4.4 Additional Examples for Chapter 4

Example 4.4.1

Prove that the line joining the midpoints of two sides of a triangle is parallel to and exactly half as long as the third side of that triangle.

We need to prove that $\overrightarrow{D E}=\frac{1}{2} \overrightarrow{B C}$.

$$
\begin{aligned}
& \overrightarrow{B C}=\overrightarrow{B O}+\overrightarrow{O C}=\overrightarrow{O C}-\overrightarrow{O B} \\
& \overrightarrow{O D}=\frac{1}{2}(\overrightarrow{O A}+\overrightarrow{O B}) \text { and } \overrightarrow{O E}=\frac{1}{2}(\overrightarrow{O A}+\overrightarrow{O C})
\end{aligned}
$$

$\Rightarrow \overrightarrow{D E}=\overrightarrow{D O}+\overrightarrow{O E}=\overrightarrow{O E}-\overrightarrow{O D}=\frac{1}{2}(\overrightarrow{O A}+\overrightarrow{O C}-\overrightarrow{O A}-\overrightarrow{O B})=\frac{1}{2}(\overrightarrow{O C}-\overrightarrow{O B})=\frac{1}{2} \overrightarrow{B C}$

Example 4.4.2

Find the coordinates of the point P that is one-fifth of the way from $A(1,-2,3)$ to $B(7,4,-9)$.

$$
\overrightarrow{O A}=\left[\begin{array}{lll}
1 & -2 & 3
\end{array}\right]^{\mathrm{T}}, \quad \overrightarrow{O B}=\left[\begin{array}{lll}
7 & 4 & -9
\end{array}\right]^{\mathrm{T}}
$$

P splits the line segment $A B$ in the ratio $r: s=1: 4$.
The general formula for the location of such a point is

$$
\overrightarrow{O P}=\left(\frac{s}{r+s}\right) \overrightarrow{O A}+\left(\frac{r}{r+s}\right) \overrightarrow{O B}
$$

[Page 4.04 of these lecture notes]

Therefore

$$
\overrightarrow{O P}=\left(\frac{4}{5}\right)\left[\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right]+\left(\frac{1}{5}\right)\left[\begin{array}{r}
7 \\
4 \\
-9
\end{array}\right]=\frac{1}{5}\left[\begin{array}{r}
11 \\
-4 \\
3
\end{array}\right]
$$

OR

$$
\overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P}=\overrightarrow{O A}+\frac{1}{5} \overrightarrow{A B}=\frac{5}{5}\left[\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right]+\frac{1}{5}\left[\begin{array}{r}
6 \\
6 \\
-12
\end{array}\right]=\frac{1}{5}\left[\begin{array}{r}
11 \\
-4 \\
3
\end{array}\right]
$$

Therefore the point P is located at $\left(\frac{11}{5},-\frac{4}{5}, \frac{3}{5}\right)$.

Example 4.4.3

The points $P(2,3,1), Q(4,7,2), R(1,5,3)$ and S are the four vertices of a parallelogram $P Q S R$, with sides $P Q$ and $P R$ meeting at vertex P. Find the coordinates of point S.

Following the path OQS:

$$
\begin{aligned}
& \overrightarrow{Q S}=\overrightarrow{P R}=\overrightarrow{O R}-\overrightarrow{O P}=\left[\begin{array}{lll}
-1 & 2 & 2
\end{array}\right]^{\mathrm{T}} \\
& \overrightarrow{O S}=\overrightarrow{O Q}+\overrightarrow{Q S}=\left[\begin{array}{lll}
4 & 7 & 2
\end{array}\right]^{\mathrm{T}}+\left[\begin{array}{lll}
-1 & 2 & 2
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll}
3 & 9 & 4
\end{array}\right]^{\mathrm{T}}
\end{aligned}
$$

Therefore the point S is at $(3,9,4)$.
[One could follow the path ORS instead.]

Example 4.4.4

Find the parametric and symmetric equations of the line L that passes through the points $Q(1,-5,3)$ and $R(4,7,-1)$. Find the distance r of the point $P(2,-17,10)$ from the line and find the coordinates of the nearest point N on the line to the point P.

The line direction vector is $\overline{\mathbf{d}}=\overrightarrow{Q R}=\left[\begin{array}{lll}3 & 12 & -4\end{array}\right]^{\mathrm{T}}$

Either Q or R may serve as the known point on the line.
Choosing Q, the vector equation of the line is
$\overrightarrow{\mathbf{p}}=\overrightarrow{O Q}+t \stackrel{\rightharpoonup}{\mathbf{d}} \Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}1 \\ -5 \\ 3\end{array}\right]+t\left[\begin{array}{r}3 \\ 12 \\ -4\end{array}\right], \quad(t \in \mathbb{R})$
The Cartesian parametric equations are
$x=1+3 t, \quad y=-5+12 t, \quad z=3-4 t, \quad(t \in \mathbb{R})$
from which the symmetric form follows:

$$
\frac{x-1}{3}=\frac{y-(-5)}{12}=\frac{z-3}{-4}
$$

Example 4.4.4 (continued)

The vector from Q (a known point on the line) to P is $\overrightarrow{\mathbf{v}}=\overrightarrow{Q P}=\left[\begin{array}{lll}1 & -12 & 7\end{array}\right]^{\mathrm{T}}$

The shadow of this vector on the line is the projection

$$
\begin{aligned}
& \left.\stackrel{\mathbf{u}}{ }=\operatorname{proj}_{\mathbf{d}} \stackrel{\rightharpoonup}{\mathbf{v}}=\left(\frac{\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{d}}}{\|\stackrel{\mathbf{d}}{l}\|^{2}}\right) \stackrel{\mathbf{d}}{ }\right)\left(\frac{1}{9+144+16}\right)\left(\left[\begin{array}{r}
1 \\
-12 \\
7
\end{array}\right] \cdot\left[\begin{array}{r}
3 \\
12 \\
-4
\end{array}\right]\right)\left[\begin{array}{r}
3 \\
12 \\
-4
\end{array}\right]=\frac{3-144-28}{169}\left[\begin{array}{r}
3 \\
12 \\
-4
\end{array}\right] \\
& \\
& \Rightarrow \overrightarrow{\mathbf{u}}=\frac{-169}{169}\left[\begin{array}{r}
3 \\
12 \\
-4
\end{array}\right]=-\left[\begin{array}{r}
3 \\
12 \\
-4
\end{array}\right] \\
& \overrightarrow{N P}=\overrightarrow{N Q}+\overrightarrow{Q P}=-\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\left[\begin{array}{r}
3 \\
12 \\
-4
\end{array}\right]+\left[\begin{array}{r}
1 \\
-12 \\
7
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
3
\end{array}\right] \\
& \Rightarrow r=\|\overrightarrow{N P}\|=\sqrt{16+0+9}=\sqrt{25}=5
\end{aligned}
$$

OR
Triangle $P N Q$ is right-angled at N
$\Rightarrow \quad r^{2}=\|\overrightarrow{\mathbf{v}}\|^{2}-\|\overrightarrow{\mathbf{u}}\|^{2}=(1+144+49)-(9+144+16)=25 \quad \Rightarrow \quad r=5$
The location of N can be found from
$\overrightarrow{O N}=\overrightarrow{O Q}+\overrightarrow{Q N}=\left[\begin{array}{r}1 \\ -5 \\ 3\end{array}\right]+\left[\begin{array}{r}-3 \\ -12 \\ 4\end{array}\right]=\left[\begin{array}{r}-2 \\ -17 \\ 7\end{array}\right]$
[or one may use $\overrightarrow{O N}=\overrightarrow{O P}+\overrightarrow{P N}$ instead]
Therefore the point N is at $(-2,-17,7)$.

Example 4.4.5

Show that the lines $L_{1}: \frac{x-(-1)}{2}=\frac{y-1}{-1}=\frac{z-2}{3}$ and $L_{2}: \frac{x-1}{2}=\frac{y-0}{1}=\frac{z-1}{1}$ are skew and find the distance between them.

Line L_{1} has line direction vector $\overrightarrow{\mathbf{d}}_{1}=\left[\begin{array}{lll}2 & -1 & 3\end{array}\right]^{\mathrm{T}}$ and passes through point $P_{1}(-1,1,2)$.

Line L_{2} has line direction vector $\overline{\mathbf{d}}_{2}=\left[\begin{array}{lll}2 & 1 & 1\end{array}\right]^{\mathrm{T}}$ and passes through point $P_{2}(1,0,1)$.

Clearly $\overline{\mathbf{d}}_{2}$ is not a multiple of $\overline{\mathbf{d}}_{1}$. Therefore the two lines are not parallel.

OR

The angle between the lines, θ, is also the acute angle between the direction vectors of the lines.
$\overline{\mathbf{d}}_{1} \cdot \overline{\mathbf{d}}_{2}=2 \times 2+(-1) \times 1+3 \times 1=4-1+3=6$
$\left\|\overrightarrow{\mathbf{d}}_{1}\right\|=\sqrt{4+1+9}=\sqrt{14}, \quad\left\|\overrightarrow{\mathbf{d}}_{2}\right\|=\sqrt{4+1+1}=\sqrt{6}$
$\Rightarrow \quad \cos \theta=\frac{\left|\overline{\mathbf{d}}_{1} \cdot \overrightarrow{\mathbf{d}}_{2}\right|}{\left\|\overrightarrow{\mathbf{d}}_{1}\right\|\left\|\overline{\mathbf{d}}_{2}\right\|}=\frac{6}{\sqrt{14} \sqrt{6}}=\sqrt{\frac{3}{7}} \neq \pm 1 \quad \Rightarrow \quad \theta \neq 0$ and $\theta \neq \pi$
The lines are therefore at an angle of $\theta=\cos ^{-1} \sqrt{\frac{3}{7}}=\cos ^{-1} 0.65465 \ldots \approx 49.1^{\circ}$
Upon finding a non-zero distance between the lines, we will complete the proof that these lines are skew.

Example 4.4.5 (continued)

The vector $\stackrel{\mathbf{n}}{ }=\overrightarrow{\mathbf{d}}_{1} \times \overline{\mathbf{d}}_{2}$ is orthogonal to both lines.
The length of the projection of $\overrightarrow{P_{1} P_{2}}$ onto $\overrightarrow{\mathbf{n}}$ is the distance r between the lines.

$\stackrel{\mathbf{n}}{ }=\left|\begin{array}{ccc}\hat{\mathbf{i}} & 2 & 2 \\ \hat{\mathbf{j}} & -1 & 1 \\ \hat{\mathbf{k}} & 3 & 1\end{array}\right|=(-1-3) \hat{\mathbf{i}}-(2-6) \hat{\mathbf{j}}+(2+2) \hat{\mathbf{k}}=4\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right]$
$\overrightarrow{P_{1} P_{2}}=\overrightarrow{P_{1} O}+\overrightarrow{O P_{2}}=-\left[\begin{array}{lll}-1 & 1 & 2\end{array}\right]^{\mathrm{T}}+\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll}2 & -1 & -1\end{array}\right]^{\mathrm{T}}$
$r=\left\|\operatorname{proj}_{\mathbf{n}} \overrightarrow{{ }_{\mathbf{n}} P_{2}}\right\|=\left|\overrightarrow{P_{1} P_{2}} \cdot \hat{\mathbf{n}}\right|=\frac{\left|\overrightarrow{P_{1} P_{2}} \cdot \stackrel{\mathbf{n}}{ }\right|}{\|\overrightarrow{\mathbf{n}}\|}=\frac{\left|\left[\begin{array}{r}2 \\ -1 \\ -1\end{array}\right] \cdot 4\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right]\right|}{4 \sqrt{(-1)^{2}+1^{2}+1^{2}}}=\frac{|-2-1-1|}{\sqrt{1+1+1}}=\frac{4}{\sqrt{3}}$
Therefore the distance between the two non-parallel lines is $r=\frac{4 \sqrt{3}}{3} \approx 2.309$ and the two lines are skew.

Example 4.4.6

Find two non-zero vectors that are orthogonal to each other and to $\overline{\mathbf{u}}=\left[\begin{array}{lll}3 & 2 & 0\end{array}\right]^{\mathrm{T}}$.

It is easy to construct a non-zero vector $\overline{\mathbf{v}}$ whose dot product with $\overline{\mathbf{u}}$ is zero:
$\stackrel{\rightharpoonup}{\mathbf{v}}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{\mathrm{T}} \Rightarrow \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}=0+0+0=0$
For the third vector, just take the cross product of the first two vectors:
$\overrightarrow{\mathbf{w}}=\stackrel{\mathbf{u}}{ } \times \overrightarrow{\mathbf{v}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & 3 & 0 \\ \hat{\mathbf{j}} & 2 & 0 \\ \hat{\mathbf{k}} & 0 & 1\end{array}\right|=\left|\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right| \hat{\mathbf{i}}-\left|\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right| \hat{\mathbf{j}}+\left|\begin{array}{ll}3 & 0 \\ 2 & 0\end{array}\right| \hat{\mathbf{k}}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+0 \hat{\mathbf{k}}$
Therefore $\overrightarrow{\mathbf{v}}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{\mathrm{T}}$ and $\overrightarrow{\mathbf{w}}=\left[\begin{array}{lll}2 & -3 & 0\end{array}\right]^{\mathrm{T}}$.

Example 4.4.7

Find the Cartesian equation of the plane that passes through the points $A(3,0,0)$, $B(2,4,0)$ and $C(1,5,3)$ and find the coordinates of the nearest point N on the plane to the origin and find the distance of the plane from the origin.

Two vectors in the plane are $\overrightarrow{\mathbf{u}}=\overrightarrow{A B}=\left[\begin{array}{lll}-1 & 4 & 0\end{array}\right]^{\mathrm{T}}$ and $\overrightarrow{\mathbf{v}}=\overrightarrow{A C}=\left[\begin{array}{lll}-2 & 5 & 3\end{array}\right]^{\mathrm{T}}$.
A normal to the plane is
$\stackrel{\rightharpoonup}{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=\left|\begin{array}{rrr}\hat{\mathbf{i}} & -1 & -2 \\ \hat{\mathbf{j}} & 4 & 5 \\ \hat{\mathbf{k}} & 0 & 3\end{array}\right|=$

$\left|\begin{array}{ll}4 & 5 \\ 0 & 3\end{array}\right| \hat{\mathbf{i}}-\left|\begin{array}{rr}-1 & -2 \\ 0 & 3\end{array}\right| \hat{\mathbf{j}}+\left|\begin{array}{rr}-1 & -2 \\ 4 & 5\end{array}\right| \hat{\mathbf{k}}=\left[\begin{array}{c}12 \\ 3 \\ 3\end{array}\right]=3\left[\begin{array}{l}4 \\ 1 \\ 1\end{array}\right]$
Therefore a normal vector to the plane is $\stackrel{\rightharpoonup}{\mathbf{n}}=\left[\begin{array}{lll}4 & 1 & 1\end{array}\right]^{\mathrm{T}}$
$\overrightarrow{\mathbf{a}}=\overrightarrow{O A}=\left[\begin{array}{lll}3 & 0 & 0\end{array}\right]^{\mathrm{T}} \Rightarrow \overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{a}}=3 \times 4+0+0=12$
The Cartesian equation of the plane is

$$
4 x+y+z=12
$$

The displacement vector for N is the projection of the displacement vector of any point on the plane onto the plane's normal vector.

$$
\begin{aligned}
& \overrightarrow{O N}=\operatorname{proj}_{\overline{\mathbf{n}}} \overrightarrow{O A}=(\overrightarrow{O A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}=\left(\frac{\overrightarrow{O A} \cdot \overrightarrow{\mathbf{n}}}{\|\overrightarrow{\mathbf{n}}\|^{2}}\right) \stackrel{\rightharpoonup}{\mathbf{n}} \\
& =\frac{1}{4^{2}+1^{2}+1^{2}}\left(\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]\right)\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]=\frac{12}{18}\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]=\frac{2}{3}\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

Therefore N is the point $\left(\frac{8}{3}, \frac{2}{3}, \frac{2}{3}\right)$ and $r=\|\overrightarrow{O N}\|=\frac{2}{3} \sqrt{4^{2}+1^{2}+1^{2}}=\frac{2}{3} \sqrt{18}=2 \sqrt{2}$

Example 4.4.8

Find all vectors $\overrightarrow{\mathbf{w}}$ that are orthogonal to both $\overrightarrow{\mathbf{u}}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{\mathrm{T}}$ and $\overrightarrow{\mathbf{v}}=\left[\begin{array}{lll}4 & 3 & 2\end{array}\right]^{\mathrm{T}}$.

One vector that is orthogonal to both $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ is
$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & 1 & 4 \\ \hat{\mathbf{j}} & 2 & 3 \\ \hat{\mathbf{k}} & 3 & 2\end{array}\right|=\left|\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right| \hat{\mathbf{i}}-\left|\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right| \hat{\mathbf{j}}+\left|\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right| \hat{\mathbf{k}}=-5 \hat{\mathbf{i}}+10 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$
Any multiple of this vector is also orthogonal to both $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$.
Therefore the set of vectors $\overrightarrow{\mathbf{w}}$ is $\left.\left\{\begin{array}{lll}1 & -2 & 1\end{array}\right]^{\mathrm{T}} t, \quad(t \in \mathbb{R})\right\}$.
Check:
$\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{u}}=\left[\begin{array}{lll}1 & -2 & 1\end{array}\right]^{\mathrm{T}} t \cdot\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{\mathrm{T}}=(1-4+3) t=0 \quad \forall t$
and
$\stackrel{\rightharpoonup}{\mathbf{w}} \cdot \stackrel{\rightharpoonup}{\mathbf{v}}=\left[\begin{array}{lll}1 & -2 & 1\end{array}\right]^{\mathrm{T}} t \cdot\left[\begin{array}{lll}4 & 3 & 2\end{array}\right]^{\mathrm{T}}=(4-6+2) t=0 \quad \forall t$

Example 4.4.9

The vertices of a triangle $A B C$ are at $A(1,0,1), B(-2,-1,1)$ and $C(3,2,2)$.
Find the angle at vertex A (correct to the nearest degree).

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\mathbf{u}}=\overrightarrow{A B}=\left[\begin{array}{lll}
-3 & -1 & 0
\end{array}\right]^{\mathrm{T}} \Rightarrow\|\overrightarrow{\mathbf{u}}\|=\sqrt{9+1+0}=\sqrt{10} \\
& \overrightarrow{\mathbf{v}}=\overrightarrow{A C}=\left[\begin{array}{lll}
2 & 2 & 1
\end{array}\right]^{\mathrm{T}} \Rightarrow\|\overrightarrow{\mathbf{v}}\|=\sqrt{4+4+1}=\sqrt{9}=3 \\
& \Rightarrow \overrightarrow{\mathbf{u}} \cdot \stackrel{\rightharpoonup}{\mathbf{v}}=\left[\begin{array}{lll}
-3 & -1 & 0
\end{array}\right]^{\mathrm{T}} \cdot\left[\begin{array}{lll}
2 & 2 & 1
\end{array}\right]^{\mathrm{T}}=-6-2+0=-8
\end{aligned}
$$

Let θ be the angle at vertex A, then

$$
\begin{aligned}
& \cos \theta=\frac{\stackrel{\rightharpoonup}{\mathbf{u}} \cdot \stackrel{\rightharpoonup}{\mathbf{v}}}{\|\stackrel{\mathbf{u}}{\| \|}\|}=\frac{-8}{3 \sqrt{10}}=-0.84327 \ldots \\
& \Rightarrow \quad \theta=147.4875 \ldots{ }^{\circ} \approx 147^{\circ}
\end{aligned}
$$

Example 4.4.10 (Textbook, page 179, exercises 4.2, question 18)
Show that every plane containing the points $P(1,2,-1)$ and $Q(2,0,1)$ must also contain the point $R(-1,6,-5)$.
$\overrightarrow{P Q}=\left[\begin{array}{lll}1 & -2 & 2\end{array}\right]^{\mathrm{T}}$ and $\overrightarrow{Q R}=\left[\begin{array}{lll}-3 & 6 & -6\end{array}\right]^{\mathrm{T}}=-3\left[\begin{array}{lll}1 & -2 & 2\end{array}\right]^{\mathrm{T}}=-3 \overrightarrow{P Q}$
Points P and Q are in a plane
\Rightarrow all points on the line through P and Q are in any plane containing P and Q.
But $\overrightarrow{Q R}=-3 \overrightarrow{P Q} \Rightarrow$ point R is on the line through P and Q
Therefore every plane containing the points P and Q must also contain the point R.

Example 4.4.11 (Textbook, page 180, exercises 4.2, question 44(a))
Prove the Cauchy-Schwarz inequality $|\stackrel{\rightharpoonup}{\mathbf{u}} \cdot \stackrel{\mathbf{v}}{ }| \leq\|\stackrel{\mathbf{u}}{\mathbf{u}}\|\|\stackrel{\rightharpoonup}{\mathbf{v}}\|$.

Let θ be the angle between vectors $\stackrel{\rightharpoonup}{\mathbf{u}}$ and $\stackrel{\rightharpoonup}{\mathbf{v}}$.

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\mathbf{u}} \cdot \stackrel{\rightharpoonup}{\mathbf{v}}=\|\stackrel{\rightharpoonup}{\mathbf{u}}\|\|\overrightarrow{\mathbf{v}}\| \cos \theta \text {, but }|\cos \theta| \leq 1 \\
& \Rightarrow \quad|\overrightarrow{\mathbf{u}} \cdot \stackrel{\rightharpoonup}{\mathbf{v}}| \leq\|\overrightarrow{\mathbf{u}}\|\|\overrightarrow{\mathbf{v}}\|
\end{aligned}
$$

Example 4.4.12

Find the point of intersection of the lines $\frac{x-3}{2}=\frac{y-3}{1}=\frac{z-0}{-1}$ and $\frac{x-(-1)}{-1}=\frac{y-6}{2}=\frac{z-7}{3}$.

Line 1: $\quad x=3+2 s, \quad y=3+1 s, \quad z=0-1 s$
Line 2: $\quad x=-1-1 t, \quad y=6+2 t, \quad z=7+3 t$
At the point of intersection

$$
\begin{aligned}
& x=3+2 s=-1-t \quad \Rightarrow \quad 2 s+t=-4 \\
& y=3+s=6+2 t \quad \Rightarrow \quad s-2 t=3 \\
& z=-s=7+3 t \quad \Rightarrow \quad s+3 t=-7
\end{aligned}
$$

Solving the over-determined linear system for s and t,

$$
\left[\begin{array}{rr|r}
2 & 1 & -4 \\
1 & -2 & 3 \\
1 & 3 & -7
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{rr|r}
1 & -2 & 3 \\
2 & 1 & -4 \\
1 & 3 & -7
\end{array}\right] \xrightarrow[R_{3}-R_{1}]{R_{2}-2 R_{1}}\left[\begin{array}{rr|r}
1 & -2 & 3 \\
0 & 5 & -10 \\
0 & 5 & -10
\end{array}\right]
$$

$$
\xrightarrow[R_{3}-R_{2}]{ }\left[\begin{array}{rr|r}
1 & -2 & 3 \\
0 & 5 & -10 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{R_{2} \div 5}\left[\begin{array}{rr|r}
1 & -2 & 3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\xrightarrow{R_{1}+2 R_{2}}\left[\begin{array}{rr|r}
1 & 0 & -1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right] \Rightarrow s=-1 \text { and } t=-2
$$

Unique solution \Rightarrow a single point of intersection does exist.

$$
\begin{aligned}
& x=3+2(-1)=1 \\
& y=3+(-1)=2 \\
& z=-(-1)=1
\end{aligned}
$$

Therefore the two lines intersect at the point $(1,2,1)$.

