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Chapter 3:  Complex Numbers
§ 3.1 
Introduction and Definitions
If  f (z) = 0  where  f (z) = z2 + 2z + 5, then in order to find the roots of this equation it is necessary to find values for “z” such that  z2 + 2z + 5 = 0.   This can be accomplished by applying the quadratic formula or by completing the square.   Here, the second approach will be used.   Hence, it is necessary to determine values for “z” such that

	
	z2 + 2z
	=
	5

	(
	z2 + 2z +1
	=
	5 + 1

	(
	(z+1)2
	=
	4


Since we know that the square of any real number must be greater than or equal to zero, it follows that the roots of the given equation cannot, possibly, be real numbers.   It was problems such as this one that made mathematicians, of an earlier age, realize that the real number system was not complete.   A new number system, the Complex Number System, was developed that:

(a) 
had the real numbers as a subset, and 

(b) 
allowed the possibility of negative squares.

Complex Number:

The number  z = a + jb = a + bj  is a complex number iff  j2 = 1.   

The real number “a” is called the real part of the complex number, and 

the real number “b” is called the imaginary part of the complex number.

Since this is a new number system, it is necessary to establish how to work with these numbers. Hence, the following are properties are defined for any complex numbers   z1 = a1 + jb1,  and 

z2 = a2 + jb2 .

Addition:

The sum of the complex numbers  z1 and z2  is the complex number “w” where 

	
	w
	=
	x + jy

	
	
	=
	z1 + z2

	
	
	=
	(a1 + jb1) + (a2 + jb2)

	
	
	=
	(a1 + a2) + j (b1 + b2)

	(
	x
	=
	a1 + a2

	and
	y
	=
	b1 + b2


Multiplication:

The product of the complex numbers  z1 and z2  is the complex number “w” where

	
	w
	=
	x + jy

	
	
	=
	z1 ( z2

	
	
	=
	(a1 + jb1) ( (a2 + jb2)

	
	
	=
	(a1a2  b1b2) + j (a1b2  a2b1)

	(
	x
	=
	a1a2  b1b2

	and
	y
	=
	a1b2  a2b1


Conjugate:
The complex conjugate of the complex number  z1 = a1 + jb1  is the complex number 

z2 = a2 + jb2  iff

	
	z1 ( z2
	=
	(a1 + jb1) ( (a2 + jb2)

	
	
	=
	(a1a2  b1b2) + j (a1b2  a2b1)

	
	
	=
	(a1)2 + (b1)2

	(
	a2
	=
	  a1

	and
	b2
	=
	 b1


Hence, if  z2  is the complex conjugate of  z1 = a1 + jb1,  then  z2 = a1  jb1  and the complex conjugate is normally expressed as  
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.   Another notation for the complex conjugate of  z  is  z*.

Modulus:
The square of the modulus  | w |  of the complex number  w = x + jy  is the real number 
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Division:
The quotient of the complex numbers  z1 and z2  with  z2 ( 0  is the complex number “w” where

	
	w
	=
	x + jy

	
	
	=
	z1 ( z2

	
	
	=
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	=
	[(a1 + jb1) ( (a2  jb2)] ( [(a2 + jb2) ( (a2  jb2)]

	
	
	=
	[(a1a2  b1b2) + j (a2b1 ( a1b2)] ( [(a2)2 ( (b2)2]

	(
	x
	=
	[a1a2  b1b2] ( [(a2)2 ( (b2)2]

	and
	y
	=
	[a2b1 ( a1b2] ( [(a2)2 ( (b2)2]


Alternate Representations:

Any complex number  w = x + jy  can also be expressed in two alternate forms. 

Polar form:   w  =  x + jy  =  r [cos(( ) + j sin(( )]

Euler form:   w  =  x + jy  =  r ej(
Here  
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  is the modulus of the complex number 

and  (  = arg(w)  is called the argument of the complex number where

	
	(
	=
	Tan-1(y/x)
	if  x > 0

	or
	(
	=
	Tan-1(y/x) ( (
	if  x < 0 and  y ( 0

	or
	(
	=
	Tan-1(y/x) + (
	if  x < 0 and  y > 0

	or
	(
	=
	(( / 2
	if  x = 0 and  y < 0

	or
	(
	=
	+( / 2
	if  x = 0 and  y > 0






[The argument of zero is undefined.] 

If   (( (  arg(w)  < +(,  then (  = arg(w)  is the principal argument of  w.  

Argand Diagrams:

Complex numbers can be represented as points on a grid that appears identical to the Cartesian co-ordinate grid (the xy-plane) except that the horizontal axis is called the real axis, and the vertical axis is interpreted as the imaginary axis. 

The axes are labeled respectively as  Re{z} and  Im{z}.

From the Argand diagram one can see that the argument of a complex number is not unique. 

If  (  = arg(w)  is the principal argument of  w, then  (  + 2n(  (for all integers n) are also arguments of  w,  [because   cos((  + 2n( ) ( cos (   and  sin((  + 2n( ) ( sin (   for all integers n].

Sample Problems
Sample Problem 1: 
Determine the value of  z  =  (2 + j5) + (7  6j)
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Sample Problem 2: 
Determine the value of  z  =  7 (3 + j4)  (2 + j) (5  6j)
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Sample Problem 3: 
Determine the value of  
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Sample Problem 4: 
Evaluate 
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Alternative solution:

The coefficients in the binomial expansion of  (a + b)4  are the entries in the  n = 4  row of Pascal’s triangle:  1  4  6  4  1 .

Also note that    j 2 = 1,  j 3 = j,  j 4 = 1  and  j(n+4) = jn  for all n.

Then
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§ 3.2  
de Moivre’s Theorem
The last sample problem of the previous section was rather long and tedious.   It would be nice if some method existed by which the amount of work needed for this and other similar problems could be reduced.   It turns out that it is indeed possible by using some elementary real number properties. 

The tools needed are:

(a) 
the Pythagorean theorem 

(b) 
elementary geometry

(c) 
some basic series expansions already studied

(d) 
the Binomial theorem for arbitrary real exponents

Given any complex number   z = x + jy, it is possible to represent it on an Argand diagram



 

By means of the Pythagorean theorem and elementary geometry, we know that 
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In our study of series it was found that the Maclaurin series expansion for  f (x) = e x  was




If we set  x = j (, and use the fact that   j n+4 = j n  for  n ( 1  and   j 2 = 1,  j 3 = j,  j 4 = 1
 then
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Hence, by combining the three representations for complex numbers, the following is easily shown to be true
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This result is called de Moivre’s theorem, and is used primarily for the following situations

(a) 
determining integer powers of complex numbers,

(b)
finding rational powers of complex numbers (especially roots)

(c)
establishing the various trigonometric identities.

When using de Moivre’s theorem to find a non-integer power of a complex number  z, express  z  in its polar or Euler form using the complete set of arguments ((  + 2n( ).

Sample Problem 5:

Find all three distinct cube roots of  1.

We need to solve   w3 = z  for  w, where  z = 1.

| z | = | 1 + 0j | = 1  and  arg(z) = arg(1 + 0j) = 0 (principal value). 

In polar form,   w3 =  z  =  1 cos(0 + 2n( ) + j 1 sin(0 + 2n( ),   where  n = any integer.

By de Moivre’s theorem,  

w  =  [1 cos(2n( ) + j 1 sin(2n( )](1/3)  =  1(1/3)  [cos(2n( / 3) + j sin(2n( / 3)]

     =  cos(2n( / 3) + j sin(2n( / 3)

This generates only three distinct complex numbers, which can be evaluated by setting  n  to any three consecutive values: 

n = (1   (   w1 = ((1 ( j(3) / 2 ,        n = 0   (   w1 = 1 ,        n = +1   (   w1 = ((1 + j(3) / 2 . 

Further examples of each of these applications will be done in class.
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