
5.2 Examining Circuits in the s-Domain

5.2.1 Circuit Elements

To model a circuit element in the s-domain we simply Laplace transform the voltage

current equation for the element terminals in the time domain. This gives the s-

domain relationship between the voltage and the current which may be modelled by

an appropriate circuit. The transformation of a voltage and current in from the time

domain results in dimensions of volt-seconds and ampere-seconds in the s-domain.

Impedance is still measured in ohms in the s-domain. We will use the passive sign

convention in our s-domain models. Also, we’ll use V and I to mean V (s) and I(s),

respectively.

Resistors in the s-Domain

In the time domain Time Domain Model

v = iR .

Since R is a constant, in the s-domain,

s-Domain Model

V = RI (5.18)

where V = L{v} and I = L{i}.

Inductors in the s-Domain

In the time domain

Time Domain Model

v = L
di

dt
(5.19)
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(In this model I0 is the initial current in the inductor.)

Using equation (5.8) for differentiation when Laplace transforming, equation (5.19)

becomes

V = L [sI − I0] = sLI − LI0 (5.20)

where I0 = i(0−). Of course, if there is no initial current, I0 = 0. We note that

equation (5.20) may also be written as

I =
V

sL
+
I0

s
(5.21)

While the inductor may be modelled in various equivalent ways in the s-domain, the

last two equations immediately suggest two of these:

Series Model – Equation (5.20):

(sL) is the s-domain impedance.

LI0 is like a constant voltage whose value depends on the initial conditions.

Parallel Model – Equation (5.21):

This time, I0/s is like an independent (constant)current

source depending on initial conditions.

Of course, if i(0−) = 0, both of the above reduce to:

–i.e. the inductor transforms to an impedance (sL).

Capacitors in the s-Domain

In the time domain

Time Domain Model

i = C
dv

dt
(5.22)

(In this model V0 allows for the possibility of an initial voltage across the capacitor.)

Converting (5.22) via Laplace transformation gives

I = C [sV − V0] = sCV − CV0 (5.23)

15



where V0 = v(0−). Of course, if there is no initial voltage, V0 = 0. We note that

equation (5.23) may also be written as

V =

(
1

sC
I

)
+
V0

s
(5.24)

While the capacitor may be modelled in various equivalent ways in the s-domain, the

last two equations immediatly suggest two of these:

Series Model – Equation (5.24):

1/(sC) is the s-domain impedance.

V0/s is like a constant voltage whose value depends on the initial conditions.

Parallel Model – Equation (5.23):

This time, CV0 is like an independent (constant)current

source depending on initial conditions.

Of course, if v(0−) = 0, both of the above reduce to:

–i.e. the capacitor transforms to an impedance (1/(sC)).

5.2.2 s-Domain Circuit Analysis

1. General

In the s-domain, if no energy is stored in the inductor or capacitor, the relationship

between V and I for each passive element of impedance Z is still

V = IZ (5.25)

In this domain, ZR = R, ZL = sL and ZC = 1/(sC).

Techniques involving Kirchoff’s Laws (KVL and KCL), Node-Voltage, Mesh-Current,

Delta-Wye Transformation, Thévenin, etc., etc. still hold! If there is initially stored

energy, equation (5.25) may be modified by adding the appropriate independent

sources in series or parallel with the element impedances as depicted in the previ-

ous subsection.
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2. Application 1 – Natural Response of an RC Circuit

In the circuit shown below on the left, the capacitor has an initial voltage of V0,

and we wish to find the time-domain expressions for i and v.

Method 1:

Time Domain s-Domain

Using KVL on the s-domain circuit, we get

−V0

s
+ IZc + IZR = 0

=⇒ V0

s
= IZc + IZR

=⇒ V0

s
=

I

sC
+ IR .

From this

I =
CV0

1 +RCs
.

Dividing by RC in the numerator and denominator on the right puts I into a recog-

nizable form for inverse Laplace transformation:

I =
V0/R

s+ 1
RC

.

The form is obviously
K

s+ a
and

L−1{I} = i =
V0

R
e−t/RCu(t) (5.26)

Then,

v = iR = V0e
−t/RCu(t) (5.27)

[Remembering that u(t) = 1 for t ≥ 0+, this is the same as we had before.]

Method 2:

We may also find v before finding i by employing the “parallel model” for the capacitor
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as follows:

Redraw the original time-domain circuit as

Using node-voltage at A:

−CV0 +
V

1/sC
+
V

R
= 0

=⇒ V =
CV0

sC + 1/R
=

V0

s+ 1/RC
.

Then,

v = L−1{V } = V0e
−t/RCu(t)

as in equation (5.27).

Application 2 – Step Response of a Parallel RLC Circuit

Assumed that there is no energy stored in the circuit shown below when the switch

is opened at time t = 0. We wish to find iL(t).

Note that Isource = idcu(t) and L{idcu(t)} = Idc/s.

Because there is no initial stored energy (i.e. iL(0−) = 0 and vC(0−) = 0, the general

form of the s-domain circuit is

Using KCL at the top node,

−Idc
s

+ IC + IR + IL = 0 .

This implies

Idc
s

= sCV +
V

R
+
V

sL
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from which

V =

Idc
s[

sC + 1
R

+ 1
sL

] × s/C

s/C

V =

Idc
C[

s2 + s
RC

+ 1
LC

] (A) .

However, IL = V/sL so that from (A) we have

IL =

Idc
LC

s
[
s2 +

(
1
RC

)
s+

(
1
LC

)] (B) .

Substituting the values of R, L and C into (B) results in

IL =
384× 105

s(s2 + 64, 000s+ 16× 108)
.

Factoring the denominator allows us to expand IL using partial fractions:

IL =
384× 105

s(s+ 32, 000− j24000)(s+ 32, 000 + j24000)

=
K1

s
+

K2

(s+ 32, 000− j24000)
+

K∗2
(s+ 32, 000 + j24000)

.

Now,

K1 = IL|s=0 =
384× 105

(32, 0002 + 240002)
= 0.024 .

Also,

K2 = IL(s+ 32000− j24000)|s=−32,000+j24000 =
384× 105

(−32, 000+j24000)(j48, 000)
= 0.0206 126.87◦

which immediately gives K∗2 = 0.0206 − 126.87◦. Now,

L−1{K1/s} = L−1{0.024/s} = 0.024u(t) .

On page 9 of this unit, we saw that the complex conjugate pair transforms to

2|K|e−αt cos(βt+ θ)u(t)

where here

|K| = |K2| = 0.020 ; α = 32, 000 ; β = 24, 000 and θ = 126.87◦ .

Therefore,

iL =
[
0.024 + 0.040e−32,000t cos(24, 000t+ 126.87◦)

]
u(t) A .

Again, note that the multiplier u(t) accounts for t ≥ 0. Note that iL(0) = 0 and

iL(∞) = 0.024 A, as should be the case.
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Application 3 – Multiple Meshes (Transients) – Step Response Example

While multiple node-voltage or mesh-current analysis leads to simultaneous dif-

ferential equations in the time domain, Laplace transforms allow us to replace these

equations with simultaneous algebraic systems in the s-domain. This is illustrated

with an example below. Also, see the example on pages 593-595 of the text.

Drill Exercise 13.5, page 595 of text: In the following circuit, the dc current

and voltage sources are applied at the same time. There is no initially stored energy

in any of the circuit components. (a) Derive the s-domain expressions for V1 and V2.

(b) For t > 0, derive the time domain expressions for v1 and v2. (c) Determine v1(0+)

and v2(0+). (d) Find the steady-state values of v1 and v2.

(a) First, represent the circuit in the s-domain.

Next, apply the node-voltage technique to nodes 1 and 2:

Node 1:
V1 − V2

s
+ sV1 −

5

s
= 0 ; Node 2:

V2 − V1

s
+
V2

3
+
V2 − (15/s)

15
= 0

Solving for V1 and V2, we get

V1 =
5(s+ 3)

s(s2 + 2.5s+ 1)
and V2 =

2.5(s2 + 6)

s(s2 + 2.5s+ 1)
.

(b) Partial fraction expansion gives

V1 =
15

s
− 50/3

s+ 0.5
+

5/3

s+ 2
and V2 =

15

s
− 125/6

s+ 0.5
+

25/3

s+ 2

Now, the 1/s and 1/(s+ a) forms are readily recognizable from the transform tables

so that

v1(t) = L−1 {V1} =

[
15− 50

3
e−0.5t +

5

3
e−2t

]
u(t) V

v2(t) = L−1 {V2} =

[
15− 125

6
e−0.5t +

25

3
e−2t

]
u(t) V
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(c) From part (b), v1(0+) = 15− 50

3
+

5

3
= 0; v2(0+) = 15− 125

6
+

25

3
= 2.5.

[Note, from the initial value theorem, v1(0+) = lim
s→∞

sV1(s) = 15− 50

3
+

5

3
= 0 and

similarly for v2(0+).]

(d) Here, again, we may find v1(∞) and v2(∞) from part (b) or we may use the final

value theorem:

v1(∞) = lim
s→0

sV1(s) = 15− 0 + 0 = 15 V

v2(∞) = lim
s→0

sV2(s) = 15− 0 + 0 = 15 V

which is what we would get using the results in part (b) also.
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Application 4 – Thévenin Equivalent in the s-domain

Drill Exercise 13.6, page 598 of text: (a) Given the following circuit, find the s-domain

Thévenin equivalent with respect to the terminals “a” and “b”. There is no initial

charge on the capacitor.

First, sketch the s-domain equivalent to the left of the a-b terminals.

With no load across the a-b terminals, there is no current in the 5 Ω resistor (this is

the “tricky” observation here) so that

Vx =
20

s
. . . (1)

Now, determine VTh by applying the node-voltage rule at node 1:

Using equation (1) and simplifying gives

VTh =
20(s+ 2.4)

s(s+ 2)
. . . (2)
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Next, we seek ZTh: The Thévenin equivalent impedance (in the s-domain) may be

found by applying a test source across the a-b terminals while shorting the indepen-

dent power supply.:

Apply node-voltage at node 2 while noting

Vx = 5IT . . . (3)

Thus, the node-voltage technique, incorporating test voltage VT , gives:

−IT +
VT − Vx

2/s
+
VT − 0.2Vx − Vx

1
= 0 . . . (4)

Simplifying (4) gives

ZTh =
VT
IT

=
5(s+ 2.8)

(s+ 2)
. . . (5)

The Thévenin equivalent circuit is shown below (to the left of terminals a-b). The

s-domain load is also shown.

(b) Find Iab in the s-domain for the given load.

Clearly,

Iab =
VTh

ZTh + ZL
where ZL = 2 + s .

Using equations (2) and (5),

Iab =
20(s+ 2.4)

s[(s+ 6)(s+ 3)]
.

For practice using the Laplace transform tables, you should find the time-domain

current corresponding to the last expression.
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