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2. Matrix Algebra 
 
In chapter 1 we found it convenient to represent linear systems of equations by 
augmented matrices.   Matrix algebra leads to other applications, such as geometrical 
transformations (essential to image processing, one of many engineering applications) 
and evolutionary models (economics, probability - Markov chains, etc.).  
 
2.1 Simple Matrix Algebra 
 
A matrix with m rows and n columns has dimensions or size (m×n) and is said to be an 
“m by n matrix”.   The number of rows is always written first and the number of columns 
second. 
 

An example of a 2×3 matrix is 
3 2 1
0 1 2

A ⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

. 

A 1×n matrix is a row matrix.   [ ]12 2 5 10R = −  is a row matrix (of size 1×4). 
(also known as a row vector). 

An n×1 matrix is a column matrix.   
2
0
1

C
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 is a column matrix (of size 3×1). 

(also known as a column vector). 
A matrix with equal numbers of rows and columns is a square matrix. 

1 0 2
0 1 3
0 0 5

D
−⎡ ⎤

⎢= ⎢
⎢ ⎥⎣ ⎦

⎥
⎥  is a square matrix of dimensions (3×3). 

 
The entry in row i and column j of matrix D is dij. 
In matrix D above,  d23 = 3. 
 
The main diagonal of a matrix extends down and right from the top left corner; the 
elements of the main diagonal of matrix  A  =  [ aij ] are  aij. 
 
For the four matrices above, the main diagonals are highlighted here: 
 

2 1

0 2

3

1
A

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦−
,   2 5 1012R ⎡ ⎤

⎦= −⎣ ,   0
1

2
C

⎡ ⎤
⎢ ⎥

= ⎢
⎢
⎣ ⎦

−

⎥
⎥

,    

0 21

5

0

0 0

1 3D

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎦

−

⎥⎣

. 
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Equality  
 
Two matrices are equal if and only if they are the same size and all corresponding pairs 
of entries are equal. 
In other words,  A = B  iff  aij = bij  for all i and for all j. 
Example: 

2 0
2, 0, 1 and 3

1 3
a b

a b c d
c d

⎡ ⎤ ⎡ ⎤
= ⇔ = = =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
=  

 
 
Addition is defined only for matrices of the same size. 
 
Example 2.1.01    
 

0 1 6 5 6 6
3 2 , 4 3 7 5
1 0 2 1 1 1

A B A B
⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢= = ⇒ + =⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢−⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 

 
Example 2.1.02    
 

0 1
6 5

3 2 ,
2 1

1 0
A C

⎡ ⎤
⎡ ⎤⎢ ⎥= = ⇒⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥−⎣ ⎦

A C+  is undefined. 

 
 
Matrix addition is commutative and associative. 
For any matrices  A, B, C  of the same size,  
 
 A + B = B + A   and 
 A + (B + C)  =  (A + B) + C   
 
 
The identity matrix under addition is the zero matrix: 
 
All entries of any zero matrix are zero.   The (m×n) zero matrix is Omn  (or just O if the 
size is obvious from the situation). 
 
For all matrices  X ,  
 X + O  =  X  (where the zero matrix is the same size as X) 
 
The inverse matrix of an (m×n) matrix  A  under addition is its negative –A, whose 
entries are all  –aij . 
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For all matrices  X ,  
 X + (–X)  =  O   (where the zero matrix is the same size as X) 
 
The difference of two matrices A, B  of the same size is   
 A – B  =  A + (–B) ,  whose elements are [aij  –  bij ] 
 
Example 2.1.03    
 

0 1 6 5 6 4
3 2 , 4 3 1 1
1 0 2 1 3 1

A B B A
⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢= = ⇒ − =⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢−⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 

 
Example 2.1.04    
 

0 1
6 5

3 2 ,
2 1

1 0
A C

⎡ ⎤
⎡ ⎤⎢ ⎥= = ⇒⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥−⎣ ⎦

A C−  is undefined. 

 
 
Scalar Multiplication    
 
Multiplication of a matrix A by a scalar k causes every element of A to be multiplied by k. 
  ij ijA a k A ka⎡ ⎤ ⎡ ⎤= ⇒ =⎣ ⎦ ⎣ ⎦
 
 
Example 2.1.05    
 

0 1 6 5 0 2
3 2 , 4 3 2 6 4
1 0 2 1 2 0

A B A
⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢= = ⇒ =⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢− −⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 0 2 6 3 1 2 5 12 7
and 3 2 3 3 2 4 3 2 2 3 1 0

3 1 2 2 3 0 2 1 7 2
A B

− − −⎡ ⎤ −⎡ ⎤
⎢ ⎥ ⎢ ⎥− = − − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − − −⎣ ⎦⎣ ⎦
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The distributive laws for matrices of the same size follow: 
 
( )k A B k A k B+ = +  

( )p q A p A q A+ = +  
and 
( ) (pq A p q A= )  
 
The transpose of a matrix  A = [ aij ]  is   AT = [ aji ] . 
 
Thus the rows of the transpose are the columns of the original matrix and vice versa. 
The transpose of an (m×n) matrix is an (n×m) matrix. 
In particular, the transpose of a row matrix is a column matrix  
and the transpose of a column matrix is a row matrix. 
 
 
Example 2.1.06    
 
Write down the transpose of the following matrices: 
 

9
1 2 6 1 3 6

, ,
3 4 1 4 0 5

2

A B C

⎡ ⎤
⎢ ⎥−⎡ ⎤ ⎡⎢ ⎥= = =⎢ ⎥ ⎢⎢ ⎥ −⎣ ⎦ ⎣
⎢ ⎥
⎣ ⎦

⎤
⎥
⎦

0

 

 

[ ]T T T

1 4
1 3

, 9 6 1 2 , 3
2 4

6 5
A B C

−⎡ ⎤
⎡ ⎤ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 
 
 
Further properties of transposition: 
For all equal-size matrices  A, B  and all scalars k,  
  ( )TTA A=

  ( ) ( )T Tk A k A=

  ( )T T TA B A B+ = +
 
A matrix for which  AT = A  is symmetric.    
Symmetric matrices are necessarily square (n×n)  
and the main diagonal is a line of symmetry.. 
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Example 2.1.07    
 

1 2 1 2 1 4 0
, ,

2 4 3 4 4 2 0
A B C

− −⎡ ⎤ ⎡ ⎤ ⎡
= = =⎢ ⎥ ⎢ ⎥ ⎢− − −⎣ ⎦ ⎣ ⎦ ⎣

− ⎤
⎥
⎦

 

 
Matrix  A  is symmetric because  AT = A  . 

Matrix  B  is not symmetric because   T 1 3 1 2
2 4 3 4

B B
− −⎡ ⎤ ⎡ ⎤

= ≠ =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
. 

Matrix  C  cannot be symmetric because it is not square. 
 
 
Miscellaneous Examples    
 
Example 2.1.08   Textbook exercises 2.1 page 34 question 1(b) 
 

Find a, b, c and d if  . 
1 1

2
3 1

a b b c
c d d a
− −⎡ ⎤ ⎡

=⎢ ⎥ ⎢− − −⎣ ⎦ ⎣

⎤
⎥
⎦

 
This generates the system of simultaneous linear equations 
a – b              =    2 
      b – c        =    2 
            c – d  =  –6 
–a           + d  =    2 
 
Solving the linear system,  
 

4 1

1 1 0 0 2 1 1 0 0 2
0 1 1 0 2 0 1 1 0 2
0 0 1 1 6 0 0 1 1 6
1 0 0 1 2 0 1 0 1 4

R R

− −⎡ ⎤ ⎡
⎢ ⎥ ⎢− −⎢ ⎥ ⎢⎯⎯⎯⎯→
⎢ ⎥ ⎢+− − − −
⎢ ⎥ ⎢− −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

 

 

4 2 4 3

1 1 0 0 2 1 1 0 0 2
0 1 1 0 2 0 1 1 0 2
0 0 1 1 6 0 0 1 1 6
0 0 1 1 6 0 0 0 0 0

R R R R

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎯⎯⎯⎯→ ⎯⎯⎯⎯→
⎢ ⎥ ⎢ ⎥+ +− − − −
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

 
which is row-echelon form. 
d  is a non-leading variable and is assigned a parametric value  t  (where t may be any real 
number). 
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Example 2.1.08   (continued) 
 
The system is now 
a – b              =    2 
      b – c        =    2 
            c – d  =  –6 
                  d  =   t   
Using back-substitution,  
 
c  =  t – 6 
b  =  c + 2  =  t – 4  
a  =  b + 2  =  t – 2 
 
The values of  a, b, c and d are therefore  
(a, b, c, d)  =  (t – 2, t – 4, t – 6, t)  or equivalently   
(a, b, c, d)  =  (–2, –4, –6, 0)  +  t (1, 1, 1, 1) ,   ( )t∈\ . 
 
 
 
Example 2.1.09    
 

Find the transpose of  
0 5 2
5 0 1
2 1 0

A
−⎡ ⎤

⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 

T

0 5 2
5 0 1
2 1 0

A A
−⎡ ⎤

⎢ ⎥= =⎢ ⎥
⎢ ⎥− −⎣ ⎦

−  

 
Matrices which are such that  AT = –A  are skew-symmetric. 
In any skew-symmetric matrix  A , the main diagonal elements aii  = 0. 
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Example 2.1.10   Textbook exercises 2.1 page 35 question 15(a) 
 
Find the matrix A that satisfies the equation  

T 2 1
1 1 0

3 0
1 2 4

3 8
A

⎡ ⎤
⎛ − ⎞⎡ ⎤ ⎢ ⎥+ =⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎝ ⎠ ⎢ ⎥⎣ ⎦

5

⎤
⎥
⎦

 

 
 
Method 1. 
 

T2 1
1 1 0 2 0 3

3 0 5
1 2 4 1 5 8

3 8
A

⎡ ⎤
−⎡ ⎤ ⎡⎢ ⎥+ = =⎢ ⎥ ⎢⎢ ⎥⎣ ⎦ ⎣⎢ ⎥⎣ ⎦

 

 
2 0 3 1 1 0 1 3 3

3
1 5 8 1 2 4 2 1 4

A
− −⎡ ⎤ ⎡ ⎤ ⎡

⇒ = − =⎢ ⎥ ⎢ ⎥ ⎢
⎤
⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎤
⎥
⎥
⎥⎦

 

 
 
Method 2. 
 

T

1 1 2 1
3 1 2 0 5

0 4 3 8
A

⎡ ⎤ ⎡
⎢ ⎥ ⎢+ − =⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

 

 

T

2 1 1 1 1 2
0 5 3 1 2 3 1
3 8 0 4 3 4

A
− −⎡ ⎤ ⎡ ⎤ ⎡

⎢ ⎥ ⎢ ⎥ ⎢⇒ = − − = −⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢

⎤
⎥
⎥
⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
T1 2

1 3 3
3 1

2 1 4
3 4

A
− −⎡ ⎤

−⎡ ⎤⎢ ⎥⇒ = − = ⎢ ⎥⎢ ⎥ − − −⎣ ⎦⎢ ⎥−⎣ ⎦
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Example 2.1.11   Textbook exercises 2.1 page 35 question 17 
 
Show that  A + AT  is symmetric for any square matrix  A. 
 
First note that if  A  is not square, then the dimensions of  A  and  AT  will be different, so 
that  A + AT  is not defined at all. 
 
(A + AT)T  =  AT + A  =  A + AT   (matrix addition is commutative). 
 
Therefore the matrix   (A + AT)  is symmetric for all square matrices  A. 
 
 
Building on this example, any square matrix  A  can be written as the sum of a symmetric 
matrix  S  and a skew-symmetric matrix  K :   A  =  S + K  
 
S  is symmetric    ⇒   S T = S . 
K  is skew-symmetric    ⇒   K T = –K . 
AT  =  (S + K )T  =  S T + K T  =  S  –  K  

( ) ( )
T

T 2
2

A AA A S K S K S S +
⇒ + = + + − = ⇒ =  

and 
 

( ) ( )
T

T 2
2

A AA A S K S K K K −
− = + − − = ⇒ =  

so that the symmetric matrix  S  and the skew-symmetric matrix  K are uniquely 
determined for each square matrix  A.   [This is also question 20, exercise 2.1, on page 36 
of the textbook.] 
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2.2 Matrix Multiplication    
 
Dot product    
 
The dot product of a row vector  1 2 nR r r r⎡ ⎤= ⎣ ⎦"  

and a column vector  

1

T2
1 2 n

n

c
c

C c c

c

⎡ ⎤
⎢ ⎥
⎢ ⎥ c⎡ ⎤= = ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
#

 

is defined to be 

1

2
1 2 1 1 2 2

1
n n k k

k

n

n
c
c

nR C r r r r c r c r c r c

c
=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= = + + +⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑i " "
#

=  

Note that the dimensions of the row and column vectors must be (1×n) and (n×1) 

respectively, otherwise the sum 
1

k k
k

n
R C r

=
= ∑i c  is not defined.    

The order of multiplication in the dot product is important. 
 
 
Example 2.2.01    
 
The numbers of atoms of carbon, hydrogen and oxygen in each molecule of water, 
methanol and ethanol are represented in the matrix A: 
 

  

water methanol ethanol

0 1 2
2 4 6
1 1 1

C
A H

O

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 
The composition of a form of denatured alcohol and a dilution of that alcohol in water is 
described by the numbers of molecules of water, methanol and ethanol per 20 molecules 
of the alcohol, as listed in matrix B: 
 

  

denatured diluted

water

methanol

ethanol

0 10
2 1

18 9
B

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 
Find the ratio of carbon atoms to hydrogen atoms to oxygen atoms in the diluted alcohol. 
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Example 2.2.01   (continued) 
 
Every 20 molecules on average of the diluted alcohol contains 10 molecules of water, 1 
molecule of methanol and 9 molecules of ethanol.   Reading the atomic contents of these 
three molecules from matrix A, we find the numbers of atoms per 20 molecules of diluted 
alcohol to be: 
  Water  + Meth. + Ethanol  
Carbon: 0 × 10 +  1 × 1  +  2 × 9  =  19 atoms 
Hydrogen: 2 × 10 +  4 × 1  +  6 × 9  =  78 atoms 
Oxygen: 1 × 10 +  1 × 1  +  1 × 9  =  20 atoms 
 
On average, every 20 molecules of diluted alcohol contain 19 atoms of carbon, 78 atoms 
of hydrogen and 20 atoms of oxygen.   The ratio is C:H:O:  =  19 : 78 : 20. 
 
Note how the numbers of atoms were found. 
The number of carbon atoms is the dot product of the first row of  A  with the second 
column of B. 
The number of hydrogen atoms is the dot product of the second row of  A  with the 
second column of B. 
The number of oxygen atoms is the dot product of the third row of  A  with the second 
column of B. 
 
The product of the two matrices yields the number of atoms per 20 molecules of each of 
the two substances: 
 

( ) ( )
( ) (
( ) (

0 1 2 0 10 0 0 1 2 2 18 0 10 1 1 2 9
2 4 6 2 1 2 0 4 2 6 18 2 10 4 1 6 9
1 1 1 18 9 1 0 1 2 1 18 1 10 1 1 1 9

AB
× + × + × × + × + ×

)
)

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = × + × + × × + × + ×⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ × + × + × × + × + ×⎣ ⎦ ⎣ ⎦ ⎣ ⎦

i  

denatured diluted

38 19
116 78
20 20

B
C

A H
O

⎡ ⎤
⎢ ⎥⇒ = ⎢ ⎥
⎢ ⎥⎣ ⎦
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The product of two general matrices follows. 
 
The product of an (m×n) matrix  A  with a (p×q) matrix  B  (in that order) is not defined 
unless  p = n.  
 
The product  C = AB  of an (m×n) matrix  A  with an (n×q) matrix  B  (in that order) is the 
(m×q) matrix  C  =  [ cij ] , where the entry in row i and column j of  C  is the dot product 
of the ith row of A with the jth column of B:  
 

1
i j ik k j

k

n
c a

=
= ∑ c  

 
 
Example 2.2.02    
 
Find the matrix products  AB  and  BA  where  

1 0
2 1

2 1 and
1 2

4 3
A B

⎡ ⎤
⎡ ⎤⎢ ⎥= − = ⎢ ⎥⎢ ⎥ −⎣ ⎦⎢ ⎥⎣ ⎦

. 

 
 

( ) ( )
( ) ( )
( ) ( )

1 0 1 2 0 1 1 1 0 2 2 1
2 1

2 1 2 2 1 1 2 1 1 2 3 4
1 2

4 3 4 2 3 1 4 1 3 2 11 2
AB

× + × × + ×−⎡ ⎤⎡ ⎤ ⎡
⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢= − = − × + × − × + ×− = − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢−⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢

⎤
⎥
⎥
⎥× + × × + ×− −⎣ ⎦ ⎣⎣ ⎦ ⎦

. 

 
BA  is not defined  because B is (2×2) and A is (3×2).   The number of columns of the 
left matrix does not match the number of rows of the right matrix. 
 
 
Note that this example demonstrates that matrix multiplication is not commutative in 
general, that is  BA  ≠  AB . 
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The identity matrix of order n is the square (n×n) matrix whose main diagonal entries 
are one and whose other entries are all zero. 

2 3

1 0 0
1 0

and 0 1 0
0 1

0 0 1
I I

⎡ ⎤
⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

, etc. 

For any (m×n) matrix  A ,   m nI A AI A= = . 
I  is therefore the identity element for the operation of matrix multiplication. 
 
Where it is obvious from the context,  In  is represented by just I . 
 
 
Example 2.2.03    
 

1 0 1 0 0 1 0 1 0
2 1 0 1 0 2 1 2 1
4 3 0 0 1 4 3 4 3

A I A
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − ⇒ = − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

and 
1 0 1 0

1 0
2 1 2 1

0 1
4 3 4 3

AI
⎡ ⎤ ⎡ ⎤

⎡ ⎤⎢ ⎥ ⎢ ⎥= − = −⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
 
Where the product is defined, the product of the zero matrix with any other matrix is the 
zero matrix of the appropriate dimensions. 
 
 
Example 2.2.04    
 

1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0

2 1 , 2 1 0 0 0 0
0 0 0 0 0 0 0 0 0

4 3 4 3 0 0 0 0

⎡ ⎤ ⎡ ⎤ ⎡
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢− = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

⎥
⎥

 

 

but is not defined 
1 0

0 0
2 1

0 0
4 3

⎡ ⎤
⎡ ⎤ ⎢ −⎢ ⎥ ⎢⎣ ⎦ ⎢ ⎥⎣ ⎦
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Example 2.2.05    
 

Find  A 2, where   . 
1 2
3 4

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
( ) ( )
( ) ( )

2 1 1 2 3 1 2 2 41 2 1 2 7 10
3 1 4 3 3 2 4 43 4 3 4 15 22

A
× + × × + ×⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡

= = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢× + × × + ×⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦

⎤
⎥
⎦

 

 
 
Example 2.2.06    
 

Find  A 2, where   and  k  is any real number. 
1
0 1

k
A

−⎡
= ⎢
⎣ ⎦

⎤
⎥

 
( ) ( )
( ) ( )

2 1 1 0 1 11 1 1 0
0 1 1 0 0 1 10 1 0 1 0 1

k k kk k
A I

k
− ×− + × − × + ×⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥×− + × × + ×⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
=  

 
Note that in scalar arithmetic  x 2 = 1    ⇒   x = ±1, but in matrix multiplication 

2A I= ⇒ A I= ±  
 
 
Example 2.2.07    
 

Find  A 2, where  . 
2 4
1 2

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

( ) ( )
( ) ( )

2 2 2 4 1 2 4 4 22 4 2 4 0 0
1 2 2 1 1 4 2 21 2 1 2 0 0

A O
× + − × ×− + − ×−⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥× + − × ×− + − ×−− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
=  

 
Note that in scalar arithmetic  x 2 = 0    ⇒   x = 0, but in matrix multiplication 

2A O= ⇒ A O=  
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Some properties of matrix multiplication:    
 
For any scalar  k, matrices  A, B, C  of dimensions such that the matrix multiplications are 
defined, and identity and zero matrices of the appropriate dimensions,  
 
IA  =  AI  = A   [identity] 
OA  =  AO  = O  [zero] 
A(BC)  =  (AB)C  [associative law] 
A(B+C)  =  AB + AC  [distributive law] 
(B+C)A  =  BA + CA  [distributive law] 
k(AB)  =  (kA)B  =  A(kB)  
but note that  AB  ≠  BA  in general.   Matrices for which  AB = BA  are said to commute. 
Be very careful of the order of matrix multiplication. 
 
(AB)T  =  BTAT  
 
 
 
As first seen in Chapter 1, any system of linear equations  
 

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

31 1 32 2 33 3 3 3

1 1 2 2 3 3

n n

n n

n n

p p p pn n

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

+ + + + =

+ + + + =

+ + + + =

+ + + + =

…
…
…

#
… p

 

 
can be written more compactly as the matrix equation  
 

AX = B 
 

where  ,   

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

n

n

n

p p p pn

ij

a a a a
a a a a
a a a aA a

a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥= =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
…
…

# # # % #
…

and  X   and  B  are the column vectors  

11

22

33 ,

pn

bx
bx
bxX B

bx

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

##
. 
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Given an inhomogeneous linear system   AX = B , there is an associated homogeneous 
system   

AX = O 
 
If the column vector  X1  is any one solution to  AX = B  and   
the column vector  X0  is any one solution to  AX = O, then  
(X0 + X1) is also a solution to  AX = B.   [This requires  AX = B  to be consistent.] 
 
Thus the general solution to the system   AX = B   may be expressed as the sum of the 
general solution to the associated homogeneous system and a particular solution of the 
inhomogeneous system. 
 
Proof:  
 
Let  X2  be any solution to  AX = B  (so that  AX2 = B ) 
and let  X1 be a known particular solution to   AX = B   (so that  AX1 = B ). 
Let  X0  =  X2  –  X1 . 
 
Then   ( )0 2 1 2 1AX A X X AX AX B B O= − = − = − =

⇒   X0  is a solution to the associated homogeneous system  AX = O. 
 
Occasionally it is easier to find a particular solution and to solve the associated 
homogeneous system than it is to solve the original inhomogeneous system all at once. 
 
We will see this concept of partitioning a solution into a particular solution and the 
solution of the associated homogeneous system again when we study ordinary differential 
equations in a future course (MATH 3260 or ENGI 3424 or ENGI 3425/4425). 
 
If  A  is an (m×n) matrix of rank  r, then the homogeneous linear system of  m equation in 
n variables  AX = O  has exactly  (n–r) basic solutions, one for each parameter and every 
solution is a linear combination of these basic solutions. 
 
 
Example 2.2.08    
 

Find basic solutions of  AX = O, where 

1 2 0 1 1
2 4 1 1 2
3 6 1 2 1
1 2 1 0 3

A

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 

Show that  [ ]T1 2 0 2 1X =   is a solution to  AX = B , where  

[ ]T8 10 18 2B = .   Hence find the complete solution to  AX = B . 
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Example 2.2.08   (continued) 
 
Reducing the augmented matrix to row-echelon form: 
 

2 1

3 1

4 1

1 2 0 1 1 0 1 2 0 1 1 0
22 4 1 1 2 0 0 0 1 1 4 0
33 6 1 2 1 0 0 0 1 1 4 0

1 2 1 0 3 0 0 0 1 1 4 0

R R
R R
R R

⎡ ⎤ ⎡
⎢ ⎥ ⎢−− −⎢ ⎥ ⎢⎯⎯⎯⎯⎯→−⎢ ⎥ ⎢− −
⎢ ⎥ ⎢−− −⎣ ⎦ ⎣

⎤
⎥− ⎥
⎥−
⎥− ⎦

 

 

3 2

4 2

1 2 0 1 1 0

0 0 1 1 4 0
0 0 0 0 0 0
0 0 0 0 0 0

R R
R R

⎡ ⎤
⎢ ⎥

− − −⎢ ⎥⎯⎯⎯⎯→ ⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

 

which is equivalent to  
1 2 3 4 52 0 0x x x x x+ + + + =  and 

           3 4 54 0x x x− − =
The leading variables are  x 1  and  x 3 . 
Assign parameters  x 2 = r,  x 4 = s,  x 5 = t,  so that the general solution is 

1 32 , 4x r s t x s t= − − − = +  
Then  

1

2

3

4

5

2 2 1
1 0

4 0 1
0 1
0 0

x r s t
x r
x

1
0
4
0
1

X r ss t
x s
x t

⎡ ⎤ − − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = + ++
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

t

⎤
⎥
⎥ =
⎥
⎥
⎦

 

 
The basic solutions are therefore  
X1  =  [ –2  1  0  0  0 ]T ,   X2  =  [ –1  0  1  1  0 ]T ,   X3  =  [ –1  0  4  0  1 ]T  
and the general solution to  AX = O  is  X  =   r X1 +  s X2 +  t X3 . 
 

1
1 2 0 1 1 8

2
2 4 1 1 2 10

0
3 6 1 2 1 18

2
1 2 1 0 3 2

1

AX B

⎡ ⎤
⎡ ⎤ ⎡⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥−⎢ ⎥ ⎢⎢ ⎥= =
⎢ ⎥ ⎢− ⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥−⎣ ⎦ ⎣⎢ ⎥⎣ ⎦

 

 
Therefore the complete solution to  AX = B  is  

X  =   [ 1  2  0  2  1 ]T  +  r X1 +  s X2 +  t X3 . 
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Block Multiplication 
 
Example 2.2.09    
 
Suppose that matrices A, B, P, X  and  Y  are defined as 
 

2 23

22

1 2
1 0 0 0 0

3 4
0 1 0 0 0

and 2 0
0 0 2 0 3

0 3
0 0 0 3 1

1 2

I O X
A B

O P Y

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

 

then  
 

( )
( )

2 232 23

2222

I X O YI O X X
AB

O X PYO P Y P
+⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡

= = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢+⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦ Y
⎤

= ⎥
⎦

⎤
⎥
⎦

 

 
2 0

2 0 3 7 6
0 3

0 3 1 1 11
1 2

PY
⎡ ⎤

⎡ ⎤ ⎡⎢ ⎥= =⎢ ⎥ ⎢⎢ ⎥⎣ ⎦ ⎣⎢ ⎥⎣ ⎦

 

1 2
3 4
7 6
1 11

X
AB

PY

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⇒ = =⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

 

 
This is somewhat faster than the direct evaluation of  

1 2
1 0 0 0 0 1 2

3 4
0 1 0 0 0 3 4

2 0
0 0 2 0 3 7 6

0 3
0 0 0 3 1 1 11

1 2

AB

⎡ ⎤
⎡ ⎤ ⎡⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥= =
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎣ ⎦ ⎣⎢ ⎥⎣ ⎦

⎤
⎥
⎥
⎥
⎥
⎦

 

 
The partitioning of the matrices in a matrix multiplication must be such that all matrix 
products are defined. 
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Additional Examples 
 
Example 2.2.10    

Find the complete set of (2×2) matrices that commute with 
0 1
0 0

P ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. 

 
 

Let the general (2×2) matrix be  
a b

A
c d

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

.   Then  

0 1 0
0 0 0

a b a
AP

c d c
⎡ ⎤ ⎡ ⎤ ⎡

= =⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

⎤
⎥
⎦

⎤
⎬⎥

 

and 
0 1
0 0 0 0

a b c d
PA

c d
⎡ ⎤ ⎡ ⎤ ⎡

= =⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

 

 
AP  =  PA  if and only if  c = 0  and  d = a . 
 

Therefore the complete set of (2×2) matrices that commute with is 
0 1
0 0

P ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0
a b

A
a

⎧ ⎫⎡
= ⎨⎢

⎣ ⎦⎩ ⎭
, where  a  and  b  are any real numbers. 

 
 
Example 2.2.11    
 

For the matrix 
I X

A
O I

⎡ ⎤
= ⎢ −⎣ ⎦

⎥ , where  X, I and O  are all square matrices of the same 

size (k×k), find an expression for any natural number power of A,  An.  
 
 

( )
2

2
k k k kk

k
kk k kk k kk k

I X I X I O
A I

O I O I O I
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
=

, etc.

 

3 2 4 2 2 5 4, ,A A A IA A A A A I A A A A⇒ = = = = = = =  
Therefore 

( )
( )

even
odd

n I n
A

A n
⎧⎪= ⎨
⎪⎩

 

 
The topic of adjacency matrices for directed graphs (textbook page 46) will be explored 
in an assignment. 
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Example 2.2.12   (Textbook, exercises 2.2, page 48, question 11) 
 

Given that   and that  
1 2
1 0
2 3

A O A
⎡ ⎤ ⎡
⎢ ⎥ ⎢− = =⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

0

2
1
3

X
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 is a solution to  AX = B,  

find a two-parameter family of solutions to  AX = B. 
 
 
The homogeneous system  AX = O  has at least a two-parameter family of solutions  
 

( )
1 2
1 0 , ,
2 3

hX s t s t
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + ∈⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

\  

We have a particular solution to the inhomogeneous system  AX = B,  

0

2
1
3

pX X
⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Therefore a two-parameter family of solutions to  AX = B  is   
 

( )
2 1 2
1 1 0 , ,
3 2 3

p hX X X s t s t
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + = − + − + ∈⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

\  
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2.3 - Matrix Inverses 
 
For (n×n) matrices  A, B, if 

AB  =  BA  =  I 
then  B  =  A–1  is the inverse matrix of A. 
 
A matrix that possesses an inverse is invertible.   A non-invertible matrix is singular. 
 
 
Example 2.3.1     
 

Show that  is the inverse of 
5 2
3 1

B
−⎡ ⎤

= ⎢ −⎣ ⎦
⎥

1 2
3 5

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. 

 
1 2 5 2 1 0
3 5 3 1 0 1

AB I
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
=  

and 
5 2 1 2 1 0
3 1 3 5 0 1

BA I
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
=  

Therefore  B  is the inverse matrix of  A . 
 
 
If the inverse to a matrix  A  exists, then it is unique. 
 
Proof: 
Suppose that matrices  B  and  C  are both inverses of  A .   Then  
AB  =  BA  =  I   and   AC =  CA  =  I. 
⇒    C  =  IC  =  (BA)C  =  B(AC)  =  BI  =  B  
The inverse matrix, if it exists, is therefore unique. 
 
 

From Example 2.2.6 above, 
1
0 1

k
A

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1 1
0 1

k k− −⎡ ⎤
= =⎢ ⎥

⎣ ⎦

 is its own inverse for all values of the real 

number k:    . 2 1 0
0 1 0 1

A I⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

=

Therefore in this case  A–1  =  A , even though  A is not ± I . 
 
 
The uniqueness of the inverse allows us to check just one of  A–1A = I  or  AA–1 = I  . 
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Inverse of a (2×2) Matrix    
 

The adjugate (or adjoint) of a (2×2) matrix 
a b

A
c d

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 is  . ( )adj
d b

A
c a

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

( ) ( )
0

adj
0

a b d b ad bc
A A ad bc I

c d c a ad bc
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
−  

 
The determinant of  A  is defined to be  det A =  ad – bc . 
 
For all (2×2) matrices such that  det A  ≠  0, it is clear that  
 

( )
( )

1 adj 1
det

d bA
A

c aA ad bc
− −⎡ ⎤

= = ⎢ ⎥−− ⎣ ⎦
 

 
A matrix whose determinant is zero is singular (has no inverse). 
 
 
Example 2.3.1    (again) 
 

( ) ( )
1 2 5 2

det 1 5 2 3 1 and adj
3 5 3 1

A A A
−⎡ ⎤ ⎡

= ⇒ = × − × = − =⎢ ⎥ ⎢ −⎣ ⎦ ⎣

⎤
⎥
⎦

 

 
( )
( )

1 5 2 5 2adj
3 1 3 1det

A
A

A
− − −⎡ ⎤ ⎡

⇒ = = − = +⎢ ⎥ ⎢− −⎣ ⎦ ⎣

⎤
⎥
⎦

 

 
 
Example 2.2.6    (again) 
 

( ) ( ) ( ) ( )
1 1

det 1 1 0 1 and adj
0 1 0 1

k k
A A k A

− −⎡ ⎤ ⎡
= ⇒ = × − − − × = − =⎢ ⎥ ⎢

⎤
⎥−⎣ ⎦ ⎣ ⎦

 

 
( )
( )

1 1 1adj
0 1 0 1det

k kA
A A

A
− − −⎡ ⎤ ⎡ ⎤

⇒ = = − = + =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
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In a square linear system (n equations in n unknowns), if the coefficient matrix A has 
rank n, then it is invertible and  
AX  =  B    ⇒   A-1AX  =  A-1B     ⇒   IX  =  A-1B     ⇒ 
the solution to the linear system is  

X  =  A-1B 
and the solution is [necessarily] unique. 
 
If  rank A < n , then  A-1  does not exist and the system is either inconsistent or has 
infinitely many solutions, but not a unique solution. 
 
 
Example 2.3.2     
 
Solve the linear system 

1 2

1 2

3 2 1
5 4

x x
x x

0
8

+ =
+ =

 

 
 

( ) ( )
3 2 4 2

adj and det 12 10 2
5 4 5 3

A A A
−⎡ ⎤ ⎡ ⎤

= ⇒ = = −⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
=  

 
( )
( )

1 4 2adj 1
5 3det 2

A
A

A
− −⎡ ⎤

⇒ = = ⎢ ⎥−⎣ ⎦
 

 
The unique solution to the linear system is  
 

( )
( )

1 40 164 2 10 121 1
50 245 3 8 132 2

X A B− −⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡
= = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢− +− −⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦

⎤
⎥
⎦

 

 
Check by substituting the solution into the left side of the linear system: 
 

( )
( )

1 2

1 2

3 2 3 12 2 13 36 26 10

5 4 5 12 4 13 60 52 8

x x

x x

+ = × + × − = − =

+ = × + × − = − =
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Matrix Inversion by Gaussian Elimination    
 
Iff matrix  A  is invertible, then the reduced row-echelon form of  [ A  I ]  is  [ I  A–1 ] . 
The details are on page 54 of the textbook. 
 
 
Example 2.3.3    (Textbook, page 59, exercises 2.3, question 2(c), modified) 
 

Find the inverse of  
1 0 1
3 2 0
1 1 0

A
−⎡ ⎤

⎢= ⎢
⎢ ⎥− −⎣ ⎦

⎥
⎥  and hence solve the linear system 

   x –  z   =    1 
 3x + 2y  =  –3 
 –x  –  y  =    2 
 
 

[ ]
1 0 1 1 0 0

| 3 2 0 0 1
1 1 0 0 0 1

A I
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

0  

 

2 1

3 1

1 0 1 1 0 0
3

0 2 3 3 1 0
0 1 1 1 0 1

R R
R R

−⎡ ⎤
− ⎢ ⎥⎯⎯⎯⎯⎯→ −⎢ ⎥+

⎢ ⎥− −⎣ ⎦

    2
1

3 32 1
2 2 2

1 0 1 1 0 0
0 1 0

0 1 1 1 0 1

R
⎡ ⎤−

× ⎢ ⎥⎯⎯⎯⎯→ −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 

3 2

3 3 1
2 2 2
1 1 1
2 2 2

1 0 1 1 0 0
0 1 0

0 0 1
R R

⎡ ⎤−
⎢ ⎥

⎯⎯⎯⎯→ −⎢ ⎥+ ⎢ ⎥−⎣ ⎦

 
3

3 3 1
2 2 2

1 0 1 1 0 0
0 1 0

2
0 0 1 1 1 2

R

⎡ ⎤−
⎢ ⎥⎯⎯⎯⎯→ −⎢ ⎥× ⎢ ⎥−⎣ ⎦

 

 

1 3

2 3
3
2

1 0 0 0 1 2
0 1 0 0 1 3
0 0 1 1 1 2

R R
R R

⎡ ⎤
+ ⎢ ⎥⎯⎯⎯⎯⎯→ −⎢ ⎥−

⎢ ⎥−⎣ ⎦

−  

 

Therefore  1

0 1 2
0 1 3
1 1 2

A−

⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
One can easily verify that  AA–1  =  A–1A  =  I. 
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Example 2.3.3    (continued) 
 
The linear system is  AX  =  B , where  B  =  [ 1  –3  2 ]T  

1

0 1 2 1 1
0 1 3 3 3
1 1 2 2 0

X A B−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⇒ = = − − − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Therefore the unique solution is  (x, y, z)  =  (1, –3, 0) 
 
Check of the solution:  

1 0 1 1 1
3 2 0 3 3
1 1 0 0 2

AX B
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=  

 
 
 
Example 2.3.4     
 

Find the inverse of    

1 3 1 1
0 1 2 0
0 0 1 4
0 0 0 1

A

− −⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 
 

[ ]

1 3 1 1 1 0 0 0
0 1 2 0 0 1 0 0

|
0 0 1 4 0 0 1 0
0 0 0 1 0 0 0 1

A I

− −⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

1 2

1 0 7 1 1 3 0 0
3 0 1 2 0 0 1 0

0 0 1 4 0 0 1 0
0 0 0 1 0 0 0 1

R R
−⎡ ⎤

⎢ ⎥+ ⎢ ⎥⎯⎯⎯⎯⎯→
⎢ ⎥
⎢ ⎥
⎣ ⎦

0
 

 

1 3

2 3

1 0 0 29 1 3 7 0
7 0 1 0 8 0 1 2
2 0 0 1 4 0 0 1 0

0 0 0 1 0 0 0 1

R R
R R

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥⎯⎯⎯⎯⎯→
⎢ ⎥−
⎢ ⎥
⎣ ⎦

0−
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Example 2.3.4    (continued) 
 

1 4

2 4

3 4

29 1 0 0 0 1 3 7 29
8 0 1 0 0 0 1 2 8
4 0 0 1 0 0 0 1 4

0 0 0 1 0 0 0 1

R R
R R
R R

+ −⎡ ⎤
⎢ ⎥+ −⎢ ⎥⎯⎯⎯⎯⎯→
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

 

 
Therefore    

 1

1 3 7 29
0 1 2 8
0 0 1 4
0 0 0 1

A−

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 

 
One can easily verify that  AA–1  =  A–1A  =  I. 
 
 
 
The following statements for an (n×n) matrix  A  are either all true or all false: 
 
1) A–1 exists (that is, A is invertible). 
2) The reduced row-echelon form of  A  is  In .  
3) AX = O  has only the trivial solution  X = O. 
4) AX = B  has a unique solution for every choice of  B . 
 
 
Example 2.3.5    (textbook, page 59, exercises 2.3, question 4(a)) 
 

Given , solve the system of equations 1

1 1 3
2 0 5
1 1 0

A−

−⎡ ⎤
⎢= ⎢
⎢ ⎥−⎣ ⎦

⎥
⎥

1
1
3

AX
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
 
The system has a unique solution because  A –1 exists. 
 

1

1 1 1 3 1 1
1 2 0 5 1 1
3 1 1 0 3 2

X A−

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢= − = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

1
7
⎤
⎥
⎥
⎥⎦
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Example 2.3.6    (textbook, page 61, exercises 2.3, question 24 modified) 
 

Show that if the block matrix 
A X

M
O B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 is invertible, then the matrices  A  and  B  

are invertible  and  find  M –1.   Hence find  M –1 when 

1 2 0 0
0 2 0 0
0 0 1 0
0 0 0 1

M

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

 
 

Let 1 C Y
M

Z D
− ⎡

= ⎢
⎣ ⎦

⎤
⎥

⎤
⎥
⎦

, where  C  and  D  are the same size as A  and  B  respectively. 

1 A X C Y AC XZ AY XD I O
M M

O B Z D BZ BD O I
− + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

 

BD = I    ⇒   D = B –1.    
B is invertible and  BZ = O    ⇒   Z = O. 
⇒   AC + XZ  =  AC + O  =  I    ⇒   C = A –1. 
 
Therefore if  M  is invertible then both  A  and  B  are invertible. 
 
AY + XD  =  AY + XB –1  =  O    ⇒   AY  =  –XB–1    
⇒   Y  =  –A–1XB–1  
 

1 1 1 1
1

1

A X A A X B
M

O B O B

− − − −
−

−

⎡ ⎤−⎡ ⎤
∴ = = ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

 
Note that it follows from this result that, for any constant x and non-zero constants a, b,  

 
1

1

0 10

x
a x a ab

b
b

−
−⎡ ⎤

⎢ ⎥⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 . 

1 1
1
2

1 11 2 1 0 1 0
,

00 2 0 1 0 1
A A B B− −

−⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⇒ = = ⇒ =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

and   1 1X O A X B− −= ⇒ − = O  

 1
1
2

1 1 0 0
0 0 0

0 0 1 0
0 0 0 1

M −

−⎡ ⎤
⎢ ⎥
⎢ ⎥⇒ =
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦
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Example 2.3.7     
 

Given that  ,  
3 1
0 2

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
    (a) Verify that  ; and 2 6A A I O− − =
    (b) Hence find . 1A−

 
 

    (a)  2 3 1 3 1 9 1
0 2 0 2 0 4

A
− − −⎡ ⎤ ⎡ ⎤ ⎡

= =⎢ ⎥ ⎢ ⎥ ⎢− −⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

 

  2 9 1 3 1 6 0 0 0
6

0 4 0 2 0 6 0 0
A A I O

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⇒ − − = − − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 
    (b) ( )2 1 26 6A A I O A A A I O−− − = ⇒ − − =  
 
  1 1 1 16 6A AA A A A I O A I A O− − − −⇒ − − = ⇒ − − =
 

 ( )1 1
6

3 1 1 2 11 1
0 2 1 0 36 6

A A I− − − −⎡ ⎤ ⎡
⇒ = − = =

⎤
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

 

 

Check: 
( ) ( )

1
1 3 1 2 1 2 11 1

0 2 0 3 0 33 2 1 0 6
A

−

− − −⎡ ⎤ ⎡ ⎤ ⎡
= = =⎢ ⎥ ⎢ ⎥ ⎢− −× − − − ×⎣ ⎦ ⎣ ⎦ ⎣

+ − ⎤
⎥
⎦
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