
Unit 2

Small Antennas and Some Antenna
Parameters

2.1 The Fundamental Source of Radiated Energy

We have seen fromMaxwell’s equations that a time-varying �B field (or �H field) implies

a time-varying �E field (or �D field) and vice versa. In Term 6 it was observed that one

solution to these equations represented (plane) wave energy propagating through some

space (free or otherwise). We know from Term 6 that steady (dc) currents produce

steady magnetic fields. It should be obvious, then, that time-varying currents will

produce time-varying �H fields and, thus, also time-varying �E fields. Clearly, a time-

varying current necessitates an accelerating charge. Therefore, to have e-m energy

radiating away from a source, the source must consist of accelerating charge(s) – a

stationary charge or one moving with a constant velocity does not radiate. There are

several simple ways in which a charge may accelerate and thus radiate:

1. charge may oscillate with simple harmonic motion along a straight wire;

2. charge may move with a constant speed along a bent or curved wire;

3. charge may encounter a termination (load), a truncation (wire not infinite), or

a discontinuity (eg., going from one wire to another of different size or electrical

parameters). In these cases, electric charge may be caused to change direction

–i.e., reflect. Many such possibilities exist – wanted and unwanted.
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Illustration:

To quantify this idea, consider a packet of electric charge moving along a straight

thin conductor in the z-direction, say.

Let ρL ≡ linear charge density in C/m

and vz ≡ velocity in the ẑ direction.

Then the current, I, is given by

I =
dQ

dt

where Q is charge and t is time. Since dQ = d(ρLz), and if ρL is constant in time so

that dQ = ρLdz, the current may be written as

I =
ρLdz

dt
= ρLvz .

Taking the derivative w.r.t. time,

dI

dt
= ρL

dvz
dt

= ρLaz .

where az is acceleration. For a pulse of length �, we may multiply this result by � to

get

�
dI

dt
= �ρLaz
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or using “overdot” for the time derivative

�İ = Qv̇z

Q = �ρL is the charge in the pulse of length �. For radiation to occur, this equation

must hold – i.e., current must have a non-zero time derivative (İ �= 0 or Q̈ �= 0)–

charges must accelerate.

2.2 The infinitesimal Dipole

2.2.1 Reality and Useful “Fiction”

In Term 6, it was briefly noted that a two-wire open-circuit transmisision line could

be configured as a “dipole” antenna.

Illustration:

In this situation (i.e., for � = λ/2), the current, I, has a node at each end of the wire,

the amplitude decreasing continually away from the centre. The wavelenth of I is λ.

For other lengths, the current pattern may be more complicated; however, current

nulls or nodes still occur at the wire ends for the infinitesimally thin dipole.

There exist methods of making the current more uniform. Consider, first, a � =

λ/4 monopole antenna which is fed against an ideal ground plane as shown:
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As we’ll discuss in more detail later, there is a λ/4 reflection in the perfect ground.

This monopole will resonate at the same frequency and provide the same pattern

shape as a λ/2 dipole (more later on this). Notice that there is still a current null at the

top of the antenna. The shape of the current pattern may be modified electrically by

shortening the antenna somewhat and base-loading it with an inductance to provide

the same resonance. Across the inductor section (see illustration below), the voltage is

essentially linear and the current uniform, making for a more uniform overall current

loop.

Another method of forcing the current to be more uniform across the antenna is

by end-loading (or top-loading) it with a capacitance, for example a capacitive disc.

With the idea of a uniform current distribution in mind, we are next going to

consider an infinitesimal dipole (� � λ) carrying such a distribution and oriented as

shown:
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Letting I0 be the current magnitude (and it may be complex),

�I(z′) = I0ẑ (2.1)

(You may visualize how such a structure might be used in a repeated way to give an

extended antenna element).

I “constant” over a differential element but may

vary from one element to the next over the length

of the wire.

Thus, this infinitesimal dipole idea, while ficticious in nature, will be very useful in

“building up to” a real situation.

2.2.2 The Vector Potential for a Uniform-Current Element

Consider again the infinitesimal, uniform-current, dipole – sometimes referred to as

a Hertzian dipole – oriented as previously:

Note that x′ = 0 and y′ = 0. We wish to determine the vector potential with a

view to obtaining the �E and �H fields. In equation (1.40) for the vector potential, we

replace �J(�r′)dv′ with

I(z′)dz′ ẑ

5



since the “source” is oriented along the z-axis and located as shown. Thus, the volume

integral reduces to a line integral and

(2.2)

Using �I(z′) from equation (2.1),

�A(�r) = ẑ
μI0
4π

∫ �/2

−�/2

e−jk
√

x2+y2+(z−z′)2√
x2 + y2 + (z − z′)2

dz′ (2.3)

While the integration in (2.3) is not available in closed form (and thus neither are the

�E and �H fields), it does yield to some useful approximations. CAUTION: In antenna

theory, very little of the often formidable analysis can be carried out exactly – i.e., in

closed form.

Before considering (2.3) further, we note the following terms associated with fields

radiated by antennas:

1. “The Reactive” Near-Field Region is that portion of the near-field region imme-

diately surrounding the antenna wherein the reactive field predominates. The

energy in this field does not radiate away from the antenna but rather oscillates

near the antenna like in a resonator. It is “trapped” near the antenna.

2. The Radiating Near-Field (or Fresnel Zone) is that region of the antenna field

between the reactive near-field and the far-field where radiation (rather than

reactive) fields are predominate and wherein the angular field distribution is de-

pendent on the distance from the antenna. If the antenna’s maximum dimension

is much smaller than a wavelength, this region may not exist.

3. The Far-Field (or Fraunhofer) Region is that region of the radiation antenna

field where the field distribution is essentially independent of the distance from

the antenna. This is the “zone” in which we will be interested in this course.

The distances “broadly” dividing these regions are depicted below for � > λ:
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R1

R2

Far Field

Approximation of �A(�r):

Now we return to the vector potential of equation (2.3) and seek to determine a

good approximate form. This will lead us to the �E and �H fields for the Hertzian

dipole. Consider first the square root appearing in the integrand:

Therefore, for the Hertzian dipole,

√
x2 + y2 + (z − z′)2 ≈ r − z′ cos θ . (2.4)

7



Using (2.4) in (2.3) gives

�A(�r) ≈ ẑ
μI0
4π

∫ �/2

−�/2

e−jk(r−z′ cos θ)

r − z′ cos θ
dz′ .

Again, because r � z′, in the amplitude portion of the integrand, we may use r −
z′ cos θ ≈ r to get

�A(�r) ≈ ẑ
μI0
4π

∫ �/2

−�/2

e−jk(r−z′ cos θ)

r
dz′ .

Notice that the last approximation has not been used in the phase expression – WHY

NOT?

At a particular position dictated by �r, we have

�A(�r) ≈ ẑ

(
μI0�

4πr

)
e−jkr Sa

[(
k�

2

)
cos θ

]
(2.5)

Here Sa is the familiar sampling function
(
Sa(x) =

sin x

x

)
.

Illustration:
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Since we are dealing with the infinitesimal dipole it seems reasonable to further

consider the situation ∣∣∣∣∣kl2 cos θ

∣∣∣∣∣� 1

or even

kl

2
� 1 ⇒

⇒

⇒

From the note on the sampling function, in this case,

Sa

(
kl

2
cos θ

)
≈ 1 . (2.6)

To use the approximation to the infinitesimal dipole, a rule of thumb stipulates that

the overall antenna length must be very small – usually, � ≤ 0.02λ. Also, remember

that for this analysis I(z′) is a constant.

Using approximation (2.6), equation (2.5) becomes for the vector potential of the

infinitesimal dipole may be approximated as

�A(�r) ≈ ẑ

(
μI0�

4πr

)
e−jkr (2.7)

The governing assumptions are that � � λ and � � r, the last assumption being

ensured by our stipulation that r � z′. The form of equation (2.7) suggests a spherical

field – a “wave” travelling radially outward if we assume a ejωt time dependency.

Again, it must be emphasized that this is the Hertzian dipole result.

2.2.3 The Electric and Magnetic Far-Fields for the Infinites-
imal Dipole

It is easily deduced from Section 1.3 (Do This) that

(2.8)
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and we have also, by definition, that �B = �∇× �A or

�H =
1

μ
�∇× �A . (2.9)

�E and �H may be found (TRY THIS) in spherical coordinates (using (2.7)–(2.9) and

the appropriate coordinate transformations) to be given by

Er = η
I0� cos θ

2πr2

[
1 +

1

jkr

]
e−jkr (2.10)

Eθ = jη
kI0� sin θ

4πr

[
1 +

1

jkr
− 1

(kr)2

]
e−jkr (2.11)

Eφ = 0 (2.12)

Hr = Hθ = 0 (2.13)

Hφ = j
kI0� sin θ

4πr

[
1 +

1

jkr

]
e−jkr (2.14)

The Far-Field �E:

Consider, first, Eθ. As long as k is non-negligible, we may stipulate the far field by

r � 1. Then the 1/r2 and 1/r3 terms in (2.11) will be negligible in comparison to

the 1/r term. Therefore, in the far-field

Eθ ≈ jηkI0� sin θ

4πr
e−jkr . (2.15)

Furthermore, Er � Eθ since the former contains only 1/r2 and 1/r3 terms. Since

Eφ = 0, we see that the Eθ field dominates the �E-field radiation field of the infinites-

imal dipole. To emphasize this, we write that

�E = Er r̂ + Eθ θ̂ + Eφφ̂

to a good approximation becomes

�E ≈ Eθθ̂

or, for future reference

�E ≈
[
jηkI0�e

−jkr

4πr

]
sin θ θ̂ (2.16)
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The Far-Field �H : From equations (2.13) and (2.14),

�H = Hrr̂ +Hθθ̂ +Hφφ̂ = Hφφ̂.

Using r � 1 we have

�H ≈
[
jkI0�e

−jkr

4πr

]
sin θ φ̂ (2.17)

Observations:

1. Both �E and �H have a sin θ dependency, indicating the presence of maxima and

minima in the field of observation (no spherical symmetry as for the vector

potential A).

2. There is no φ dependency in either �E or �H.

3. �E× �H is in the θ̂× φ̂ = r̂ direction, indicating a wave whose �E and �H are in the

direction of propagation and are mutually perpendicular (recall the Poynting

vector). In Term 6, we called this a transverse electromagnetic wave (TEM

wave).

4. From observations (1) and (2) we see that the far-field �E and �H space patterns

in the “vertical” plane are doughnut-shaped.

5. The space containing the dipole is unbounded and homogeneous. The intrinsic

impedance of the space from (2.16) and (2.17) is given by

η =
Eθ

Hφ

.

11



If we have the current element in free space, of course, μ = μ0 and ε = ε0 and

η = η0 ≈ 120π.

6. It may be argued from (2.16) or (2.17) that at a particular instant in time an

observer at �r “sees” what was happening at the antenna r/c seconds earlier.

Consider, for example, (2.17). Recalling that k = ω/c (assuming free space),

equation (2.17) may be cast as

�H ≈ jω

c

[
I0�e

−jω r
c

4πr

]
sin θ φ̂

We note

(a) jω/c transforms to (1/c)∂/∂t in the time domain;

(b) If

F(ω) ⇔ f(t)

is a Fourier transform pair, then

F(ω)e−jωa ⇔ f(t− a)

where, here, a = r/c.

Thus, noting that I0 is a phasor in the above expression for �H (which is really �H(�r, ω))

transforms in the temporal sense to

�H(�r, t) ≈ 1

c

∂

∂t

⎡
⎣i
(
t− r

c

)
�

4πr

⎤
⎦ sin θ φ̂

where i(t) is the time domain current. As expected, the �H field observed at �r at time

t depends on the value of the current at (t− r
c
).

It must be emphasized that the results of the preceeding analysis are useful for

very short (in terms of wavelength) antennas provided that the current is uniform.
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2.2.4 Power Density and Radiated Power

Power Density:

We now consider the nature of the power associated with the radiation fields

calculated in (2.16) and (2.17). Initially, we note that in the time domain

�E and �H being the phasor fields given by (2.16) and (2.17). Recall from Term 6 that

the Poynting vector, �P̃ , is given by

�P̃ = �E
˜
× �H

˜
(2.18)

and is the power per unit area (i.e., power density) directed perpendicular to both �E
˜

and �H
˜
. That is, �P̃ is in the direction of propagation for the far field region.

�P̃ =
1

2
Re

{
�E × �H∗}+ 1

2
Re

{
�E × �Hej2ωt

}
(2.19)

Here, �E and �H are themselves phasors – not time dependent. Thus the first term

in (2.19) is time-independent, while the second term is time-harmonic. Since the

time-average of a time-harmonic quantity is zero, the time-averaged Poynting vector

is given simply as

�Pa =
1

2
Re

{
�E × �H∗} . (2.20)
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The second term is simply an oscillatory (reactive) power density with radian fre-

quency 2ω. We note in passing that if the complete expressions given by (2.11) and

(2.14) were used for the fields, the time-averaged radiated power density would still

be given by (2.20).

Carrying out (2.20) using (2.16) and (2.17) we have

This is the time-averaged (real) radiated power density of the current element. Note

that |I0|2 = I0I
∗
0 for a complex current I0. In general then

�Pa =
ηk2|I0|2�2
32π2r2

sin2 θr̂ =
1

2η
| �E|2r̂ . (2.21)

This is the radiation power density in any r̂ direction. Therefore, the 3-d shape of �Pa

is “built up” by rotating sin2 θ in the z-y plane (for example – or any other constant

φ plane) about the z-axis.

Illustration:

Power Radiated (Pr):

Consider a spherical “surface” of radius r enclosing the current element:

Vector differential surface area is:

d�Sr = dSr r̂ = r2 sin θdθdφ r̂

Also, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π.
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Since | �Pa| in (2.21) is the power per unit area, Pr is obtained by a simple integration

of �Pa over the spherical surface.

Pr =

=

Thus, since the remaining integral has a value of 4/3,

Pr =
ηk2|I0|2�2

12π
(2.22)

in watts. This analysis is fine for “short” antennas (i.e. short compared to a wave-

length) with uniform current distribution. (A rule of thumb is � ≤ λ/50).

2.3 General Antenna Parameters and Character-

istics

Having examined the far-field characteristics of an infinitesimal dipole, we now con-

sider some (in no way an exhaustive list) features common to all antennas. For now,

whenever possible, we’ll relate them to the foregoing small-current-element analysis.

In fact, we have seen some of the following already. The definitions may be found

in the IEEE Standard Definitions Terms for Antennas, IEEE Trans. on Ant. and

Prop., vol. AP-31, No. 6, Part II, Nov., 1983.

2.3.1 Radiation Pattern and Related Concepts

An antenna radiation pattern or simply antenna pattern is defined as “a mathemat-

ical function or graphical representation of the radiation properties of the antenna

as a function of the space coordinates”. In most cases, this pattern is determined

in the far-field context – this is almost exclusively the case in this course. The term

“radiation properties” includes power flux density, radiation intensity, field strength,
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directivity, phase and polarization. We will consider some of these. A suitable coor-

dinate system with some terminology is shown below (taken from Antenna Theory,

2nd Ed., Balanis, p.29, Fig. 2.1).

1. Power and Field Patterns, Polarization and Principal Patterns

(i.) A trace of the received power at a constant radius from the antenna is called

the power pattern. A similar trace of the magnetic (or electric) field along a constant

radius is called an amplitude field pattern. In Sections 2-2-3 and 2-2-4, we alluded to

these for the infinitesimal dipole. The radiation patterns for this and more general

structures are shown below (see Antenna Theory, 2nd Ed., Balanis, Figures 2.2 and

2.4, pp.30–31).

Pattern for infinitesimal dipole:
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General Power Pattern

(ii.) Polarization: There are several aspects to the notion of polarization in e-m theory.

First, we define the polarization of a radiated wave as that property of an e-m

17
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wave describing the time-varying direction and relative magnitude of the electric field

vector. Specifically, at a fixed postion in space, the locus of the tip of the �E
˜
-field

vector and the sense in which this figure is traced as observed along the direction of

propagation define the polarization of the wave. The general polarization is elliptical,

which degenerates in important special cases to linear or circular polarization. A

simplified sketch (taken from Applied Electromagnetism, 3rd edition, by L.C. Shen

and J.A. Kong, PWS Publishing Company, Boston, 1995) is shown below. The

elliptical or circular polarizations may be left-handed or right-handed, depending on

the hand for which the curl of the fingers is in the direction of rotation of the �E
˜
-field

vector when the thumb points in the direction of propagation.
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Polarization of an antenna in a given direction is defined as “the polarization of the

wave radiated by the antenna”. If the direction is not specified, the direction of max-

imum gain (see definition later) is understood. Using this definition, the polarization

of a dipole antenna is linear and in the same direction as the antenna axis.

Illustration:

or, simply,

It should be pointed out that the earth’s presence will affect the antenna pattern,

depending on how much the characteristics differ from that of perfect ground.

Note that for linearly polarized waves, maximum reception of power will occur

when the receiving antenna is aligned along the direction of polarization (eg. vertical

antennas for AM reception; often TV antennas are horizontal; etc.). For circularly

polarized waves, orientation of the antenna is not critical as long as its axis is per-

pendicular to the propagation direction (eg., most FM is circularly polarized).

Circular Polarization Reception:
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Mathematical Note on Polarization:

Suppose we have a plane wave travelling in the +z direction and suppose its �E
˜
-field

is given by

�E
˜
= E

˜
xx̂+ E

˜
y ŷ

with

E
˜
x = Ex0 cos(ωt− kz + φa) and E

˜
y = Ey0 cos(ωt− kz + φb),

where the amplitudes are obvious and the φ’s are phase angles. Suppose next that

φb = φa or φb = φa + π. Then

What conditions on the phases and amplitudes of E
˜
x and E

˜
y lead to circular polar-

ization of the wave? Prove it! Which is necessary for LHC and which is necessary

for RHC polarization? If neither linear nor circular polarization exists, the wave is

generally elliptically polarized.

(iii.) Principal E- and H-plane Patterns:

For linearly polarized antennas, the performance may be described in terms of its

principal E- and H-plane patters. The principal E-plane is “the plane containing the

electric field vector and the direction of maximum radiation”. The principal H-plane
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is “the plane containing the magnetic field vector and the direction of maximum

radiation”. The E- and H-field patterns in these planes are the respective principal

plane patterns.

Illustration: Recall, the doughnut-shaped pattern of the current element on page 16.

2. Classes of Radiators

(i.) An isotropic radiator is a “hypothetical lossless antenna having equal radiation

in all directions”. While no such structure actually exists in nature, it is useful in

that the directive properties of realizable antennas may be referenced to this ideal

radiator. For example, it is common to find in the literature the term dBi for “dB

with respect to isotropic” to indicate how a particular antenna “gain” compares to

that of an isotropic radiator (more on “gain” shortly).

(ii) A directional antenna is one which radiates or receives e-m waves more efficiently

in some directions than in others. The term is usually applied to antennas whose

“directivity” significantly exceeds that of a half-wave dipole (more on “directivity”

soon). Diagram (a) on page 17 of this unit shows the pattern of such a directional

antenna. The pattern on the bottom of page 16 is non-directional in any azimuth

plane θ = constant (for example, the horizontal plane antenna pattern function,

f(φ), θ = π/2, is a circle in the x-y plane) and directional in any elevation plane

(with vertical plane pattern given, for example, by g(θ), φ = constant). Such an

antenna is termed omnidirectional meaning that it has essentially a non-directional

pattern in a given plane (in this case, in azimuth) and a directional pattern in any

orthogonal plane (in this case, in elevation) – i.e. “omnidirectional” is a special

case of “directional”. The pattern on page 17, however, is directional, but NOT
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omnidirectional.

2.3.2 Radiation Power Density, Radiated Power, and Radia-

tion Resistance

The time-averaged Poynting vector in equation (2.20) is, of course, valid for the far-

field of any antenna. That is

�Pa =
1

2
Re

{
�E × �H∗} (2.23)

where �E and �H are phasors. The magnitude of this expression is the power density in

W/m2. Thus, to determine the average radiated power, Pr, radiated by the antenna,

we simply needed to integrate �Pa over a surface enclosing the antenna.

Pr =
∮
S

�Pa · d�S (2.24)

where, in general, d�S is the vector differential area on the surface (d�S = n̂dS where

n̂ is the unit normal). In view of (2.23), equation (2.24) may be written

Pr =
1

2

∮
S
Re

{
�E × �H∗} · d�S (2.25)

For the infinitesimal dipole, equation (2.22) gave

Pr =
ηk2|I0|2�2

12π
(2.26)

or given that k = 2π/λ,

Pr = η
(
π

3

)
|I0|2

(
�

λ

)2

. (2.27)

However, from our usual view of power we know that the radiated power power must

also be given by

Pr =
1

2
|I0|2Rr (2.28)

where Rr is the so-called radiation resistance – i.e. it is the effective resistance which

would give rise to power dissipation, Pr, when the current magnitude is |I0|. It is

important to realize that Rr is NOT ohmic resistance and Pr is NOT ohmic power
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dissipation. Equating the RHS of equations (2.27) and (2.28) give for the infinitesimal

dipole

Rr = η
(
2π

3

)(
�

λ

)2

, (2.29)

and, for free space where η = η0 ≈ 120π,

Rr = 80π2

(
�

λ

)2

. (2.30)

We stipulated for this dipole that, as a rule of thumb, � ≤ 0.02λ. Thus, even in

the best case (i.e., � = 0.02λ), it is simple to observe that connecting the infinitesi-

mal dipole to a practical transmission line having, say, a 50Ω or 75Ω characteristic

impedance (Z0) is a very inefficient way to radiate energy:

The gross mismatch with the given Z0’s and thus the inefficiency is obvious. Note

that from our transmission line deliberations in Term 6 you should be able to conclude

that the reactance of the infinitesimal dipole is capacitive.

The above example serves to illustrate the fact that short antennas (i.e., short

compared to a wavelength or electrically short) have a very low radiation resistance,

low efficiency and thus as we shall see low gain. An efficient antenna will have a

dimension comparable to a wavelength. Therefore, for example, at AM broadcast

frequencies of 500 to 1500 kHz very high towers are required to carry the antennas.

2.3.3 Radiation Intensity, Directivity and Gain

1. Solid Angle

Before discussing the above related quantities, it will be useful to introduce the

concept of the solid angle. Recall from two-dimensional geometry that the radian is

defined as the measure of the central angle of a circle which subtends an arc length

equal to the radius. Trivially, since the total arc length is 2πr there are 2π radians
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in a complete circle. Extending this idea to three dimensions, we define a steradian

(sr) as the measure of a solid angle (Ω) whose vertex is at the centre of a sphere of

radius r and which subtends a surface area of r2 on the sphere.

In general, Ω =
S

r2
so when S = r2, Ω = 1 sr. Since, in spherical coordinates,

dS = r2 sin θdθdφ,

dΩ =
dS

r2
= sin θdθdφ . (2.31)

Therefore, for the whole sphere,

Ω =

Radiation Intensity

The radiation intensity, U , is by definition “the power radiated per unit solid angle”.

From equation (2.24), the differential radiated power is clearly

dPr = �Pa · d�S

over an element of surface d�S = dSr̂. Therefore,
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Then, the radiation intensity, by definition, is

U =
dPr

dΩ
=

1

2
r2Re

{
�E × �H∗} · r̂ (2.32)

Remembering that the cross product in (2.32) is in r̂ direction for the far-field (i.e.,

�Pa = | �Pa|r̂),

U = r2| �Pa| (2.32a)

From equations (2.31) and (2.32), it may also be seen that

(2.33)

The radiation intensity of the inifinitesimal dipole is left as an exercise.

Of course, in general, U in (2.32) and (2.33) may be a function of θ and φ; i.e.,

U ≡ U(θ, φ). However, for an isotropic source, U is a constant, say U0. The power

radiated by such a source becomes, from (2.33)

or, equivalently, for an isotropic source,

U0 =
Pr

4π
(2.34)

For an non-isotropic source, U0 is the average radiation intensity (over all directions).

Finally, we note that a normalized radiation intensity

Un(θ, φ) =
U(θ, φ)

Umax
= |f(θ, φ)|2

may be used to plot a power pattern |f(θ, φ)|2 which has been normalized to unity in

the direction of maximum power and Umax is the corresponding maximum radiation

intensity. For clarification, it may be noted by way of example that for the infinitesi-

mal dipole, f(θ, φ) = sin θ and |f(θ, φ)|2 = sin2 θ gives the normalized power pattern

– we have now quantified what was discussed in a more descriptive way previously
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for this dipole.

3. Directivity

The directivity, D (or D(θ, φ) since, it is, in general, direction-dependent) is de-

fined as “the ratio of the power radiated per unit solid angle to the average power

radiated per unit solid angle”. From the definition of radiation intensity and average

radiation intensity and using equations (2.32) and (2.34),

D(θ, φ) =
U(θ, φ)

U0
=

dPr/dΩ

Pr/4π
, (2.35)

and the directivity is clearly dimensionless. In an exercise, it will be verified that

for the infinitesimal dipole we get, on using (2.32), (2.34) and (2.35) and our earlier

results for Pr, that the directivity is given by

D(θ, φ) = 1.5 sin2 θ . (2.36)

4. Efficiency and Gain

If the total input power to an antenna is Pin and the radiated power is Pr, then

the radiation efficiency, or simply efficiency, εr, is defined as

εr =
Pr

Pin
(2.37)

It must be noted that Pin is the actual power delivered to the antenna and NOT

the power delivered to the transmission line by the power supply. That is, εr does

NOT account for impedance mismatch between the supply line and the antenna,

rather it accounts for dielectric effects (ohmic resistance etc.) of the antenna and its

surroundings. If an antenna is “lossless”, εr = 1.

The gain, G(θ, φ), of an antenna is defined as

G(θ, φ) = 4π
radiation intensity

input power

= 4π
dPr/dΩ

Pin
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Therefore,

G(θ, φ) = εr
dPr/dΩ

Pr/4π
(2.38)

Using (2.35) and (2.38)

G(θ, φ) = εrD(θ, φ) (2.39)

The gain is often incorporated into a parameter called the effective isotropic radiated

power, EIRP. The EIRP is defined as

EIRP = PinGmax (2.40)

where Gmax is the maximum gain. The importance of equation (2.40) is that, for a

given power requirement, Pin can be reduced by increasing antenna gain.

2.3.4 Half-Power Beamwidth

The half-power beamwidth is defined as “the angle between the two directions in which

the radiation intensity is one-half the maximum as measured in a plane containing

the beam maximum”. For example, for the small current element discussed earlier,

recall that

U(θ, φ) ∝ sin2 θ

all other parameters being constant.

If no adjective or descriptor is used with the word “beamwidth”, it is generally un-

derstood to mean the half-power or 3-dB beamwidth.
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2.3.5 Reciprocity

The question may be profitably asked, “Does an antenna in reception mode exhibit

the same characteristics (i.e., the same antenna pattern parameters) as in transmit

mode?” The answer lies in the concept of reciprocity.

Circuit Analogy:

Consider a two-port network consisting of linear, bilateral (i.e., same looking from

both ports), lumped elements.

The reciprocity theorem states that if one places a constant voltage (or current)

generator across one port and places a current (or voltage) meter across the other

port, makes observations of the meter readings and then interchanges the location of

the source and the meter, the meter reading will be unchanged (in fact, this is true

for any pair of ports in a multiport network).

In a similar fashion, consider the following antenna setups:
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By reciprocity,

if VB = VA, then IA = IB . (2.41)

Also, defining the transfer impedance in Case 1 as ZAB =
VA

IB
and in Case 2 as

ZBA =
VB

IA
, reciprocity says that ZAB = ZBA.

Let’s prove (2.41) by using the circuit analogy – i.e., let’s start by representing the

antennas and intervening space by a two-port network of linear, passive, and bilateral

impedances. Insofar as the input voltage and output current are concerned, such a

network may be reduced to an equivalent T-section as shown:

Case 1.

Case 2.

For Case 1,
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Substituting (2.43) into (2.42) relates IB to VA and the impedances as

IB =
VAZ3

Z1Z2 + Z2Z3 + Z1Z3
. (2.44)

Interchanging the source and current meter (Case 2) gives in exactly the same way

IA =
VBZ3

Z1Z2 + Z2Z3 + Z1Z3

. (2.45)

We see from (2.44) and (2.45) that if VA = VB then IA = IB and the reciprocity

theorem is verified. REMEMBER, the space between the antennas must NOT exhibit

directional properties for this to hold.

The idea of reciprocity becomes important in considering mutual impedances due

to coupling effects experienced by antennas in close proximity. We shall leave the

problems of both self- and mutual-impedance for a later portion of the course. To

indicate the magnitude of this problem (in reality), however, it may be pointed out

that the mutual impedance development involves the “solution” of a pair of coupled

integral equations.

2.4 A Small Current Loop

Just as the infinitesimal dipole is a good starting point for discussing linear wire

antennas, so the small circular current loop will provide an introduction to loop

antennas in general. [In this course, we will not consider the general case of larger

loops]. This section addresses the far-field only.

Consider the following geometry for a small current loop in the x-y-plane. Re-

member that the primed coordinates are used for the source points. Here, the loop

radius is r0, R = |�r − �r ′|, and d�� ′ = r0dφ
′φ̂. From Chapter 1 of the Term 5 text the

transformation from cylindrical to Cartesian coordinates gives for this last quantity

d�� ′ =
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From equation (1.40), we have the general form of the required vector potential as

�A(�r) =
∫
v′

μ �J(�r ′)e−jk|�r−�r ′|

4π|�r − �r ′| dv′ (2.46)

In the case of the small planar loop, we replace �J(�r ′)dv′ with I0d��
′ = I0r0dφ

′φ̂ so

that

I0d��
′ = I0r0dφ

′ [− sinφ′x̂+ cosφ ′ŷ] . (2.47)

Furthermore, we note:

Now, R = |�r − �r ′| =
[
(x− x′)2 + (y − y′)2 + (z − z′)2

]1/2
and, based on *,

R = |�r − �r ′| =

Therefore, it may be easily seen that

R = [r2 + r20 − 2rr0 sin θ(cosφ cosφ′ + sinφ sinφ′)]1/2 . (2.48)
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In (2.46), we notice a 1
R
factor in the amplitude and, since r0 � r for the small loop,

we may as well replace R by r for this factor. However, as with the infinitesimal

dipole, we must be very careful about approximations in the phase term, e−jkR. We

agree to the following: r20 � r2 (even in terms of the phase, this will be OK). However,

the third term in (2.48) will have to be considered closely because, while r20 � r2,

the same order does not exist for rr0, r itself being very large. Using the binomial

expansion on the remaining part of (2.48), one obtains (after eliminating r20)

R ≈ r[1− r0
r
sin θ(cos φ cosφ′ + sin φ sinφ′)] ,

and

kR ≈ kr − kr0 sin θ(cosφ cosφ′ + sin φ sinφ′) ,

which implies

e−jkR = e−jkre+jkr0 sin θ(cosφ cosφ′+sinφ sinφ′) . (2.49)

Also, for the small loop r0 � λ. Therefore, kr0 =
2πr0
λ

� 1. Then, we know from the

Maclaurin series that for f(x) � 1,

ef(x) ≈ .

On this basis, (2.49) becomes

e−jkR = e−jkr [1 + jkr0 sin θ(cosφ cosφ′ + sinφ sinφ′)] . (2.50)

Noting the several constants (I0, r0, etc.) associated with this analysis and using

(2.47) and (2.50) along with the approximation in amplitude of R ≈ r, (2.46)may be

written as

�A(�r) =

=

(2.51)
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Since

�A(�r) = (2.52)

Again, recall

We finally have for the vector potential of the small current loop

�A(�r) =
jkμ(I0πr

2
0)

4πr
e−jkr sin θφ̂ (2.53)

In passing, we note that (Iπr20) ≡ (current times loop area) is the magnitude of a

quantity referred to as the magnetic dipole moment, �M , of the small current loop

and it points perpendicular to the loop in the sense given by the right-hand rule as

depicted (i.e., with fingers of the right hand curled in direction of current, �M points

in the direction of the thumb):

Here, then, �M = I0πr
2
0ẑ.

�H-Field

Now, with the vector potential established, we may proceed as usual to find the

fields. Using (2.53) and recalling that

�H =
1

μ
�∇× �A ,
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it is easily seen that

�H = − 1

μr

∂

∂r
[rAφ]θ̂ .

Then (DO THIS)

�H = −k2(I0πr
2
0) sin θ

4πr
e−jkrθ̂ (2.54)

�E-Field Finally, using the far-field, source free form of (1.20) it may be easily estab-

lished (DO IT) that

�E =
ηk2(I0πr

2
0) sin θ

4πr
e−jkrφ̂ (2.55)

Poynting Vector, Radiation Intensity, Power and Resistance

Without doing the calculations here (BUT THEY SHOULD BE DONE), we have:

Time-averaged Poynting Vector:

�Pa =
1

2
Re

{
�E × �H∗} = ? (2.56)

Radiation Intensity: U = r2| �Pa| = ?

Radiated Power:

Pr =
∮
S

�Pa · d�S =
∫ 2π

0

∫ π

0
U sin θdθdφ = ? (2.57)

Radiation Resistance:

Rr =
2Pr

|I0|2 = 320π6
(
r0
λ0

)4

, (2.58)

this last expression being given for free-space operation. We note that a quick check

of the initial power expression or of equation (2.58) itself shows that the radiation

resistance can be written in terms of the loop area, AL as

Rr = 31, 171

(
A2

L

λ4
0

)

for free-space operation (λ0 is the free-space wavelength). Finally, if N turns rather

than a single loop were used then Rr increases by a factor of N2 so that for free space

Rr = 320π6N2
(
r0
λ0

)4

. (2.59)
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This is because the magnetic dipole moment for N turns increases by a factor of N

as compared to a single loop – note that the cross product in �Pa will produce an N2.

The radiation resistance, as usual, is to be distinguished from ohmic loss. If the

loop is not lossless, but highly conducting, the ohmic resistance can be determined

via the skin depth as discussed in Term 6. Additionally, for several loops, there is

an ohmic term due to a phenomenon termed the “proximity effect”. The latter is

documented in graphical form in the literature and may be found in the Balanis

reference.

As for the inifinitesimal dipole, the radiation resistance Rr for the small loop is

very small and such a loop is not generally suited as a transmitting antenna. Small

loops may be used as receiving antennas where signal level is large (eg. multiturn

loops are used in portable AM radio reception and single turns are used in pagers) or

where noise limitations are such that improving antenna efficiency does not necessarily

give better reception.

Also, we note that the antenna efficiency, εr, given by equation (2.37) may be

written (not just for circular loops)

εr =
Rr

Rr + RL

(2.60)

where RL are losses due to conduction–dielectric effects and Rr is the radiation resis-

tance.

Finally, we note that for this small loop �H = Hθθ̂ and �E = Eφφ̂ (equations (2.54)

and (2.55)), while for the infinitesimal dipole �E = Eθ θ̂ and �H = Hφφ̂ (equations

(2.16) and (2.17)). However, in both cases, Pa will vary as sin2 θ so that the radiation

patterns of the loop have the same general characteristics as the dipole. We note for

the loop that the nulls occur at θ = 0, π – i.e., along the axis perpendicular to the

loop. See reverse side for diagrams.
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