
Unit 3

Linear Wire Antennas and
Antenna Arrays

While the poor efficiency of the “small” antennas discussed in the last unit limits their

practicality, the ideas encountered in analyzing them are very useful in establishing

the radiation characteristics of larger, more efficient, structures. The main restriction

in what follows is the imposition of the requirement that the linear wires involved

have a diameter (d) which is small compared to a wavelength (λ) – i.e., they are thin

antennas. If d � λ, the current along the arbitrarily long dipole is essentially sinsoidal

with nulls at each end (more on this shortly) and the analysis is fairly straightforward.

The case of d �/ λ is not considered in this course.

A linear antenna may be characterized as an arbitrary current on a thin straight

conductor lying along the z-axis and centred at (0, 0, 0). This structure is fed at

its midpoint by a transmission line – i.e., this is a dipole antenna with length, �,

unrestricted. The two “arms” of the dipole are the regions where curents can flow

and charges accumulate.

3.1 Thin, Linear Wire Dipole Antennas

Consider a thin dipole antenna of arbitrary length being fed at its centre as shown

below. The antenna is chosen for the purpose of this analysis to lie along the z-axis

and to be centred at (0, 0, 0). We shall examine the far field of this structure.
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Facts: (1.) The dipole is thin and the current is essentially sinusoidal – we shall use

the form I(z′) as the phasor current.

(2.) The current goes to zero at the ends of the dipole – i.e., current nulls exist at

the ends.

(3.) The current is given by

I(z′) = I0 sin

[
k

(
�

2
− |z′|

)]
(3.1)

where k = 2π/λ as before. It may be verified experimentally – as well as from a variety

of theoretical methods – that equation (3.1) is an extremely good representation of

the current on thin linear dipoles. The expression sin

[
k

(
�

2
− |z′|

)]
is referred to as

the form factor for the current on the antenna. Here, then, equation (1) is taken as

a “given”.

3.1.1 The Vector Potential and Resulting Fields of the Thin

Linear Dipole

The usual approach of determining the potential, �A(�r), in order to find the �E and

�H fields will again be followed. As previously, we have for the vector potential, in
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general for a line current,

�A(�r) =
μ

4π
ẑ
∫ �/2

−�/2

I(z′)e−jk|�r−�r ′|

|�r − �r ′| dz′ (3.2)

Because the dipole is “thin” and lies along the z-axis, x′ = y′ = 0 and

|�r − �r ′| =
√
x2 + y2 + (z − z′)2 . (3.3)

For the far-field, we have shown in Section 2.2.2 that, since r � z′, equation (3.3)

reduces to

|�r − �r ′| ≈ r − z′ cos θ . (3.4)

Using (3.4) in the phase factor and |�r − �r ′| ≈ r in the amplitude factor of (3.2), we

write

(3.5)

Putting the expression for the dipole current of equation (3.1) into (3.5) yields

(3.6)

Doing the integration, it is easily verified that

�A(�r) = ẑ
μI0e

−jkr

2πr

⎡
⎣cos

(
k�
2
cos θ

)
− cos

(
k�
2

)
k sin2 θ

⎤
⎦ . (3.7)

Beginning with �H =
1

μ
�∇× �A, it is straightforward to determine that in the far-field

(where we retain terms ∝ 1
r
and drop higher orders of 1

r
)

�E(�r) = Eθθ̂ =
jηI0e

−jkr

2πr

⎡
⎣cos

(
k�
2
cos θ

)
− cos

(
k�
2

)
sin θ

⎤
⎦ θ̂ (3.8)

and

�H(�r) = Hφφ̂ =
jI0e

−jkr

2πr

⎡
⎣cos

(
k�
2
cos θ

)
− cos

(
k�
2

)
sin θ

⎤
⎦ φ̂ . (3.9)

The magnitudes of the expressions in the square brackets are referred to as the E- and

H-field pattern (or amplitude pattern), f(θ), respectively (or, in general, f(θ, φ)).
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3.1.2 Power Density and Other Parameters

The other far-field characteristics, such as the Poynting vector, radiation intensity,

radiation resistance and so on may now be determined from equations (3.8) and (3.9).

Time-Averaged Poynting Vector, �Pa:

The time-averaged Poynting vector, �Pa may be determined as usual according to

�Pa =

=

⇒ �Pa =
η|I0|2
8π2r2

⎡
⎣cos

(
k�
2
cos θ

)
− cos

(
k�
2

)
sin θ

⎤
⎦
2

r̂ W/m2 . (3.10)

Radiation Intensity, U ≡ U(θ, φ):

The radiation intensity, U may be determined as usual according to

Therefore,

U =
η|I0|2
8π2

⎡
⎣cos

(
k�
2
cos θ

)
− cos

(
k�
2

)
sin θ

⎤
⎦
2

W/sr (3.11)

Average Radiated Power, Pr, and Radiation Resistance, Rr:

Again, considering the power density over a sphere surrounding the dipole we get

as before (see equation (2.33))

Pr =
η|I0|2
4π

∫ π

0

[
cos

(
k�
2
cos θ

)
− cos

(
k�
2

)]2
sin θ

dθ W . (3.12)
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This is the general form of the radiated power from a dipole of arbitrary length. This

final integral is not “simple” and it doesn’t reduce to a closed-form result. After four

or five pages of tedious manipulations, it transpires that

Pr =
η|I0|2
4π

{
C + ln(k�)− Ci(k�) +

1

2
sin(k�) [Si(2k�)− 2Si(k�)]

+
1

2
cos(k�)

[
C + ln

(
k�

2

)
+ Ci(2k�)− 2Ci(k�)

]}
W (3.13)

where C = 0.5772 is called Euler’s constant and the Cosine and Sine integrals are

defined as follows:

Ci(x) = −
∫ ∞

x

cos y

y
dy =

∫ x

∞
cos y

y
dy (Cosine Integral)

Si(x) =
∫ x

0

sin y

y
dy (Sine Integral)

These integrals do not exist in closed form, but they may be “performed” as series

expansions. Of course, with numerical integration (eg., Matlab, Mathematica, Maple,

etc.) numerical answers may usually be obtained very efficiently.

From equation (2.28) and (3.13), the radiation resistance is given by

Rr =
2Pr

|I0|2 =
η

2π

{
C + ln(k�)− Ci(k�) +

1

2
sin(k�) [Si(2k�)− 2Si(k�)]

+
1

2
cos(k�)

[
C + ln

(
k�

2

)
+ Ci(2k�)− 2Ci(k�)

]}
Ω (3.14)

3.1.3 Special Cases of the Thin Dipole

Having the general forms for the important parameters of the thin dipole, we will

now consider one special case in detail and briefly refer to some others.

The Half-Wave Dipole

Current Distribution

For the half-wave dipole, by definition, � = λ/2. Substituting this into equation

(3.1) yields for the current distribution
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I(z′) =

=

⇒ I(z′) = I0 cos(k|z′|) (3.15)

�E and �H Fields:

Noting in (3.8) and (3.9) that k�/2 = (2πλ)/(λ · 2 · 2) = π/2,

(3.16)

(3.17)

Clearly, the field patterns (i.e. the amplitude patterns) are given by

∣∣∣f(θ)|�=λ/2

∣∣∣ =
∣∣∣∣∣∣
cos

(
π
2
cos θ

)
sin θ

∣∣∣∣∣∣ (3.18)

The field pattern may be easily established numerically (or may be checked analyti-

cally for maxima and minima):

(3.19)

Setting f ′(θ) = 0 to seek maxima and minima eventually leads to

π

2
sin

(
π

2
cos θ

)
sin2 θ = cos θ cos

(
π

2
cos θ

)

provided we put the restriction sin θ 	= 0 (hold on for this case). A quick check (not

a proof!) reveals that θ = π
2
creates equality in the last expression. From (3.19)

Now, to get the minima in the pattern, we can’t (without checking) simply set the

numerator to zero in (3.19) because the “solution” is then θ = 0, π and this makes
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the denominator 0 also – i.e. f(θ) −→ 0
0
which is an indeterminate form. However,

using L’Hopital’s rule on (3.19) gives

Therefore, there are indeed nulls at θ = 0, π. These results should not be surprising

in view of the current pattern on the dipole as given above.

Principal Plane Patterns:

Time-Averaged Poynting Vector, �Paλ
2

:

Using � = λ/2 and noting that k�/2 = π/2, equation (3.10) readily gives for the

half-wave dipole

�Paλ
2

=
η|I0|2
8π2r2

cos2
(
k�
2
cos θ

)
sin2 θ

r̂ W/m2 . (3.20)

Radiation Intensity, Uλ
2
:

Using � = λ/2 and noting that k�/2 = π/2, equation (3.11) readily gives for the

half-wave dipole

Uλ
2
= r2

∣∣∣∣ �Paλ
2

∣∣∣∣ = η|I0|2
8π2

cos2
(
π
2
cos θ

)
sin2 θ

W/sr . (3.21)
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Note that the power pattern shape is given by

F (θ, φ) = |f(θ, φ)|2 = cos2
(
π
2
cos θ

)
sin2 θ

Radiated Power, Prλ
2

:

From equations (2.33) and (3.21), it is easily seen that the radiated power is given

by

This must be done numerically, in which case it can be shown that the final integral

has a value
∫ π

0
= 1.218. Then, using the free-space value of η0 = 120π,

Prλ
2

= 36.54|I0|2 W (3.22)

Note that this result could have been readily obtained by programming equation

(3.13).

Radiation Resistance, Rrλ
2

:

As usual, set Prλ
2

=
1

2
|I0|2Rrλ

2

and from (3.22)

Rrλ
2

= 2× 36.54 = 73.1Ω .

This is the radiation resistance of the thin half-wave dipole in free space.

Current Distributions on Other Dipoles and Relative �E-Field Patterns

Recall I(z′) = I0 sin

[
k

(
�

2
− |z′|

)]
.

� <
λ

2
:
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λ

2
< � < λ:

Up to a limit, the beam becomes more directive, with maximum gain in the

horizontal direction, as the antenna length increases – at � >
5λ

4
other lobes appear

in the pattern; that is, the beam splits up.

λ < � <
3λ

2
:

3.2 Images and Monopoles

The concept of “image theory” in electromagnetics states that “any given charge

configuration above an infinite, perfectly conducting plane is electrically equivalent

to the combination of the the given charge configuration and its image configuration

with the conducting plane removed”. For this to “work”

1. the image charge configuration must be placed in the region (half-space) con-

taining the conductor

and
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2. the image charge configuration must be placed so that the potential at the

conductor surface is a constant (generally zero – at infinity the potential is also

zero).

Illustration:

Repeating our previous theory for the second situation leads to the same �E, �H, and

�Pa expressions as before – but only for the z > 0 region! The results DO NOT APPLY

in the z < 0 region. The second illustration above is that of a monopole antenna. It

could be realized, for example, by extending the centre conductor of a coaxial cable

through a ground plane while the outer conductor is attached to the plane.

In the present context of thin wire antennas, consider a quarter-wave (λ/4) monopole:
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While the fields and Poynting vector using the antenna and the image have the same

expressions as for the λ/2 dipole in free space, the radiated power is only half that

of the dipole. This is easy to believe since in the z > 0 region (region of analysis

validity), 0 ≤ θ ≤ π
2
while for the dipole in free space, 0 ≤ θ ≤ π. Therefore, the

following hold:

Note: Here we have considered the antenna to be at the level of the ground plane

(not raised above it).

Similar analysis could be carried out for any antenna configuration. For example:
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Note, additionally, that if the ground is not perfectly conducting – i.e. the case

for all real-life situations – the field patterns will not be exactly as discussed. In fact,

significant modifications may exist depending on the electrical characteristics, in par-

ticular σ and ε, of the ground. Other “real” problems which may need consideration

arise from the fact that the ground may not be planar in the the antenna’s field of

view. There are theoretical analyses as well as practical computer programs which

may be used to address such issues. We will not consider them further here.

3.3 Antenna Arrays

We have seen that enlarging the dimensions electrically – which may be done by

enlarging the physical dimensions or by electrical means (for example, recall the “ca-

pacitive hats” discussed in the context of the small element in Section 2.2.1) – makes

an antenna more directive (higher gain). Another way of increasing the directive

characteristics is to use multiple elements in special electrical and geometrical con-

figurations. Such a combination of antenna elements is called an antenna array. In

this section, we shall consider arrays of dipole elements. The nature of the resulting

antenna pattern will depend on several controlling factors:

1. the geometrical layout of the array – i.e., the shape of the combination of ele-

ments, whether it be linear, circular, rectangular, etc..

2. the relative displacement between the elements – usually referred to in terms of

wavelength.

3. the excitation amplitude of the individual elements.

4. the excitation phase of the individual elements.

5. the relative pattern (power or field pattern) of the individual elements.
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A very important class of antenna elements is the linear array formed by placing

identical, equally spaced elements along a line. As well, more complicated analytically,

are planar arrays and circular arrays (a special case of planar arrays) arranged as

shown.

We shall begin our analysis with the 2-element array.

3.3.1 Two-Element (Dipole) Array – Free Space Analysis

To simplify the analysis, we consider the following:

1. both elements have the same physical and electrical properties (i.e., length,

material, and thus radiation resistance, etc. are the same).

2. there is no coupling between the two elements.

Property (2) is not likely to be satisfied in “real life”, but as a reasonable approxima-

tion it allows us to get some idea of the resulting pattern without undue mathematical

complications. Remember, too, that in actual implementations neither free space nor

perfect ground are exactly realizable. For particular implementatioms of an antenna

array, the patterns may be measured directly after the initial design and installation.

Several numerical (computer) techniques provide an excellent means of giving a good

idea of antenna performance before the actual fabrication and installation occurs.

With these facts in mind, we proceed with the case of the ideal two-element array in

free space and seek the E-field patterns.

First, recall the following examples:
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1. Elementary (i.e. Infinitesimal) Dipole Source: To emphasize that, in general, �E

may be a function of r, θ, and φ and noting η = 120π for free space while

k = 2π/λ, we write equation (2.16) as

which implies

�E(r, θ, φ) =
CI0
r

e−jkr �Ea(θ, φ) (3.23)

where C =
j60π�

λ
is a complex constant and

�Ea(θ, φ) = sin θθ̂

is the direction-dependent factor. Recall that the far-field, principal plane pat-

terns are:

2. Half-Wave Dipole: From equation (3.16) (note that we could use (3.8) and dis-

cuss the general dipole)

�E(r, θ, φ) =
CI0
r

e−jkr �Ea(θ, φ) (3.24)

where, now, C = j60 and

�Ea(θ, φ) =

⎡
⎣cos

(
π
2
cos θ

)
sin θ

⎤
⎦ θ̂ .

The principal plane patterns are
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The idea that we get from (3.23) and (3.24) is that the far-field �E of a vertical dipole

antenna may be written in general form as

�E(r, θ, φ) = [ Complex Constant ]×
[
I0
r
e−jkr

]
× [ Direction Dependent Factor ]

(3.25)

With this information in place, let us now consider an “array” of two identical

vertical dipole antennas. Furthermore, we shall consider only the far field (i.e. r � d

where d is the distance between the elements). For reference purposes, let’s put the

elements along the x-axis as shown (this is totally arbitrary – we could use any axis).

Because r � d, the θ and φ coordinates are approximately the same with respect to

both elements. We shall label the first antenna 0 and the second, 1.

Element 0 carries current I0 and element 1 carries current I1 – this means that I1

replaces I0 in the field equation for the element involved. We note the following:

1. From the point of view of magnitude, in the far field, r0 ≈ r1 and, of course,

1

r1
≈ 1

r0
FACT 1

2. However, as discussed earlier, we can’t make this approximation in the phase.

Rather, from the above diagram,

r1 = r0 − d cosα FACT 2

We’ll use �E0(r0, θ, φ) and �E1(r1, θ, φ) for the far fields of elements 0 and 1 respec-

tively, with corresponding direction-dependent parts of �E0a and �E1a as in equations
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(3.23) or (3.24) or (3.25). Then, for the first element

�E0(r0, θ, φ) =
CI0
r0

e−jkr0 �E0a(θ, φ) (3.26)

and for the second element

�E1(r1, θ, φ) =
CI1
r1

e−jkr1 �E1a(θ, φ)

or, because the direction characteristics of identical elements are identical,

�E1(r1, θ, φ) =
CI1
r1

e−jkr1 �E0a(θ, φ) (3.27)

Now, the total �E-field, �ET , may be written as

(3.28)

on using (3.26) and (3.27) in (3.28) along with FACTS 1 and 2,

�ET (r0, θ, φ) = C

[
I0e

−jkr0

r0
+

I1e
−jk(r0−d cosα)

r0

]
�E0a(θ, φ) (3.29)

Let’s further assume that I1 is related to I0 via

where A =
|I1|
|I0| and β is the phase difference between the two currents – i.e. we

are allowing for scalar multiplication in amplitude and a phase shift. Clearly, (3.29)

becomes

�ET =

[
CI0e

−jkr0

r0
�E0a(θ, φ)

] [
1 + Aej(kd cosα+β)

]

or

�ET = �E0(r0, θ, φ)
[
1 + Aejkd cosα+jβ

]
(3.30)

Important note:

16



Pattern Multiplication

Let’s write equation (3.30) in the form

�ET = �E0(r0, θ, φ)E
′(α, β) (3.31)

where E ′(α, β) = (1 +Ae(jkd cosα+jβ)) is called the array factor and �E0(r0, θ, φ) is the

field pattern for an individual element. We have seen that the general shape of the

�E0(r0, θ, φ) pattern in both the horizontal and vertical planes for vertical dipoles on

several different occasions already.

Now, the pattern based on the array factor is called the group pattern and is found

by plotting the magnitude |E ′(α, β)|, while bearing in mind the earlier definition of

α. Thus, based on (3.30) and (3.31), we see that

Resultant Pattern = Unit Pattern × Group Pattern (3.32)

and this may be readily deduced for either the horizontal or vertical planes – i.e.,

azimuth and elevation.

Special Case |I1| = |I0|
In this case, A = 1 in equation (3.30). Then,

|E ′(α, β)| =
∣∣∣1 + e(jkd cosα+jβ)

∣∣∣ ,
which is easily shown to be (do this)

|E ′(α, β)| = 2

∣∣∣∣∣cos
(
kd cosα+ β

2

)∣∣∣∣∣ , (3.33)

It will thus be observed that varying the phase, β, is a technique which will allow the

direction of the array factor to be altered – i.e., β may be altered to “steer” the beam

of the array.

17



Special Case 1. β = 0◦ for the Two-Element Array

Let us suppose that the equal magnitude currents that led to (3.33) are also in

phase. That is, β = 0◦. Furthermore let us assume that the array spacing is d = λ/2

so that kd = π.

Horizontal Plane (α = φ):

We note from (3.33) that

|E ′(α, β)| α = φ
β = 0◦

= 2

∣∣∣∣∣cos
(
kd cosα + β

2

)∣∣∣∣∣ α = φ
β = 0◦

= 2

∣∣∣∣∣cos
(
π cos φ

2

)∣∣∣∣∣
Note:

Note that the maxima are in the direction perpendicular to the array line (which was

taken along the x-axis from the outset of this analysis). Thus, with β = 0, that is

with the currents in phase, the array is said to operate in broadside mode.

Vertical Plane (α = 90◦ − θ):
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Special Case 2. β = 180◦ for the Two-Element Array

Let us suppose that the equal magnitude currents that led to (3.33) are out of

phase by 180◦ – that is, β = 180◦. Furthermore let us assume that the array spacing

is still d = λ/2 so that kd = π.

Horizontal Plane (α = φ):

We note from (3.33) that the group pattern is given by

|E ′(α, β)| α = φ
β = 180◦

= 2

∣∣∣∣∣cos
(
kd cosα + β

2

)∣∣∣∣∣ α = φ
β = 180◦

= 2

∣∣∣∣∣cos
(
π cosφ+ π

2

)∣∣∣∣∣

Comparing with the β = 0◦ case, we note that the maxima are in the direction parallel

to the array line (which was taken along the x-axis from the outset of this analysis).

Thus, with β = 180◦, that is with the currents out of phase by 180◦, the array is said

to operate in endfire mode.

Vertical Plane (α = 90◦ − θ):

Now the group pattern becomes

|E ′(α, β)| α = 90◦ − θ
β = 180◦

= 2

∣∣∣∣∣cos
(
π sin θ + π

2

)∣∣∣∣∣

It is possible to determine that when d > λ/2, additional lobes appear. (Try this

with a small Matlab program).
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3.3.2 The Linear Array

Consider, next, the more general case of M equally-spaced identical elements lying

along a line as indicated. Again, we are interested in the far field. As usual, d is the

element spacing, r0 is the distance from the 0th element and so on up to rM−1.

Assumption: The array length (M − 1)d � rn for 0 ≤ n ≤ M − 1.

Consequence: The θ and φ coordinates of the field point are the same with respect to

each element.

Thus, the total field at the observation point due to all of the elements may be written

as

�ET =
M−1∑
n=0

�En(rn, θ, φ) (3.34)

Proceeding as for the two-element case (see equation (3.26))

(3.35)

and, in general, for the nth

�En(rn, θ, φ) =

= (3.36)

since the direction-dependent factor is the same for each element. As before, in the

amplitude sense, for the far field,

1

rn
≈ 1

r0
, (3.37)
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but in the phase term we must specify

rn = r0 − nd cosα . (3.38)

Using (3.36), (3.37), and (3.38) in (3.34),

�ET =
M−1∑
n=0

CIn
r0

e−jkr0+jknd cosα �E0a(θ, φ)

=

[
CI0e

−jkr0

r0
�E0a(θ, φ)

] [
M−1∑
n=0

In
I0
ejknd cosα

]

Therefore,

�ET = �E0(r0, θ, φ)

[
M−1∑
n=0

In
I0
ejknd cosα

]
(3.39)

The term containing the summation is commonly referred to as the array factor (AF).

It may be clearly observed from equation (3.39) that the following statement may be

made about the “resultant pattern” of a linear array:

resultant pattern = unit pattern × group pattern.

Now, some special cases of linear arrays may be considered.

Special Case 1: The Uniform Linear Array

In a uniform linear array, the current magnitudes are equal, but there is a uniform

progression in the phase of the current from one element to the next. This phase shift,

β, may take positive or negative values. For this case, the currents may be written as

In = I0e
jnβ , (3.40)

Then, equation (3.39) may be written as

�ET = �E0(r0, θ, φ)E
′(α, β)

where

E ′(α, β) =
M−1∑
n=0

ejn(β+kd cosα)
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or

E ′(α, β) =
M−1∑
n=0

ejnΨ (3.41)

where

Ψ = β + kd cosα . (3.42)

The RHS of (3.41) is a M-term geometric progression whose first term is 1 and whose

constant ratio is ejΨ. Therefore, (3.41) may be written as

Since
∣∣∣ej Ψ

2
(M−1)

∣∣∣ = 1, it is seen that

|AF| = |E ′(α, β)| =
∣∣∣∣∣∣
sin

(
MΨ
2

)
sin

(
Ψ
2

)
∣∣∣∣∣∣ (3.43)

will establish the shape of the group pattern. Furthermore, if the unit pattern is

circular – as is the case, for example, for λ/2 vertical dipoles with α = φ and θ = 90◦

– |AF| establishes the resultant pattern for the array.

Equation (3.43) is worthy of closer scrutiny:

1. Notice that when Ψ = 0, (3.43) becomes the indeterminate form 0
0
. However,

on using L’Hopital’s rule, it readily verified that

lim
Ψ→0

|AF| = M.

It may indeed be verified that Ψ = 0 produces the principal (or absolute)

maximum (check it out numerically). Thus, a normalized form of (3.43) having

a principal maximum of unity may be written as

|AF|n =
1

M

∣∣∣∣∣∣
sin

(
MΨ
2

)
sin

(
Ψ
2

)
∣∣∣∣∣∣ (3.44)
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2. Secondary maxima occur when, in (3.43),

MΨ = ±(2i+ 1)π , i ∈ N

or

Therefore from (3.42)

which gives

cosα = −
(
β

kd

)
± (2i+ 1)

π

Mkd
(3.45)

i = 1 produces the first secondary maximum, i = 2 produces the second sec-

ondary maximum, and so on. It is easy to show that for large M , the first

secondary maximum is about -13.5 dB down from the principal maximum. (To

be completed on a tutorial).

3. Nulls occur when, in (3.43), the numerator is zero but the denominator is not

zero. With this caution, we set

MΨ

2
= ±iπ , i ∈ N (but i 	= M, 2M, 3M, . . .)

which implies

or

cosα = −
(
β

kd

)
±
(

2iπ

Mkd

)
(3.46)

Remember that in (3.45) and (3.46), α = φ in the horizontal plane and α = 90◦ − θ

in the vertical plane. This analysis shows that, in general, a linear array will produce

an array factor with a shape something like
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Case 1a. The Uniform Broadside Array

Consider M vertical equally spaced dipoles along the x-axis as shown. We are

going to examine the array factor in the x-y plane – i.e. α = φ.

Recall that the normalized unit pattern is a unit circle in the x-y plane. In a broadside

linear array, the principal maximum is in a direction 90◦ to the line containing the

array elements – that is, φ = 90◦ is the direction of the principal maximum. Let’s

check the required phase for the currents:

We know from (3.42) that

Ψ = β + kd cosα

and note in passing that Ψ is an even function of φ for the horizontal plane, making

the AF an even function also. For α = φ and φ = π/2 along with the principal

maximum occurring at Ψ = 0 (see Note (1) above) we have

Since k and d are constants, β = 0. Therefore, when the elements are fed “in-phase”,

the array operates in “broadside” mode.

Typical Result:
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Width of the Main Lobe – i.e. Beamwidth

Let’s consider the width of the main lobe in terms of the E-field pattern. With

reference to the sketch above,

Width of Main Lobe = 2Δφ

where Δφ is the angle between the principal maximum and the first null either side

of it. The direction of the first null is readily obtained from (3.46) as

Therefore,

Width of Main Lobe = 2 sin−1

[
λ

Md

]
(3.47)

We make the important observation from (3.47) that if the array is long (i.e. Md is

large), the “beam” will be narrow. In fact, if we assume (λ/Md) is small so that

sin−1

[
λ

Md

]
≈ λ

Md
,

then

Width of Main Lobe = 2Δφ =
2λ

Md
.

Half-Power Beam Width

We now attempt to find the half-power beamwidth of a uniform broadside linear

array of dipoles for which, in the horizontal plane as considered above, the unit pattern

is a circle. Recall that for this situation β = 0 and α = φ so that (3.42) is

Ψ = kd cosφ

and that the E-field pattern has array factor
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with maximum value of M . Recalling that

power ∝ (E-field)2,

a normalized power pattern may be found by simply squaring the array factor:

For the situation under consideration,

|AF|2 =
∣∣∣∣∣∣
sin

(
Mkd
2

cosφ
)

sin
(
kd
2
cosφ

)
∣∣∣∣∣∣
2

whose maximum value is obviously M2. To determine where this quantity reaches

half its maximum value (i.e. the direction in which the power is half its maximum),

we set

(3.48)

and “solve” for φ eventually. Here we have used Ψ1/2 to indicate the Ψ at the half-

power positions. It is not hard to convince oneself that for a long array (say, several

elements spaced by half wavelengths) Ψ1/2/2 is small so that sin(Ψ1/2/2) ≈ Ψ1/2/2.

Also, recall that

and the numerator in the left member of equation (3.48) gives (using the first two

terms of the expansion)

sin

(
MΨ1/2

2

)
=

MΨ1/2

2
− 1

6
M3

(
Ψ1/2

2

)3

(3.49)

Rearranging (3.48)

and using the above approximations gives

26



This reduces to

Ψ1/2 =
2.65

M

Since β = 0, using (3.42) with α = φ gives

(3.50)

where φ1/2 is the angle associated with the half-power point. (Note that in (3.50),

(Md) is approximately the array length.) To see how this analysis leads to the half-

power beamwidth, consider the following:

From this we see that for large array lengths, Δφ1/2 will be small. To a good approx-

imation, therefore,

and the half-power beamwidth, BW1/2, is

BW1/2 = 2Δφ1/2 =
2.65λ

πMd
(3.51)

Notice that the half-power beam width is inversely proportional to the array length

(approximately).
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