption. For example, the data structure
may include the computer display (i.e., the program is re-
quired to display some values). In these cases, some other
form of oracle or additional test equipment (e.g., terminal
simulator) are necessary.

5.3 Related Work

Several authors have described tools that can be used
to compare the results of a test execution with some pre-
defined “correct” data. In [20], Panzl describes three sys-
tems that verify the values of program variables against
expected results described using a formal test language.
Another system, described by Hamlet in [9], tests a pro-
gram using a list of (input, output) pairs which have been
supplied as part of the program code. All of these systems
require that the user provide the expected output, which
may be difficult to obtain. Also, since they only compare
expected and actual output, these methods are not appro-
priate when there are several acceptable answers.

The latter limitation is partially overcome by the “pro-
gram testing assistant” described by Chapman in [6]. This
system allows the user to specify “success criteria” (e.g.,
equal, set-equal, isomorphic, etc.) which are used when
comparing actual and expected output. This system, how-
ever, requires that the user once had a version of the pro-
gram that was considered correct.

ANNA [18] and APP [32], allow program code to be
annotated with assertions which are evaluated as the code
is executed. If these assertions constitute a specification of
the program, which is the intention of ANNA but not APP,
then they can be used as an oracle. However, since the
annotations used in theses systems are written as specially
denoted comments in the program source code, they do not
lend themselves well to analysis or review separate from
the implementation, such as by nonprogrammer “domain
experts”.

A model-based specification describes the intended be-
havior of a program in terms of operations on an abstract
machine model, often a finite state automaton. Such spec-
ifications often do not meet our requirement of being a
minimal statement of requirements because they contain
information describing the model behavior, which is not
part of the actual requirements.

In [35], Stocks and Carrington discuss using model-based
specifications to derive “oracle templates”, which describe,
using the Z notation, a set of acceptable outputs for a given
set of test cases. In [31], Richardson et al. advocate the
derivation of oracles from formal models and specifications.
Both papers suggest that the oracle could be automatically
generated, but neither discusses the problems of actually
producing an oracle procedure.

In [14], [19], HSrcher and Mikk discuss the generation
of oracles (in the sense of this paper) from model-based
specifications written using the Z notation. Their oracles
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evaluate predicates on “specification variables” whose val-
ues are derived from the concrete data structure by way
of an abstraction function, whereas our oracles evaluate
predicates on the concrete data structure value, so no such
abstraction function is required.

The Assertion Definition Language (ADL) project [2],
[33] includes a system for generating oracles and test har-
nesses from procedure specifications. ADL is quite similar
to our work, but doesn’t support tabular notations, which
we consider to be a significant factor improving the read-
ability of our specifications. ADL also cannot be used to
specify the nontermination cases described by the compe-
tence set and domain of the relation in an LD-relation. In
addition, ADL uses “bounded” quantification (i.e., quan-
tification of the form (Vz : S, P(z)) or (3z : S, P(z)), where
S is a set) as a primitive of the language, which, as dis-
cussed in [26], can complicate the expressions. Finally, in
its current revision [2] the ADL primitive for defining the
“domain” of quantification only supports ranges of inte-
gers, whereas our IDPs permit quantification over a much
broader class of sets.

5.4 Future Work

As described in Section 4, the TOG has been tested and
evaluated using some small programs which have shown
that the methods presented in this paper are viable in these
cases. More experience with applying them to a wide va-
riety of industrial software applications would allow more
general conclusions about the viability and usefulness of
the methods to be drawn and would undoubtedly lead to
suggestions for improvements in the TOG and oracle de-
signs.

Experience has shown that there are some auxiliary
predicates and functions, or forms of auxiliary predicates
and functions, that frequently appear in specifications of
the form used in this work. For example, it is often stated
in a specification that some program variables are not
changed—denoted using the shorthand “NC” in [24]. This
work does not support this shorthand, so the expanded
form of the predicate must be included in the documenta-
tion (see Fig. 3). It would be convenient if this definition
could be produced automatically from such a shorthand.
This would be straight-forward for the basic data types of
a programming language, but is much more difficult for
constructed types.

It has been suggested that, in cases where the specifica-
tion relation is a function, (i.e., it contains only one stop-
ping state for any given starting state), it would be possible
for the oracle to output a description of the correct stop-
ping state for each test case and allow the test harness to
determine if the program is in the right state. It is not, in
general, possible to automatically generate such an oracle
from specifications of the form used in this work, even if
they are functional. Consider a specification for a program
to solve a system of n linear equations in n unknowns—the
specification, which states that the final values of the un-
knowns satisfy the equations, is functional, but an oracle
that outputs the correct stopping state could not be gener-
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TABLE 6

ADVANTAGES AND DISADVANTAGES OF ORACLE (GENERATION

| Disadvantages

Advantages

The documentation used to gen- | The value and usefulness of pro-
erate the oracle can be almost
as complicated as the PUT and

needs to be checked carefully.

gram documentation is greatly
increased since it can be tested
for consistency with the program.

A suitable test harness may be a | Faster test analysis, hence re-

nontrivial program, which must | duced cost.

also be checked carefully.

Certain classes of program be- | Reliable failure detection, hence

havior cannot easily be specified | increased value.
and checked using these meth-

ods.

ated automatically by this tool. The oracle to check if the
given solution is correct, however, can be generated by our
tool and is quite efficient. Tt is possible for some limited
set of specifications to automatically generate oracles that
output expected results but that would require significant
modifications to this work.

Finally, the TOG design was chosen carefully to allow
the programming language used in the oracle to be changed
easily, but only C has been used in this prototype. A more
broadly applicable TOG would allow the user to choose
among several popular programming languages to facil-
itate interfacing with PUTs written in these languages.
This could be accomplished by providing several additional
submodules, one for each programming language, and hav-
ing the TOG tool select the appropriate one according to
the user’s request.

5.5 Conclusions

The development and application of the TOG prototype
has shown that it is feasible to automatically generate ex-
ecutable test oracles from tabular relational program doc-
umentation. Application of these methods to industrial
software has demonstrated the limitations and strengths

outlined in Table 6.
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