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Chapter 4: 
Parametric Vector Functions
§ 4.1 
Parametric Equations
In many areas of study in Engineering and the sciences, the value of some property depends on the value of some quantity. 

Examples: 

(a) 
When discussing motion, the position, velocity, acceleration and force are usually expressed as functions of time. 

(b) 
In geometry, in (2, the location of a point on a circle of fixed radius “R” can be uniquely identified by giving the angle “( ” that a radial line makes with the positive x-axis.

In these examples the variable “t” representing time, and the variable “( ” representing the angle are examples of parameters.

The parameter can represent some physical or geometric quantity, as in the examples above, or the parameter can be abstract with no apparent physical interpretation.   Each value of the parameter corresponds to a unique point on the curve.   The parameter is usually assumed to take on all real values unless otherwise indicated.   We have already been introduced to the use of parameters in this course when in solving systems of linear equations there were infinitely many solutions, with each solution determined by choosing a value for the free variables or parameters.

In this section we will look at how to change the Cartesian representation of a curve to a parametric vector representation, and how to convert a parametric vector representation to a Cartesian representation.   Sometimes, depending on the application, one of the forms above is preferable to the other.   As a result you should quickly be able to transform from one form to another. 

We begin with examples with a given parametric representation for which the Cartesian representation is to be determined.   Then examples will be considered for which the Cartesian representation is given and the parametric vector representation is to be found. 

NOTE:    the choice of a parameter for a parametric vector representation is not unique. However, there is frequently one parameter that is “better” than others. 

As mentioned in the examples above it is possible to introduce the parameter  “( ”, the angle that a line from the origin to a point in the plane makes with the positive x-axis.   If the curve on which the point lies is a circle, then the radius (the length of the radial line) is constant.   If the curve on which the point lies is not a circle, then the radius will, in general, depend on the angle “( ”.   In either case, by using the Pythagorean theorem, we may write:

	x
	=
	r(( ) cos(( )

	
	and
	

	y
	=
	r(( ) sin(( )


These are called the Polar Co-ordinate representations for “x” and “y”. 

The polar co-ordinates for any point in  (2  are  (r , ( ).

The polar co-ordinate representation  (r, ( )  describes exactly one point on the given curve. However, each point on the given curve has infinitely many polar co-ordinate representations. This is because:

	(a)
	The addition of  2n(  to the angle  (  does not change the location described by (r, ( ) since “n” complete revolutions of a circle have been used.

	(b)
	Changing the sign of  “r” in combination with the addition of  (2n + 1)(  to the angle ( does not change the location described by  (r, ( ). 

	(c)
	at the pole (the origin), we have  r = 0  and any angle  (  can be used.


NOTES:  

(a) 
References will be made to space curves.   A space curve is any curve that can be drawn in  (n, where  n ( {1, 2, 3, ...}.

(b) 
Every simple space curve can be represented with the use of a single parameter.

(c) 
Every simple surface in  (n, where  n ( {1, 2, 3, ...} can be represented with the use of two parameters.

(d) 
a number of examples of finding parametric vector representations for given Cartesian representations, and of finding Cartesian representations for given parametric vector representations will be done in class.

§4.2 
Tangent Vectors, Arc Length and Area
In the previous section various ways of representing space curves in terms of a parametric vector function were introduced. In this section the derivative of this parametric vector function is determined, and is used to find:

	
	(a)
	a tangent vector to the curve,

	
	(b)
	the element of arc length,

	
	(c)
	the length of the curve between two values of the parameter,

	and
	(d)
	the area bounded by two curves with parametric vector representation.


Although the derivative of a parametric vector function representation for a space curve is defined for any vector space  (n, where  n ( {2, 3, 4,  ...}, we shall consider only n ( {2, 3}.   Also, for the sake of convenience, since the parameter can have different labels for different problems, when finding derivatives below for the general cases the symbol “p” will be used for the parameter unless otherwise specified.

Let the space curve,  (, be defined parametrically as   (:  x = x(p),  y = y(p),  z = z(p)   or using vector notation 
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.   The derivative of the position vector, 

, is 
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.   This derivative vector is a tangent vector to the space curve (.   Since there are two possible directions for this vector we shall adopt the convention that the tangent vector will point in the direction in which the parameter, p, increases along the curve.   Since it is a tangent vector we introduce the symbol 
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To see the equivalence between this representation and the standard representation for curves in (2, we note the following:   if  z = 0, then we may write, using the chain rule for differentiation 
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The curve will have a horizontal tangent if  
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the curve will have a vertical tangent if  
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At those points on the curve for which 
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 or where at least one of the derivatives does not exist, other methods must be used for determining the nature of the tangent at those points.   The second derivative for curves in  (2, in terms of the parameter is 
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Knowledge of the locations of horizontal and vertical tangents (if any) the values of the axis intercepts and the nature of the concavity as determined from the second derivative usually provides enough information to sketch the curve.   We will not in this course become involved with curve sketching except for curves defined in terms of polar co-ordinates.

When the tangent vector was determined above we looked at the changes in the space curve parallel to the co-ordinate axes caused by a change in the parameter “p”
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Arc Length:  

It is also necessary to consider the change in position along the space curve caused by a change in the parameter.   The change in position along the space curve is called the element of arc length and is represented symbolically by  ds.   The element of arc length of a space curve is 
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In spaces of any dimension, the length of a straight line segment between any two points with position vectors  
[image: image11.wmf]®

®

OB

OA

and

  is determined by finding the magnitude of the position vector 
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.   For an arbitrary space curve that may not be a straight line, the length of the curve  
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  from the point for which  p = p0  to the point for which  p = p1  must be determined in another way.   Since the element of arc length is defined as  ds, the length can be found by adding together all of the elements of arc length between any two points.   This is accomplished by using a line integral.   If the length of the curve is represented by “L”, then it can be shown that 
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Area in a Plane:
Recall from previous courses that the area of the region bounded by the curves  y = 0 

(the x-axis),  y = f (x),  x = a  and  x = b  where  a < x < b  and  f (x) ( 0  is 
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If the curve is defined parametrically by  x = g(p),  y = f (p),  where x = a  when  p = p0, and 

x = b  when  p = p1 , then the formula above becomes 
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Area of a Surface of Revolution:  

If an element of  the curve  defined parametrically  by    x = g(p),   y = f (p),  where  x = a  when

p = p0, and  x = b  when  p = p1 , is rotated around the line  y = c , then a cylindrical washer of radius  R = ( f (p) – c (  and height  ds  is formed.   This is called an element of surface area and is represented by  dS = 2( R ds = 2( ( f (p) – c ( ds.   The area  As  of the surface of revolution thus generated is 
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§4.3 
Plane Polar Co-ordinates
In this section curves in  (2 defined in terms of the parameter “( ” are considered, and as in the previous section we shall determine:

	
	(a)
	a tangent vector to the curve,

	
	(b)
	the element of arc length,

	
	(c)
	the length of the curve between two values of the parameter,

	and
	(d)
	the area bounded by two curves with parametric vector representation.


Recall that by the Pythagorean Theorem any point in  (2 can be defined in terms of the parameter “( ”.   This point is uniquely determined by specifying: 

   (1) 
the radius of the circle on which it lies, and 

   (2) 
the angle “( ” that a line from the origin to the point makes with the positive x-axis. 

Hence, it can be shown that  x = r cos(( ), and that  y = r sin (( ).   

The parametric vector function representation of an arbitrary point then is 
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If the curve, C, on which the point is found is not a circle, then in general the radius will also be a function of the parameter  “( ”.   The parametric vector function representation of an arbitrary point on the curve then is 
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Tangent Vector:  

By using the formula for the tangent vector from the previous section, the tangent vector to the curve, C, defined in terms of plane polar co-ordinates is
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Arc Length:  

In the same fashion, by using the formula for the element of arc length in the previous section, the element of arc length to the curve, C, is
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The length of a curve from  ( = (0  to  ( = (1  then is 
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Area in a Plane:
In general, the element of area in terms of plane polar co-ordinates is equal to the area of the region bounded by the arcs of circles of radii “r” and “r + dr” between the radial lines  ( = (0  and  ( = (0 +d(.   The length of arc is  r d(, and the width of the element is  dr.   Hence the element of area in terms of polar co-ordinates is   dA = (r d() dr.   If the radius is a function of the angle  (, then this formula simplifies to 
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If the sign of  r = f (() does not change, then the area of the region bounded by the curves 

r = 0,  r = f ((),  ( = (,  and  ( = (  where  ( ( ( ( ( + 2(  is 
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Given two curves, defined in terms of polar co-ordinates by  r = f (()  and  r = g(()  that intersect at   ( = (  and  ( = (  with  f (() ( g((), the area between the curves is 
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It is important to note that if the two curves defined above intersect at two points but with different values for the angle  (, then the formula above remains valid provided that appropriate changes are made to the limits.

Curve Sketching with Polar Co-ordinates
Since most are unfamiliar with curve sketching using polar co-ordinates, one example will be presented here.   Additional examples will be done in class.   There are two main differences with this type of sketch when compared to sketching a curve of the form  y = f (x), namely 

	
	(a)
	curved lines are used instead of straight lines,

	and
	(b)
	it is necessary to go around a circle 


The approach that I use is slightly different than that presented in many textbooks. 

Given an equation of the form  r = g((): 

    (i) 
determine the values of  (, if any, for which  r = 0; 

   (ii) 
if  g(() contains a term involving either  cos (m() or sin (m(), then subdivide the circle 


0 ( ( ( 2(   into intervals of length 
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;

  (iii) 
if the values of  (, if any, for which  r = 0  are inside of the intervals of length 
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then further subdivide those intervals;

  (iv) 
set up a table of values;

   (v) 
sketch the curve

Sample Problem 1: 
Sketch the curve   r = 1 + 2 sin (2().

We will have  r = 0  whenever  sin (2() = 0.5.   This occurs when 
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Next, since we have sin (2(), intervals of length 

must be used. 

The values of  (  for which  r = 0  do not occur at the endpoints of the intervals above, so we will have to further subdivide two of the intervals
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This actually only takes us around half of the curve, but we can use symmetry for the other half because the values in the table repeat.
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§4.4 
Tangent Vectors, Normal Vectors, Curvature
In sections §4.2, and §4.3 various ways of representing space curves in terms of a parametric vector function were introduced, along with their first derivatives, which were called tangent vectors.   We also introduced the element of arc length represented by “ds”.   In this section we introduce the unit tangent vector and its first derivative, which is called a principal normal vector. These two vectors can then be used to rewrite (decompose) the velocity and acceleration vectors studied in the mechanics course in terms of their tangential and normal components  (NOTE: they also span a subspace).   These components prove to be useful in the study of dynamics (the motion of bodies).   Also the tangent and normal vectors are useful geometrically in determining the equations of various lines and planes. 

To begin we review the definition of a tangent vector for a space curve defined by the parametric vector function representation  
[image: image33.wmf](

)

(

)

(

)

k

j

i

r

ˆ

ˆ

ˆ

:

p

z

p

y

p

x

+

+

=

G

r


It was determined that the tangent vector is 
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, and that by convention it is to point in the direction in which the parameter “p” increases.   

Since any non-zero vector can always be expressed as some scalar multiple of a unit vector, we can define a unit tangent vector as follows: 
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In this expression for the unit tangent vector the quantity “ds” is the element of arc length defined previously.   Also as the equation above indicates it is not necessary to actually find the derivative of the position vector with respect to the element of arc length.   It is sufficient to find the tangent vector and divide it by its length (or magnitude).   This is easier than finding the change in the position caused by a change in the arc length.

A principal normal vector is determined by finding the change in the unit tangent vector caused by a change in the parameter.   It does not matter whether the parameter “p” or the parameter “s” is used above. 

Since 

, it follows that 
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Hence in either case the vectors 
[image: image38.wmf]÷

÷

ø

ö

ç

ç

è

æ

ds

d

dp

d

T

T

T

ˆ

or

ˆ

and

ˆ

 must be orthogonal vectors. 

This vector orthogonal to the unit tangent vector is called a principal normal vector and is represented symbolically by   
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Curvature:  

The magnitude of the vector 
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  is the curvature  “(” of the given space curve (. 

That is  
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The radius of curvature is 

.

The unit principal normal vector, then, is 
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As with the unit tangent vector we may use the chain rule for differentiation, and write instead   
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Note that this is the derivative of the unit tangent vector and not the derivative of the tangent vector.    Hence,
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(because, in general, 
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As mentioned previously the tangent and normal vectors have a number of applications which we will now consider.

§4.5 
Velocity and Acceleration
When the parameter involved is the time “t” the first derivative of the position vector is the velocity vector (i.e. 
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).   The magnitude of the velocity is the speed, 
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But we have already established that for any parameter the first derivative of the position vector is a tangent vector.   Hence, the velocity vector must always be tangential to the path that a particle travels along. 
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Also we know that the acceleration vector is the derivative of the velocity vector with respect to the time.   From this and the workings above we find that the acceleration vector can be expressed as
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However we determined above that the derivative of the tangent vector is proportional to the unit principal normal vector.   Thus the acceleration vector has a component that is in the direction of the unit tangent vector and a component in the direction of the unit principal normal vector.   Thus we may also express the acceleration vector as
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where using previous results we have  
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.    Since it is usually easy to determine the acceleration vector 

 and the tangential component  aT  of the acceleration vector, the normal component is frequently determined by using 
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(NOTE:    the unit tangent vector and the unit principal normal vector to a curve at any point in  (3  form a basis for a subspace of  (3.) 




Knowledge of the tangent vector is important in finding the work done by either a mechanical or electrical force because the work done in moving a particle along a path  (  by the vector force 

 is determined by the line integral 

.    From this equation we are able to deduce that only the tangential component of the force vector contributes to the work done.   Hence, if a force is acting in the direction of the principal normal vector, then, mathematically, there is no work done.   There are other applications in which knowledge of the principal normal vector is important.

Radial and Transverse Components

For a particle moving in (2 when polar co-ordinates are being used, the position vector is 
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.   It is usually more convenient to write this in the form   
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As before the tangent vector is 
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or using the alternate notation 
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The velocity vector is either 
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or    
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The first of these two forms expresses the velocity vector in terms of the tangent vector, while the second form expresses the velocity vector in terms of its radial and transverse components.   The acceleration vector in terms of its radial and transverse components is 
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or, abbreviating differentiation with respect to time by the “over-dot” symbol, 
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and
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§4.6 
Equations of Lines:
Another use for the tangent and normal vectors is to find representations for lines that are either tangential or normal to the space curve  (  at a given point on the curve or to find the equations for planes.

The vector equation for a line that passes through the point  P0  and that is parallel to the vector 

 is of the general form 
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where “k” can assume any real value, and the vector  

 is the position vector associated with the point  P0.   Hence, given any point on the space curve  ( , with associated position vector  

  the equations of the tangent and normal lines passing through this point in vector form, parametric form and symmetric form are given in the table below. 

	
	Tangent Line
	Normal Line

	Vector Form
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	Parametric Form 
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	Symmetric Form
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Note: 
the tangent and normal vectors must be evaluated at the given point on the curve.

§4.7 
Equations of Planes:
Another geometric use for the tangent and normal vectors at a point on a given curve is to determine: 

(a) 
the plane that contains the point and has the tangent vector as a vector perpendicular to the plane (which we shall call the tangent plane),

(b) 
the plane that contains the point and has the normal vector as a vector perpendicular to the plane (which we shall call the normal plane),

(c) 
the plane that contains the point and has both the tangent and normal vectors on the plane (which is called the osculating plane).

In general the equation of the plane containing the point  P0 , with associated position vector given by  

 , for which the vector  

  is perpendicular to the plane is:  

  where the vector  

  is the position vector for an arbitrary point on the plane.   Hence, the equations for the tangent plane, the normal plane, and the osculating plane are given in the table below.

	Tangent Plane
	



	
	

	Normal Plane
	



	
	

	Osculating Plane
	




_1025094124.unknown

_1025097999.unknown

_1025098775.unknown

_1025099398.unknown

_1025099756.unknown

_1025339654.unknown

_1025339732.unknown

_1025340063.unknown

_1025099861.unknown

_1025099863.unknown

_1025099791.unknown

_1025099860.unknown

_1025099604.unknown

_1025099709.unknown

_1025099424.unknown

_1025099006.unknown

_1025099113.unknown

_1025098911.unknown

_1025098209.unknown

_1025098625.unknown

_1025098711.unknown

_1025098347.unknown

_1025098080.unknown

_1025098137.unknown

_1025098041.unknown

_1025095219.unknown

_1025096825.unknown

_1025097275.unknown

_1025097534.unknown

_1025097100.unknown

_1025095541.unknown

_1025095561.unknown

_1025095511.unknown

_1025094598.unknown

_1025094746.unknown

_1025094953.unknown

_1025094681.unknown

_1025094522.unknown

_1025094551.unknown

_1025094272.unknown

_1025087165.unknown

_1025088831.unknown

_1025089609.unknown

_1025089716.unknown

_1025090960.unknown

_1025089631.unknown

_1025089287.unknown

_1025089390.unknown

_1025089073.unknown

_1025088142.unknown

_1025088353.unknown

_1025088630.unknown

_1025088235.unknown

_1025087631.unknown

_1025088045.unknown

_1025087345.unknown

_1025086423.unknown

_1025086730.unknown

_1025086840.unknown

_1025087021.unknown

_1025086801.unknown

_1025086511.unknown

_1025086633.unknown

_1025086449.unknown

_971872875.unknown

_1025086264.unknown

_1025086356.unknown

_1025086381.unknown

_1025086336.unknown

_1025086248.unknown

_1025086066.unknown

_938873305.unknown

_938953428.unknown

_939470197.unknown

_939470571.unknown

_939470666.unknown

_939470674.unknown

_939470293.unknown

_939470124.unknown

_939470164.unknown

_938953912.unknown

_938949505.unknown

_938953242.unknown

_938949461.unknown

_938867016.unknown

_938869733.unknown

_938609252.unknown

_938864759.unknown

