
Chapter 4

Sinusoidal Steady-State Analysis

In this unit, we consider circuits in which the sources are sinusoidal in nature. The
review section of this unit covers most of section 9.1–9.9 of the text. The new material
is almost exclusively contained in Chapter 10 of the text.

4.1 Review

4.1.1 Sinusoidal Sources

Up to this point in the course, we have considered only dc sources. Now we consider
voltage or current sources that vary sinsusoidally with time. For example, if v(t) is a
sinusoidal (or co-sinusoidal) voltage it may be written as (dropping the explicit time
argument)

v = Vm cos(ωt+ φ) (4.1)

where Vm is the magnitude of the voltage, ω is the radian frequency in radians/s
which is related to the frequency f in hertz via

ω = 2πf = 2π/T (4.2)

and φ is the so-called phase angle measured in radians. Of course, T is the period
of the voltage. Notice that a positive φ shifts the time function to the left and a
negative φ shifts the function to the right.
Illustration:

The root mean square (rms) value of a periodic function is simply the “square
root of the mean value of the squared function”. Thus, for v as in equation (4.1), the
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rms value Vrms is given by

Vrms =

√
1

T

∫ t0+T

t0

V 2
m cos2(ωt+ φ)dt

from which it is easily shown (DO IT) that

Vrms =
Vm√

2
(4.3)

Of course, equations completely analogous to the above may be written for sinusoidal
current i(t).

4.1.2 Sinusoidal Response

To illustrate the ideas associate with circuit responses to sinusoidal sources consider
the following circuit:

Given that the voltage source is sinusoidal as in equation (1), applying KVL to the
circuit gives

L
di

dt
+Ri = Vm cos(ωt+ φ) (4.4)

This is a little more difficult non-homogeneous first order equation than what we had
for the dc case. However, from our earlier studies it is not too hard to believe that
when the switch is closed there will be a transient response which eventually “settles
down” (at least for stable systems) to some steady state value. That is, it will be of
the form

i = Ae−t/τ +B cos(ωt+ φ− θ) (4.5)

where for linear circuit elements, we have allowed for a magnitude change (as is
incorporated in the constant B) and a phase shift as is indicated by the parameter θ.
Note that the frequency of the steady-state response is the same as that of
the source but, in general, the amplitude and phase angle of the response are
different from those of the source. The first term is transient and the constants
A, τ , B, and θ depend on the type and value of the circuit elements. In the RL circuit
shown, τ = L/R as before (i.e. the time constant). By substituting the steady state
solution into the differential equation, the coefficient B is easily shown to be

B =
Vm√

R2 + ω2L2
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while for the given circuit

θ = tan−1

(
ωL

R

)
.

Since for this circuit, i = 0 at t = 0, it is easily deduced that

A = −B cos(φ− θ) .

4.1.3 Phasors

It is clearly the case that if

v = Vm cos(ωt+ φ)

with Vm being real, then

v = R
{
Vme

j(ωt+φ)
}

= R
{
Vme

jφej(ωt)
}

= R
{
V ej(ωt)

}
where

V = Vme
jφ (4.6)

is a complex number which is referred to as the phasor representation of the
sinusoidal (or time-harmonic) time function. Thus, a phasor whose magnitude is
the amplitude of the time function and whose phase is the phase angle of the time
function is a means of representing the function (in the complex domain) without
using time. Manipulating functions in this way is also referred to as frequency-
domain analysis. It is easy to see that a time derivative is transformed to a jω in
the frequency domain:

Illustration of a Phasor Transform and an Inverse Phasor Transform:
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4.1.4 Passive Circuit Elements in Frequency Domain

Resistance
The sign convention for a resistance carrying a sinusoidal current is illustrated as

Considering now that v and i are both sinusoids, we write

v = iR

which in the frequency domain transforms to

V = IR (4.7)

where V and I are the phasor representations of v and i, respectively.

Inductance
The sign convention for an inductor carrying a sinusoidal current is illustrated as

Recall the voltage-current relationship for an inductor (where now both are sinsu-
soids):

v = L
di

dt

Since the time derivative transforms to jω, the equation in phasor form becomes

V = L(jωI) = jωLI (4.8)

The quantity jωL is referred to as the impedance of the inductor and ωL alone is
referred to as the reactance.

Consider a current given by i = Im cos(ωt+ θi) in the inductor. The phasor is

Thus, the time domain voltage is given by

v = = (4.9)
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and we see that the voltage across the inductor leads the current through it by 90◦.
Capacitance
The sign convention for a capacitor across which exists a sinusoidal voltage is illus-
trated as

Recall the voltage-current relationship for a capacitor (where now both are sinsu-
soids):

i = C
dv

dt

Since the time derivative transforms to jω, the equation in phasor form becomes

I = C(jωV ) → V =
I

jωC
(4.10)

The quantity 1/(jωC) is referred to as the impedance of the capacitor and −1/(ωC)
alone is referred to as the reactance. It is easy to show that the voltage across the
capacitor lags the current through it by 90◦ (DO THIS). The voltage and current
relationships for the three passive elements above may be illustrated by a “phasor”
diagram where we have used subscripts to indicate the voltages across the particular
elements.

Impedance – General
From equations (4.7), (4.8) and (4.10) we may write generally that

V = IZ (4.11)

where Z in ohms is the impedance of the circuit or circuit element. In general, Z is
complex – its real part is “resistance” and its imaginary part is “reactance” –

Z = R + jX (4.12)

We also define the reciprocal of the impedance as the admittance Y in siemens
or mhos:

Y =
1

Z
= G+ jB (4.13)

G is conductance and B is susceptance.
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4.2 Kirchhoff’s Laws and Impedance Combinations

We will now consider Kirchhoff’s voltage and current laws in the phasor (frequency)

domain.

Kirchhoff’s Voltage Law

It is easy to show in the same manner as considered below for the current law that

if sinusoidal voltages v1,v2,. . . ,vn exist around a closed path (assuming steady state)

in a circuit so that

v1 + v2 + . . .+ vn = 0 ,

then, the phasor equivalent is given by

V1 + V2 + . . .+ Vn = 0 (4.14)

where v1 ↔ V1, v2 ↔ V2, etc..

Kirchhoff’s Current Law

Applying KCL to n sinusoidal currents having, in general, different magnitudes

and phases (but the same frequency) we get

i1 + i2 + . . .+ in = 0 ,

In general, each current has the form i = Im cos(ωt+ θ). Now,

i1 = R
{
Im1e

jθ1ejωt
}

; i2 = R
{
Im2e

jθ2ejωt
}

etc.

Therefore,

which implies

I1 + I2 + . . .+ In = 0 . (4.15)
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Series Impedances

Consider a series combination of complex impedances Z1,Z2,. . . ,Zn represented as

shown with voltage and current in phasor form.

From equation (4.11) [i.e. V = IZ] and KVL,

Therefore,

Zab = Zs = Z1 + Z2 + . . .+ Zn (4.16)

where Zs refers to the total series impedance.

Parallel Impedances

Consider a parallel combination of complex impedances Z1,Z2,. . . ,Zn represented

as shown with voltage and currents in phasor form.

From KCL,

I1 + I2 + . . .+ In = I

From equation (4.11),
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where Zp is the total or equivalent parallel impedance. Therefore,

1

Zp
=

1

Z1

+
1

Z2

+ . . .+
1

Zn
. (4.17)

For example, for the special case of two parallel impedances,

Zp =
Z1Z2

Z1 + Z2

.

Delta-Wye Transformations

Just as we have seen that series and parallel impedances add in the same fashion

as their resistive counterparts, so the delta-wye transformations on page 9 of Unit

1 of these notes can be used to write an analogous set of transformations involving

impedances. The results are given below (the derivations are straightforward as we

saw for resistances and won’t be repeated here). Consider the following delta-wye

configuration:

These will be useful in analyzing bridge-type circuits and also in later courses

where 3-phase power is considered.

Summary of the Phasor Approach to Circuit Analysis

For circuits containing passive elements R, L, and C and sinusoidal sources, the

phasor approach to circuit analysis is:

1. Convert voltages v and curernts i to phasors V and I, respectively.

2. Convert R’s, L’s and C’s to impedances.

3. Use the rules of circuit analysis to manipulate the circuit in the phasor domain.

4. Return to the time domain for voltages and currrents etc. by using the inverse-

phasor-transformation forms i = R
{
Iejωt

}
and v = R

{
V ejωt

}
.
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Page 9 should be a looseleaf sheet with a sample problem.

4.2.1 Phasor Diagrams

As noted in Section 4.1.3, a phasor may be represented geometrically in the complex

plane as an arrow whose magnitude is the magnitude of the phasor and whose direc-

tion is the phase angle. Such phasors may represent voltages, currents or impedances.

To illustrate their usefulness, consider the following example:

Example of Using a Phasor Diagram: Consider the circuit shown below. Assume the

phase angle of the voltage phasor V is 0◦ (i.e. V = Vm 6 0◦). Use a phasor diagram

to determine the value of R that will cause the current through the resistor to lag

the source current by 45◦ when the radian frequency of the sinusoids involved is

2500 rad/s.
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4.2.2 Useful Circuit Analysis Techniques – Phasor Domain

In our earlier analyses for circuits with dc sources, we noted that the following tech-

niques:

(1) Source Transformation

(2) Thévenin/Norton Equivalent Circuits

(3) Node-voltage Analysis

(4) Mesh-current Analysis

These techniques may be also applied in steady-state ac analysis in the phasor domain.

Since the corresponding phasor analysis requires no fundamentally new knowledge in

order to apply these methods, we will consider them by way of examples.

Example 1:
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4.3 Power Calculations (Sinusoidal, Steady State)

Read Chapter 10 of the text.

The sign convention associated with the equation

p = vi (4.18)

for instantaneous power is as shown. As before, a value p > 0 means power is

being dissipated (like in a resistor) and p < 0 means power is being supplied to the

circuit. Here v and i are sinusoidal steady-state signals which may be written as

v = Vm cos(ωt+ θv) (4.19)

i = Im cos(ωt+ θi) (4.20)

It is conventional to choose zero time when the current is passing through a positive

maximum so if we set

v = Vm cos(ωt+ θv − θi) (4.21)

i = Im cos(ωt) (4.22)

we see that the common shift of phase equal to −θi (i.e. setting the phase shift of

the current to zero) results in the same relative phase between the current and the

voltage. Let’s define

∆θ = θv − θi

so that equations (4.21) and (4.22) may be written as

v = Vm cos(ωt+ ∆θ) (4.23)

i = Im cos(ωt) . (4.24)

We have already seen that

for a pure inductance, ∆θ = 90◦ (voltage leads current or current lags voltage);

for a pure capacitance, ∆θ = −90◦ (voltage lags current or current leads voltage);,

for a pure resistance, ∆θ = 0◦ (voltage and current are in phase).
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On the basis of (4.18), (4.23) and (4.24)we have for instantaneous power

p = vi = Vm cos(ωt+ ∆θ)Im cos(ωt)

Notice that the first term is independent of time while the remaining two terms are

time-harmonic. It is easy to show (DO THIS), that when the last two terms are

averaged over one period (T ), the result is zero. The first term is clearly the average

power. That is average power P is given by

P =
VmIm

2
cos ∆θ (4.26)

This average power is the real power in the circuit and its unit is watts (W).

Suppose next that we define

Q =
VmIm

2
sin ∆θ . (4.27)

Then, equation (4.25) may be written as

p = P + P cos 2ωt−Q sin 2ωt (4.28)

The quantity Q in (4.27) is referred to as reactive power. It is power being “stored”

or “released” in capacitors or inductors and as we have indicated above it averages to

zero over a period. The unit on this reactive power is the VAR (volt-amp reactive).

Let’s consider the implications of equation (4.25) for R, L and C elements while

remembering the definitions of P and Q:
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Pure Resistance

Here, ∆θ = 0◦ ⇒ Q = 0 and from (4.28) p = :

Pure Inductance

Here, ∆θ = 90◦ ⇒ P = 0 and from (4.28) p(t) = .

(See Illustration below). As we intimated, the average power is zero in this case

and the inductor alternately stores power (p > 0) or releases power (p < 0). Clearly,

also Q > 0 (see equation (4.27) and note here ∆θ = 90◦).

Pure Capacitance

Here, ∆θ = −90◦ ⇒ P = 0 and from (4.28)p(t) = .

Again, the average power is zero in this case and the capacitor alternately stores

power (p > 0) or releases power (p < 0). Clearly, also Q < 0 (see equation (4.27) and

note here ∆θ = −90◦).(See Illustration below).

The summary terminology says that if Q > 0 (i.e. an inductor in view) the circuit

absorbs magnetizing vars and if Q < 0 (i.e. a capacitor in view) the circuit delivers

magnetizing vars.

Power Factor

The quantity ∆θ is referred to as the power factor angle.

The quantity cos ∆θ is referred to as the power factor.

The quantity sin ∆θ is referred to as the reactive factor.

Of course, since in general, cosα = cos−α, knowing the power factor only allows

knowledge of an ambiguous power factor angle. Therefore, we invent the following

terminology:

lagging power factor meaning current lags voltage (i.e. an inductive load);

leading power factor meaning current leads voltage (i.e. a capacitive load).
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Example: Consider that the voltage and current associated with the terminals of the

network shown are given by

v = 75 cosω(ωt− 15◦) V

i = 16 cos(ωt+ 60◦) A

Determine (i) the reactive power and the average power at the terminals of the net-

work; (ii) whether the network inside the box is absorbing or delivering average power

and (iii) whether the netwok inside the box is absorbing or delivering magnetizing

vars. (iv) Determine the power factor and the reactive factor for the network inside

the box.

4.3.1 The Relationship Between RMS Values and Average
Power:

We have seen from equation (4.26) that the average power is given by

P =
VmIm

2
cos ∆θ .

Clearly, this may be written as

P =
Vm√

2

Im√
2

cos ∆θ

or

P = (4.29)

Vrms and Irms are sometimes referred to as effective values Veff and Ieff, respectively.

The reason for this terminology is as follows: If a dc voltage V is applied to a resistance
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R for a time T , the energy dissipated is the same as would be for a sinusoidal voltage

whose rms value is equivalent to V when that source is connected to an equivalent R

for time T . [YOU SHOULD PROVE THIS].

Arguing in the same fashion as above, the reactive power is given by

Q = VrmsIrms sin ∆θ = VeffIeff sin ∆θ (4.30)

This relationship between average power and rms values can be argued from the

definition of average power. For example the average power dissipated in a resistance

R over when the latter carries a current i = Im cos(ωt+ θi) is given simply by

P =

or

P = I2
rmsR . (4.31)

Similarly, it is easily deduced that

P =
V 2

rms
R

. (4.32)

An example (Drill Exercise 10.3, page 460 of text):

Here we use the rms value of a non-sinusoidal current to determine power delivered

to a 5 Ω resistance by that current. The current waveform is as shown and its peak

value is 180 mA.
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4.3.2 Complex Power

We define a value referred to as complex power by the relationship

S = P + jQ (4.33)

where P and Q are still the real and reactive power. The unit for S is the volt-amp

and this unit terminology is used to distinguish it from watts (for P ) and vars (for

Q). S may be represented in the form of a “power triangle”.

tan ∆θ =
Q

P
(4.34)

and the magnitude of S is clearly given by

|S| =
√
P 2 +Q2 (4.35)

This magnitude of the complex power is referred to as the apparent power because

it represents the required volt-amp capacity of a device required to supply a certain

average power. If a load is not purely resistive, this apparent power is always greater

than the average power – that is, the amount of power which must supplied to a

system is always greater than what the system is able to output (|S| > P ).

Complex Power, RMS Values and RMS Phasors

The complex power is nicely related to rms values of voltage and current as shown

below:

Thus,

S = VrmsIrmse
j∆θ (4.36)
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The previous (approximately) two pages (18 and 19) should be on hand-

written notes.

4.4 Maximum Power Transfer

Recall that for a resistive circuit as shown

maximum power is transferred to RL when RL = RTh and this power is given by

Pmax = V 2
Th/(4RL).

Consider now a similar circuit involving impedances as shown:

We again wish to consider the condition on the load impedance ZL which is necessary

for maximum average power transfer to that load. From the circuit,

Īrms =

Then

P =
∣∣Īrms

∣∣2 RL = (4.43)

Here, RL and XL are independent variables and the “Th” subscripted variables are

constants. To find the values of RL and XL which maximize P we set first derivatives

to zero and solve as usual; i.e.
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Clearly,

∂P

∂XL

= (4.44)

and

∂P

∂RL

= (4.45)

In (4.44), when XL = −XTh,
∂P

∂XL

= 0 .

In (4.45) when RL =
√
R2

Th + (XL +XTh)2 (along with the maximizing condition on

XL) then ∂P/∂RL = 0. That is, both derivatives are zero when

RL = RTh and XL = −XTh ,

or

In other words, the condition for maximum power transfer to the load is that the load

impedance must be equal to the conjugate of the Thévenin impedance.

ZL = Z∗Th (4.46)

Thus, from equation (4.43)

Pmax = = (4.47)

Noting that the rms Thévenin voltage is related to the maximum (peak) voltage

voltage via

Pmax = (4.48)

That is, if peak voltage is used, the condition for maximum power transfer to the

load results in (4.48). Note that (4.47) reduces to our earlier result that RL = RTh

for maximum power transfer when a purely resistive circuit is in view.
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4.5 Steady State response as a function of Fre-

quency

4.5.1 Series RLC Circuit

Consider the following series RLC circuit in which the phasor equivalents of v and i

are V and I, respectively.

Impedance due to capacitor: ZC = − j

ωC
; clearly, as ω → 0, Zc →∞ and i→ 0.

Impedance due to inductor: ZL = jωL; clearly, as ω →∞, ZL →∞ and i→ 0.

Therefore, circuits containing inductors and capacitors have responses that are

frequency dependent. First, let’s look at

The Current Response:

Using phasors

I =
V

Z
(4.49)

For the given circuit, Z = R− j

ωC
+ jωL or

Z = R + j

(
ωL− 1

ωC

)
(4.50)

This value of Z can be written as magnitude and phase; that is,

Z = |Z|ejθ (4.51)

with

|Z| =

[
R2 +

(
ωL− 1

ωC

)2
]1/2

and θ = tan−1

[
ωL− 1

ωC

R

]
. (4.52)

If we use the voltage phasor as a reference (i.e., let’s take the voltage phasor to have

a phase angle of zero), we write

V = Vme
j0 . (4.53)
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Current Magnitude i|:
Now, from (4.49), (4.51) and (4.53) the current phasor becomes

I =
Vm
|Z|ejθ

=
Vm
|Z|

e−jθ

and using (4.52)

I =
Vm[

R2 +
(
ωL− 1

ωC

)2
]1/2

e−jθ . (4.54)

Recalling that i = Re
{
Iejωt

}
, from (4.54) we see that magnitude of the time-domain

i is

|i| = Vm[
R2 +

(
ωL− 1

ωC

)2
]1/2

. (4.55)

We make the following observations about equation (4.55):

(1) |i| → 0 as ω → 0; and

(2) |i| → 0 as ω →∞ .

This indicates that there may be a maximum for |i| for some particular value of ω.

In fact, from (4.55) we see that this occurs when the denominator is a minimum –

i.e., when

ωL =
1

ωC
=⇒ ω =

1√
LC

.

We recognize this to be the resonant frequency, ω0, of a series RLC circuit:

ω0 =
1√
LC

(4.56)

When ω = ω0, equation (4.55) indicates that |i| = Vm
R

. That is, the circuit impedance

is purely resistive when ω = ω0.

From (4.55), we see that resonance occurs when the magnitudes of the

inductive and capacitive reactances are equal.
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The Phase Angle (φ) for i:

We see from the equation immediately preceding (4.54) that the phase angle for i is

−θ. Let’s rename this as

φ = −θ .

Then, from equation (4.52)

φ = tan−1

[ 1
ωC
− ωL
R

]
(4.57)

and we see that the phase angle for the current also depends on frequency ω. Let’s

again consider two extremes:

(1) ω → 0 =⇒ φ→ tan−1
[

1
ωRC

]
and in this case the current leads the voltage with the phase relationship being like

that of an RC circuit.

(2) ω →∞ =⇒ φ→ tan−1
[−ωL

R

]
and in this case the current lags the voltage with the phase relationship being like

that of an RL circuit.

These results should not be surprising since as

ω → 0 , Zc → −j
0
, and ZL → j0

while as ω →∞ , Zc → −j
∞ , and ZL → j∞.

At ω = ω0, we see from equation (4.57) that φ = tan−1

[
0

R

]
= 0
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Bandwidth

We define the half-power bandwidth of the RLC circuit as the range of frequencies

(or the width of the frequency band) for which the power dissipated in R is greater

than or equal to half the maximum power. We know that the average power is

P = |Ī|2R where |Ī| = Im√
2
. (4.58)

Of course, maximum or peak power will be

Pmax = I2
mR

and the “half-power points” occur when

P =
Pmax

2
or |Ī| = Im√

2
.

In the time domain, we know from our “resonance” considerations above that

im =
Vm
R

. (4.59)

Therefore, at the half-power points,

|i| = im√
2

=
Vm√
2R

. (4.60)

Comparing equations (4.60) and (4.55), we observe that at the half-power points

Vm[
R2 +

(
ωL− 1

ωC

)2
]1/2

=
Vm√
2R

. (4.61)

We wish to find the frequencies for which this is true. Since the denominators in

(4.61) must be equal, squaring gives

Therefore,

ω =

and we se that, mathematically, there are 4 possible solutions (2 positive and 2

negative).
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Let’s take the positive ω roots so that the half-power points are associated with

frequencies:

ω1 = − R

2L
+

√
R2

4L2
+

1

LC
(4.62)

and

ω2 =
R

2L
+

√
R2

4L2
+

1

LC

By definition, the half-power bandwidth (BW) is given by

BW = ω2 − ω1 =
R

L
(4.63)

Illustration:

From equation (4.62), it may be noted that

ω1ω2 =
1

LC
= ω2

0 =⇒ ω0 =
√
ω1ω2 . (4.64)

In some circuits, the resonance may be “sharp” while in others it is “broad” – sharp

resonance is often desired (for example in a radio receiver).

Illustration:

Quality Factor

A quality factor for the circuit is defined as

Q =
ω0

ω2 − ω1

=
ω0

BW
. (4.65)

A high Q implies a narrow resonance peak.

A low Q implies a broad resonance peak.
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From equations (4.63), (4.64) and (4.65), the quality factor may be given in terms of

the circuit parameters as

Q =
ω0L

R
=

1

ω0RC
=

1

R

√
L

C
. (4.66)

From (4.66) it may be seen that for a given L,C pair, Q is inversely proportional to

the resistance R; i.e., high Q requires small R (and vice versa).

Voltages Across Elements

Resistor:

Since VR = IR and at resonance, VR = Vm. This also implies tthat

I =
Vm
R

(4.67)

Inductor:

We know VL = IZL = jωLI and using equation (4.55) we may then write the

magnitude of VL as

|VL| = ωL|I| = ωLVm[
R2 +

(
ωL− 1

ωC

)2
]1/2

.

At resonance (i.e. ω0L = 1/(ω0C)),

|VL| =
ω0LVm
R

. (4.68)

From equations(4.66) and (4.68), the magnitude of the inductor voltage can be written

in terms of the quality factor as

|VL| = QVm . (4.69)

Capacitor:

Since, in general, for the capacitor

Vc =
I

jωC
,

using the same arguments as for the inductor (at resonance) leads to (see (4.66) also)

|Vc| =
Vm

ω0CR
= QVm . (4.70)

We note from equations (4.69) and (4.70) that, while both VL and Vc may be very

large at resonance, they will add to give zero (recall, voltage across L and C are 180◦
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out of phase).

Example 1: For the following circuit, determine (i) the resonant frequency f0; (ii) the

value of R to give a quality factor of 50; and (iii) the half-power bandwidth.

(i) For resonance,

(ii) Q = ω0L
R

=⇒ R =

(iii) First, get the half-power frequency points from equation (4.62):

ω1 = − R

2L
+

√
R2

4L2
+

1

LC

ω2 =
R

2L
+

√
R2

4L2
+

1

LC

Therefore, BW = ω2 − ω2 =

CHECK: From (4.63), BW = (R/L) = 2828 rad/s or from (4.65) BW = (ω0/Q) =

2828 rad/s – which are the same values within rounding errors.

Example 2: Design a series RLC circuit witha resonant frequency of 1 kHz and a Q

of 50 if the only available inductors have a value of 1 mH. ONE WAY:

First, find C from ω0 = 1/
√
LC: C = 1/(Lω2

0) = 1/(10−3 × (2π × 103)2) = 25.3 µF.

Next from (4.66), Q = 1/(ω0RC) =⇒ R = 1/(ω0QC) = 0.129 Ω.
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4.5.2 Parallel RLC Circuits

In this section, we determine the voltage response of a parallel RLC circuit as the

frequency is altered. We choose to investigate the voltage in this case because its

value is the same across each of the parallel elements.

In this circuit, the impedance is obviously given by

Z =
1

1
R

+ 1
jωL

+ jωC
(4.71)

since [1/(jωC)]−1 = jωC. It is easy to show (VERIFY THIS) that Z may be written

as

Z =
1√

1
R2 +

(
ωC − 1

ωL

)2
ejθ with θ = tan−1

[(
1

ωL
− ωC

)
R

]
. (4.72)

Now, in phasor form, the voltage is

V = IZ = Im 6 0◦Z

which implies

V =
Im√

1
R2 +

(
ωC − 1

ωL

)2
ejθ . (4.73)

The frequency dependency is obvious. Clearly, the maximum voltage occurs when

ωC =
1

ωL

and the frequency at which this happens is again the resonant frequency given by

ω0 =
1√
LC

which is identical to that for the RLC series circuit.

Voltage Magnitude |V |:
From equation (4.72), we see that θ = 0◦ for this case so that from (4.73), the

maximum voltage Vm is

Vm = ImR (4.74)
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Illustration:

Voltage Phase (θ):

From (4.72), as ω =⇒ 0, θ =⇒ 90◦ (the circuit “looks” inductive).

Similarly, as ω =⇒∞, θ =⇒ −90◦ (the circuit “looks” capacitive).

As noted above, ω = ω0 gives θ = 0◦.

Illustration:

Bandwidth:

As for the series circuit, we now consider the half-power bandwidth of the parallel

RLC circuit. Our approach is the same as before:

First, we determine the half-power points on the |V | vs. ω plot. From (4.74), we

have the voltage at resonance to be Vm = ImR. Recalling that power is proportional

to voltage squared, half-power occurs when

|V | = Vm√
2

=
ImR√

2
(4.75)

See the plot of voltage magnitude versus radian frequency given above. From equa-

tions (4.73) and (4.75), half-power occurs when

ImR√
2

=
Im√

1
R2 +

(
ωC − 1

ωL

)2
. (4.76)

As for the series case, this may be solved for (positive) ω to now give

ω1 = − 1

2RC
+

√
1

(2RC)2
+

1

LC
(4.77)

and

ω2 =
1

2RC
+

√
1

(2RC)2
+

1

LC
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Note the differences between (4.77) and the corresponding values for the series circuit

found in (4.62). From (4.77), the half-power bandwidth is now seen to be

BW = ω2 − ω1 =
1

RC
. (4.78)

Quality Factor (Q):

Here,

Q =
ω0

ω2 − ω1

=
1/
√
LC

1/(RC)
= R

√
C

L
= ω0RC =

R

ω0L
. (4.79)

Considering (4.66) and (4.79) simultaneously, it is easily seen that

Qparallel =
1

Qseries
.

This time, in contrast to the series case, a high Q is achieved via a large R.

For completeness, we note that, at resonance,

|Ic| = |IL| = QIm . (4.80)

CHECK THIS by considering Vm/|Zc| and Vm/|ZL| when ω = ω0 – for which Vm =

ImR.

Relating Damping to Quality Factor

The frequency response may be related to the natural response. For the parallel

RLC circuit, the natural response discussed in Section 3.1.2 of these notes required

that

α =
1

2RC
(damping coefficient) .

Using (4.79)

α =
ω2 − ω1

2
=
ω0

2Q
. (4.81)

Meanwhile, the damped frequency ωd which (recall) is given by

ωd =
√
ω2

0 − α2

becomes

ωd = ω0

√
1− 1

4Q2
. (4.82)
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Notice from equation (4.81) that the damping coefficient α is inversely proportional to

the quality factor Q. Also, recall that the transition from underdamped to overdamped

response occurs when ω2
0 = α2 (i.e., at the critical damping condition). Thus, from

equation (4.81), we see that critical damping occurs when

Q =
1

2
(critical damping) .

Similarly, from (4.81)

when α2 > ω2
0 , Q <

1

2
(overdamped) and

when α2 < ω2
0 , Q >

1

2
(underdamped) .

Example 1: In the following circuit, R = 2 kΩ, C = 0.25 µF, and L = 40 mH. Deter-

mine (i) ω0; (ii) Q; (iii) ω1 , ω2; (iv) BW; and (v) v(ω0) if i = 0.05 cosωt A.

(i) ω0 = 1/
√
LC =

(ii) Q = ω0RC =

(iii) ω1 = − 1

2RC
+

√
1

(2RC)2
+

1

LC
=

ω2 =
1

2RC
+

√
1

(2RC)2
+

1

LC
=

(iv) BW = ω2 − ω1 = ω0/Q =

(v) At resonance, V = Vm = ImR =

Example 2: In the following circuit, determine ω0 and Q.
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4.5.3 Filters

The ideas encountered in Sections 4.5.1 and 4.5.2 provide the basis for a brief dis-

cussion of a class of frequency-dependent circuits referred to as filters. They are so

named because certain frequencies are “favoured” and certain others are “filtered

out”. In this section, we’ll treat these circuits as voltage dividers and examine the

signal across one component. There are four types of filters considered here: (1) Low-

Pass; (2) High Pass; (3) Band Pass; and (4) Band Reject. Their names are indicative

of the frequencies which may be obtained from them.

1. The Low-Pass Filter

A low-pass filter “allows low frequencies” but “rejects high frequencies”. Consider

the input voltage shown in the circuit below to be of the form

vin = Vm cosωt

and we wish to find v0.

In phasor form, since θvin = 0,

I =
Vm
Z

=
Vm

R + 1
jωC

=
Vm
(
R + j

ωC

)
R2 +

(
1
ωC

)2 .

Using magnitude and phase notation,

I = |I|ejθi =
Vme

jθi√
R2 +

(
1
ωC

)2
with θi = tan−1

(
1

ωRC

)
. (4.83)

Now, consider the phasor “output voltage” V0 across the capacitor. Using (4.83)

V0 = IZc =
Vm√

R2 +
(

1
ωC

)2
ejθi × 1

jωC

Since 1/j = −j = e−jπ/2

V0 =
Vme

j(θi−π/2)

√
1 + ω2R2C2

. (4.84)

Taking this to the time doamin via

vc(t) = Re
{
Vce

jωt
}
,
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v0(t) =
Vm√

1 + ω2R2C2
cos(ωt+ θi − π/2) . (4.85)

Relative Magnitude Plot (|v0/Vm| vs. ω:)

Phase Plot (θ0 vs. ω:)

From (4.83) and (4.84),

θ0 = θi −
π

2
=

[
tan−1

(
1

ωRC

)
− π

2

]
.

Note:

ω =⇒ 0, θ0 =⇒ (π
2
− π

2
) = 0;

ω =⇒∞, θ0 =⇒ (0− π
2
) = −π

2
.

Cut-off Frequency (ωc):

The cut-off frequency is defined as the frequency at which v0 = Vm/
√

2.

From equation (4.85), we see that at ω = ωc,∣∣∣∣ v0

Vm

∣∣∣∣ =
1√

1 + ω2
cR

2C2
=

1√
2
. (4.86)

Solving (4.86) for ωc easily gives

ωc =
1

RC
OR fc =

1

2πRC
in Hz. (4.87)

Again, from (4.85) ∣∣∣∣ v0

Vm

∣∣∣∣ =
1√

1 +
(
f
fc

)2
(4.88)

since f = ω
2π

.

Clearly, as f becomes small,

∣∣∣∣ v0

Vm

∣∣∣∣ =⇒ 1.

As f becomes large, it is not too hard to convince oneself that

∣∣∣∣ v0

Vm

∣∣∣∣ ∼ 1

f
where ∼ may be read as “varies as”.

Before depicting this result, let’s consider writing

∣∣∣∣ v0

Vm

∣∣∣∣ in decibels.
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Let AdB =

∣∣∣∣ v0

Vm

∣∣∣∣ in dB;

AdB = 20 log10

∣∣∣∣ v0

Vm

∣∣∣∣ .∣∣∣ v0

Vm

∣∣∣ AdB

Note that −3 dB means that the output voltage drops to Vm/
√

2. Equivalently,

the power drops to 1/2 of its maximum value.

Let’s consider plotting

∣∣∣∣ v0

Vm

∣∣∣∣ vs. f on logarithmic axes.

Illustration:

Consider the slope of the right-hand part of the curve where f is large.

Slope of

∣∣∣∣ v0

Vm

∣∣∣∣ vs. f =
log
∣∣∣ v0

Vm

∣∣∣
2
− log

∣∣∣ v0

Vm

∣∣∣
1

log f2 − log f1

= m , say.

Since log a− log b = log a
b
, the Vm cancels and

m =
log |v0|2 / |v0|1

log(f2/f1)
.
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From our deliberations immediately following equation (4.88) and recalling that Vm

is a constant (for ideal sources at least), for the high frequency part of the curve

|v0|2 / |v0|1 = f1/f2

to a very good approximation.

Other Terminology

The term “one octave change in frequency” means a change by a factor of 2. For

the high-frequency part of the slope shown above, as f increases by a factor of 2, v0

decreases by a factor of 2. That is, v0 drops by 6 dB or

m =
−6 dB

octave
.

Another “realization” of a low-pass filter is shown below:

It is easy to show that here ∣∣∣∣ v0

vm

∣∣∣∣ =
1[

1 + ω2L2

R2

]1/2
with ωc = R/L and fc =

R

2πL
(SHOW THIS). Then, as in (4.88), we get∣∣∣∣ v0

vm

∣∣∣∣ =
1[

1 +
(
f
fc

)2
]1/2

Example: Design a low-pass filter with

∣∣∣∣ v0

Vm

∣∣∣∣ < 0.1 for f > 10 kHz.

Thus, we design for ∣∣∣∣ v0

Vm

∣∣∣∣ =
1[

1 +
(
f
fc

)2
] = 0.1

when f = 104 Hz. We know

fc =
ωc
2π

=
1

2πRC
⇒ RC =
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Now, we may choose either an R or a C to continue the design. Suppose we have a

supply of 0.10 µF capacitors; then

R =

and the filter is as shown below.

2. The High-Pass Filter

As the name suggests, a high-pass filter “passes high frequencies” and “rejects low

frequencies”. By taking the output of our previous RC filter across the resistor, we

obtain a high-pass filter. Consider the following circuit:

Here, V0 = IR in phasor form. Obviously,

V0 =
Vm

R + 1
jωC

R

and doing the algebra gives

V0 =
VmωRC

[1 + ω2R2C2]1/2
ejθ0

where ∣∣∣∣ v0

Vm

∣∣∣∣ =
ωRC

[1 + ω2R2C2]1/2
with θ0 = tan−1 1

ωRC
.

Note:(i) As ω → 0,

∣∣∣∣ v0

Vm

∣∣∣∣→ 0;

(ii) As ω →∞,

∣∣∣∣ v0

Vm

∣∣∣∣→ 10;

(iii) As ω → 0, θ0 → 90◦;

(iv) As ω →∞, θ0 → 0◦;

Also, again defining the cut-off frequency as occurring when∣∣∣∣ v0

Vm

∣∣∣∣ =
1√
2
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we get

ωcRC

[1 + ω2
cR

2C2]1/2
=

1√
2

when ω = ωc; therefore,

ωc =
1

RC
.

Illustrations:

A high-pass filter can also be realized using an RL circuit as shown below: It is

possible to show that the cut-off frequency is given by

ωc =
R

L

as in the low-pass case for these elements. It may be also easily verified that∣∣∣∣ v0

Vm

∣∣∣∣ =
f/fc

[1 + (f/fc)2]1/2
.

This is may be illustrated as
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Examples:

1. Determine the cut-off frequency in hertz for a high-pass filter with C = 1 µF and

R having successive values of 100 Ω, 5 kΩ, and 30 kΩ.

ωc =
1

RC
=⇒ fc =

1

2πRC
:

fc1 =

fc2 =

fc3 =

2. If C is replaced with a 3.5 mH inductor when R = 5 kΩ, what would the cut-off

frequency be?

Answer: ωc =
R

L
=⇒ fc =

R

2πL
=

We note, in passing, that “sharper” filters may be constructed by having a series

of basic filters in a circuit. For example, consider the circuit below which is referred

to as a 2-pole low-pass filter:

Using our usual circuit analysis techniques, it is not hard to show that∣∣∣∣ voVm
∣∣∣∣ =

1[
1 + 7ω2L2

R2 + ω4L4

R4

]1/2 ∗

so that for

ω → 0,

∣∣∣∣ voVm
∣∣∣∣→ 1

while for ω →∞,

∣∣∣∣ voVm
∣∣∣∣→ 1

ω2
.

The slope of the

∣∣∣∣ voVm
∣∣∣∣ vs. f plot as shown on page 35 then becomes

m =
−12 dB

octave
.

Furthermore, it is easy to show from ∗ that the cut-off frequency is (TRY THIS)

ωc =
0.374R

L
.
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Band-Pass Filter

As the name suggests, band-pass filters pass voltages whose frequencies lie within

a certain band (or range) to the output. Recall the resonance curve of a series RLC

circuit. We define the bandwidth (now the filter bandwidth) as the frequency range

between the half-power points:

Band-Reject Filter

If the output of the above RLC filter is configures as shown below, a band-reject

filter with ω0 = 1/
√
LC and a BW = (ω2 − ω1) results.
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