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5.1 Subspaces and Spanning 
 
Example 5.1.1 
 
The homogeneous linear system [a homogeneous version of Assignment 2 Question 2] 
 

2 0
2 4 3 0

5 10 2 0
3 6 0

x y z
x y z

x y z
x y z

− + =⎧ ⎫
⎪ ⎪− + =⎪ ⎪
⎨ ⎬− + − =⎪ ⎪
⎪ ⎪− − =⎩ ⎭

   (or  AX = O ) 

 
has a reduced row-echelon form  
 

1 2 0 0

0 0 1 0
0 0 0 0
0 0 0 0

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
leading to the one-parameter family of solutions  
 

0 2
0 1
0 0

x
y t
z

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢= +⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 

 
Every solution is a multiple of the basic solution [ ]T2 1 0 . 
Geometrically this is a line through the origin in the xy-plane. 
All solutions can be represented as a simple multiple of the basic solution. 
This is an example of a one-dimensional subspace of 3. 
 
The set consisting of the single basic vector [ ]{ }T2 1 0 spans this subspace. 
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Example 5.1.2 
 
A homogeneous linear system has the two-parameter family of solutions  
 

0 1
0 2
0 0

x
y s t
z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1
0
1

 

 
All multiples of the vectors  [ 1  2  0 ]T  and  [ 1  0  1 ]T  are in this solution set. 
A vector orthogonal to the solution set is  

ˆ 1 11 1
2 0 1 1 1 1ˆ ˆ ˆ ˆˆ ˆ2 0 2 0 2 2
0 1 0 1 2 0

ˆ0 1 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = − + = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

i

n ˆ −j i j k i j k

k

×  

A plane through the origin with this normal vector is  –2x + y + 2z  =  0. 
Therefore the solution set represents the plane  –2x + y + 2z  =  0. 
This is an example of a two-dimensional subspace of 3. 
Every solution can be represented as a linear combination of the basic solutions 

1 1
2 and 0
0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

The set  { [ 1  2  0 ]T , [ 1  0  1 ]T } spans this subspace. 
The solution set (subspace)  U  can be defined as  
 U  =  span { [ 1  2  0 ]T , [ 1  0  1 ]T }  =  { s [ 1  2  0 ]T + t [ 1  0  1 ]T |  s, t ∈ } 
 
 
A set U of vectors in n is a subspace of n if: 
1. The zero vector 0 is in U  
2. If  X  and  Y  are in U, then so is  X + Y   (closure under addition) 
3. If  X  is in U, then so is  kX  for all scalars k   (closure under scalar multiplication) 
 
 
The trivial set  U = { 0 }  is a subspace of n  for all n. 

n  is a subspace of itself. 
Any subspace of n other than { 0 } or n is a proper subspace of n. 
 
For geometric vectors, lines through the origin are the only proper subspaces of 2, 
while lines and planes through the origin are the only proper subspaces of 3. 
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For non-zero non-parallel vectors  v and w, 
L  =  span { v }  is the line through the origin parallel to vector v . 
 
M  =  span { v , w }  is the plane through the origin containing vectors  v and w, 
 with normal vector n = v × w . 
 
 
Example 5.1.3 
 
Vector a is in L  =  span { v } , 
but vector b is not. 
 
a = kv  for some scalar k. 

k≠b v  for any scalar k. 
 
 
If  A  is an (m×n) matrix, then its null space is the set of all solutions to the homogeneous 
equation  AX = O:    
 
  null A  =  { X in n |  AX = O }  
 
null A  is a subspace of n. 
 
In Example 5.1.1, null A  =  span [ ]{ }T2 1 0 . 

 
The eigenspace of  A  is  ( ) ( )nullE A I Aλ λ= − . 

If ( )E Aλ  contains more than the zero vector, then λ  is an eigenvalue of  A  with 
corresponding eigenvectors being all members of the eigenspace except the zero vector.   
A spanning set for the eigenspace is a set of basic eigenvectors for that eigenvalue. 
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Example 5.1.4 
 
For the subspace  U = span { [ 1  2  3 ]T,  [ 3  –1  1 ]T },  
determine whether the following vectors are in U: 
v =  [ 5  3  7 ]T ,   w =  [ 4  2  6 ]T 
 
 
If  v  is in U, then  [ 5  3  7 ]T  =  s [ 1  2  3 ]T  +   t [ 3  –1  1 ]T  for some scalars s and t. 
 

1 3 5 1 3 5
2 1 3 2 1 3
3 1 7 3 1 7

s t
s t
s t

+ =⎧ ⎫ ⎡
⎪ ⎪ ⎢ ⎥⇒ − = ⇒ −⎨ ⎬ ⎢ ⎥
⎪ ⎪ ⎢ ⎥+ =⎩ ⎭ ⎣

⎤

⎦

 

 

( )2 1 2

3 1

1 3 5 1 3 5
2 7

0 7 7 0 1 1
3

0 8 8 0 8 8

R R R
R R

⎡ ⎤ ⎡
− ÷ −⎢ ⎥ ⎢⎯⎯⎯⎯⎯→ − − ⎯⎯⎯⎯⎯→⎢ ⎥ ⎢−

⎢ ⎥ ⎢− − − −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 

 

1 2

3 2

1 0 2
3 2

0 1 1
8 1

0 0 0

R R s
R R t

⎡ ⎤
− ⎡ ⎤ ⎡⎢ ⎥⎯⎯⎯⎯⎯→ ⇒

⎤
=⎢ ⎥ ⎢⎢ ⎥+ ⎥

⎣ ⎦ ⎣⎢ ⎥⎣ ⎦
⎦

 

 
A unique solution for s and t exists: [ 5  3  7 ]T  =  2 [ 1  2  3 ]T  +   1 [ 3  –1  1 ]T   
Therefore . U∈v
 
If  w  is in U, then  [ 4  2  6 ]T  =  s [ 1  2  3 ]T  +   t [ 3  –1  1 ]T  for some scalars s and t. 
 

1 3 4 1 3 4
2 1 2 2 1 2
3 1 6 3 1 6

s t
s t
s t

+ =⎧ ⎫ ⎡
⎪ ⎪ ⎢ ⎥⇒ − = ⇒ −⎨ ⎬ ⎢ ⎥
⎪ ⎪ ⎢ ⎥+ =⎩ ⎭ ⎣

⎤

⎦

 

( )2 1 2

3 1

6
7

1 3 4 1 3 4
2 7

0 7 6 0 1
3

0 8 6 0 8 6

R R R
R R

⎡ ⎤⎡ ⎤
− ÷ − ⎢ ⎥⎢ ⎥⎯⎯⎯⎯⎯→ − − ⎯⎯⎯⎯⎯→ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

 

 

1 2 1 2

3 2 3

10 10
7 7
6 6
7 76

76
7

1 0 1 0
3 3

0 1 0 1
8

0 0 0 0 1

R R R R
R R R

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥− −

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎢ ⎥⎢ ⎥+ ÷ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  

which is an inconsistent system.   Therefore  w  is not in U.  
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If  { }1 2span , , , is ink
nU X X X= …

W⊆
  and all the  Xi  are in a subspace  W  of  n, 

then U  (U is a subset of [or is the same as] W). 
 
 
Example 5.1.5   (Textbook, page 201, example 5) 
 
Given that  X  and  Y  are in n, show that  span { X+Y , X–Y } = span { X, Y }. 
 
 
Both  X+Y and X–Y  are clearly linear combinations of X and Y and are therefore in  
span { X, Y }    ⇒   span { X+Y , X–Y }  span { X, Y }. ⊆

and
2 2 2 2

X Y X Y X Y X YX Y+ − + −
= + = − , so that X and Y are clearly linear 

combinations of   X+Y and X–Y  are therefore in span { X+Y , X–Y }  
⇒   span { X, Y } ⊆  span { X+Y , X–Y }. 
If two sets are subsets of each other, then they are identical to each other. 
Therefore span { X+Y , X–Y } = span { X, Y }. 
 
 
Example 5.1.6 
 
Show that v =  [ 3  4  1 ]T is in the subspace  
U = span { [ 1  1  0 ]T ,  [ 0  1  1 ]T ,  [ 1  2  1 ]T }. 
 
If  v  is in U, then  [ 3  4  1 ]T =  r [ 1  1  0 ]T +  s [ 0  1  1 ]T  +  t [ 1  2  1 ]T   
for some scalars  r, s and t. 

2 1

3 2

1 0 1 31 0 1 3 1 0 1 3
1 1 2 4 0 1 1 1 0 1 1 1
0 1 1 1 0 1 1 1 0 0 0 0

R R
R R

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⇒ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎢ ⎥⎢ ⎥ ⎢ ⎥ − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 
This is a one-parameter family of solutions, so   v  is definitely in the subspace U. 
One solution, setting  t = 0, is [ 3  4  1 ]T =  3 [ 1  1  0 ]T +  1 [ 0  1  1 ]T .  
Another solution, setting  t = 1, is  [ 3  4  1 ]T =  2 [ 1  1  0 ]T +  1 [ 1  2  1 ]T . 
Therefore the three vectors { [ 1  1  0 ]T ,  [ 0  1  1 ]T ,  [ 1  2  1 ]T } do not provide a 
unique representation of vectors in the subspace U. 
 
In fact, [ 1  2  1 ]T = [ 1  1  0 ]T +  [ 0  1  1 ]T , so that  
U = span { [ 1  1  0 ]T ,  [ 0  1  1 ]T ,  [ 1  2  1 ]T } = span { [ 1  1  0 ]T ,  [ 0  1  1 ]T  }. 
 
span { [ 1  1  0 ]T ,  [ 0  1  1 ]T  } is a “better” spanning set for the subspace U. 
All members of U can be written as a linear combination of [ 1  1  0 ]T and [ 0  1  1 ]T in 
only one way. 
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A one-dimensional subspace (a line) needs only one non-zero vector in its spanning set. 
A two-dimensional subspace (a plane) needs only two non-zero non-parallel vectors in its 
spanning set. 

3  needs only three non-zero vectors (not all in the same plane) in its spanning set. 
 

The standard basis for 3 is 
1 0 0

ˆ ˆ ˆ0 , 1 , 0
0 0 1

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

i j k . 

These are also the columns  E1, E2, E3  of the identity matrix  I3 . 

Therefore  3  =  span { }1 2 3

1 0 0
, , 0 , 1 , 0

0 0 1
E E E

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

. 

 
 

The standard basis for 2  is  { }1 2

1 0
, ,

0 1
E E

⎧ ⎫⎡ ⎤ ⎡ ⎤
= ⎨ ⎬⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎩ ⎭
. 

 
 

 



MATH 2050 5.2 - Independence and Dimension Page 5.07 

 

5.2 Independence and Dimension 
 
As in Example 5.1.6 above, suppose that two linear combinations of vectors in n both 
represent the same vector Y: 
 

1 1 2 2 1 1 2 2k k k kY r X r X r X s X s X s X= + + + = + + +… …  
 

( ) ( ) ( )1 1 1 2 2 2 0k k kr s X r s X r s X⇒ − + − + + − =…  
 
If there is only one possible representation of  Y  as a linear combination of the { }iX , 

then we must have  for all i, so that all of the coefficients is r= i ( )i ir s−  above must be 

zero.   When the linear combination is unique, the set { }iX  is independent. 
 
If a set of vectors is independent, then it is impossible to write any of them as a linear 
combination of the others.   This leads to the related test for independence: 
 
The set of vectors { }1 2, , , kX X X…  is linearly independent if and only if  
 

the only solution to the equation 1 1 2 2 0k kc X c X c X+ + + =…  
is the trivial solution 1 2 0kc c c= = = =… . 

 
 
Example 5.2.1    
 
Show that the set { [ 1  1  0 ]T ,  [ 0  1  1 ]T ,  [ 1  2  1 ]T } (from Example 5.1.6) is  
not independent. 
 
 
Solve, for r, s, t, the equation  r [ 1  1  0 ]T + s [ 0  1  1 ]T + t [ 1  2  1 ]T = [ 0  0  0 ]T : 
 

2 1

3 2

1 0 1 01 0 1 0 1 0 1 0
1 1 2 0 0 1 1 0 0 1 1 0
0 1 1 0 0 1 1 0 0 0 0 0

R R
R R

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎢ ⎥⎢ ⎥ ⎢ ⎥ − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

 

Again this is a one-parameter family of solutions. 
Non-trivial solutions for r, s, t exist (r = s = –t, where t is free to be any real number). 
Therefore the set is not independent. 
In fact    –1 [ 1  1  0 ]T – 1 [ 0  1  1 ]T + 1 [ 1  2  1 ]T = [ 0  0  0 ]T  
⇒   [ 1  2  1 ]T =  [ 1  1  0 ]T +  [ 0  1  1 ]T  
which clearly establishes that one of the vectors is dependent on the other two. 
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The standard basis { E1, E2 } for 2 is independent. 
 
The standard basis { E1, E2, E3 } for 3 is independent. 
 
The zero vector is not a member of any set of independent vectors. 
[Reason:   clearly has non-trivial solutions  1 1 2 2 n nkO r X r X r X O+ + + + =…
r1 = r2 = ... = rn = 0,  k = any real number.] 
 
A set containing a single vector { X } is independent if and only if  X ≠  0. 
 
Any basis of a subspace is both independent and spans the subspace. 
The number of vectors in a basis is the dimension of the subspace (dim(U)). 
 
Any independent set in a subspace U can be enlarged (by adding vectors) to a basis for U. 
Any set that spans a subspace U can be reduced (by deleting vectors) to a basis for U. 
 
In Example 5.2.1, deletion of  [ 1  2  1 ]T leaves a basis { [ 1  1  0 ]T,  [ 0  1  1 ]T } for U. 
 
 
If the number of vectors m in a set A equals the dimension of the subspace U, then the 
following are either all true or all false: 
 

 A is independent; 
 A spans U;  
 A is a basis for U. 

 
Therefore, when m = dim(U), it is sufficient to test one of independence or spanning to 
determine whether or not A is a basis for U. 
 
 
Example 5.2.2    
 
Suppose that { X, Y, Z } is a basis for 3.    
Show that { X + aZ, Y, Z } is also a basis for 3 for any choice of the scalar a. 
 
 
Test for independence: 
r (X + aZ) + sY  +  tZ  =  rX + sY  +  (t+a)Z  = 0 
But { X, Y, Z } is a basis for 3   ⇒   the only solution to rX + sY  + uZ  =  0  is the 
trivial solution  r = s = u = 0.    
Let  u = t+a, then the only solution to  r (X + aZ) + sY  +  tZ  =  0  is   r = s = 0,  t = –a.   
Therefore { X + aZ, Y, Z } are independent. 
dim( 3) = 3 = number of vectors in the set. 
Therefore { X + aZ, Y, Z } is also a basis for 3 for any choice of the scalar a. 
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Example 5.2.3    
 
Determine if this set of vectors is a basis of 3: 
A  =  { [ 1  0  2 ]T,  [ 1  –2  3 ]T,  [ 1  4  0 ]T } 
 
n(A) = dim ( 3) = 3 
Testing for independence: 
EITHER 
r [ 1  0  2 ]T +  s [ 1  –2  3 ]T +  t [ 1  4  0 ]T = [ 0  0  0 ]T   
 

2 1

1 1 1 0 1 1 1 0
2

0 2 4 0 0 2 4 0
2 3 0 0 0 1 2 0

R R
⎡ ⎤ ⎡

−⎢ ⎥ ⎢⇒ − ⎯⎯⎯⎯⎯→ −⎢ ⎥ ⎢
⎢ ⎥ ⎢ −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 

 

2 3 1 2

3 2

1 0 3 01 1 1 0
0 1 2 0 0 1 2 0

2
0 2 4 0 0 0 0 0

R R R R
R R

⎡ ⎤⎡ ⎤ ⎢ ⎥↔ −⎢ ⎥⎯⎯⎯⎯⎯→ − ⎯⎯⎯⎯⎯→ −⎢ ⎥⎢ ⎥ + ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 
Non-trivial solutions therefore exist for  r, s, t. 
t (–3 [ 1  0  2 ]T +  2 [ 1  –2  3 ]T +  1 [ 1  4  0 ]T) = [ 0  0  0 ]T  for all real numbers t  
⇒   [ 1  4  0 ]T  =  3 [ 1  0  2 ]T –  2 [ 1  –2  3 ]T  
Therefore the set A is not independent. 
 
OR 
 
One can spot that   [ 1  4  0 ]T  =  3 [ 1  0  2 ]T –  2 [ 1  –2  3 ]T , so that one vector is a 
linear combination of the others.   Immediately we can conclude that set A is not 
independent.    
 
Therefore set A is not a basis (and does not span 3 either). 
 
 
The reduced set { [ 1  0  2 ]T, [ 1  –2  3 ]T } is independent, but does not span 3. 
 
Adding the vector  E1 = [ 1  0  0 ]T to the reduced set does generate a basis for 3: 
B  =  { [ 1  0  0 ]T, [ 1  0  2 ]T, [ 1  –2  3 ]T } 
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Example 5.2.4    
 
The subspace U of  is defined by 3

1 2 11
span 4 , 3 , 0

2 1 2
U

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

 

 
    (a) Is  [ 3  1  1 ]T  in  U ? 
    (b) Is  [ 3  1  0 ]T  in  U ? 
    (c) Find a basis for  U. 
    (d) Write down  dim U. 
    (e) Is  U = ? 3

 
 
    (a) Solve  [ 3  1  1 ]T  =  r [ 1  4  2 ]T  +  s [ 2  –3  –1 ]T  +  t [ 11  0  2 ]T   for r, s, t: 
 

2 1

3 1

1 2 11 3 1 2 11 3
4

4 3 0 1 0 11 44 11
2

2 1 2 1 0 5 20 5

R R
R R

⎡ ⎤ ⎡
−⎢ ⎥ ⎢− ⎯⎯⎯⎯⎯→ − − −⎢ ⎥ ⎢−

⎢ ⎥ ⎢− −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥− − ⎦

 

 

( )2 1 2

3 2

1 2 11 3 1 0 3 1
11 2

0 1 4 1 0 1 4 1
5

0 5 20 5 0 0 0 0

R R R
R R

⎡ ⎤ ⎡
÷ − −⎢ ⎥ ⎢⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→⎢ ⎥ ⎢+

⎢ ⎥ ⎢− − −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

⎪
⎬

 

This is a one-parameter family of solutions,   
r = 1 – 3t,  s = 1 – 4t,  t  ∈
One solution (setting  t= 0)  is   [ 3  1  1 ]T  =  [ 1  4  2 ]T  +  [ 2  –3  –1 ]T . 
Another solution (setting  t= 1)  is   
[ 3  1  1 ]T  =  –2 [ 1  4  2 ]T  +  –3 [ 2  –3  –1 ]T  +  [ 11  0  2 ]T    
The representation of  [ 3  1  1 ]T is not unique. 

Therefore  is not a basis for  U  and the three vectors are 

not independent ( [ 11  0  2 ]T  =  3 [ 1  4  2 ]T  +  4 [ 2  –3  –1 ]T ). 

1 2 11
4 , 3 , 0
2 1 2

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎨ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

However, [ 3  1  1 ]T   is in U. 
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Example 5.2.4   (continued) 
 
    (b) Solve  [ 3  1  0 ]T  =  r [ 1  4  2 ]T  +  s [ 2  –3  –1 ]T  +  t [ 11  0  2 ]T   for r, s, t: 
 

2 1

3 1

1 2 11 3 1 2 11 3
4

4 3 0 1 0 11 44 11
2

2 1 2 0 0 5 20 6

R R
R R

⎡ ⎤ ⎡
−⎢ ⎥ ⎢− ⎯⎯⎯⎯⎯→ − − −⎢ ⎥ ⎢−

⎢ ⎥ ⎢− −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥− − ⎦

 

 

( )2 1 2

3 2

1 2 11 3 1 0 3 1
11 2

0 1 4 1 0 1 4 1
5

0 5 20 6 0 0 0 1

R R R
R R

⎡ ⎤ ⎡
÷ − −⎢ ⎥ ⎢⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→⎢ ⎥ ⎢+

⎢ ⎥ ⎢− − − −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 

 

( )3

1 0 3 1
0 1 4 1

1
0 0 0 1

R

⎡ ⎤
⎢ ⎥

⎯⎯⎯⎯⎯→ ⎢ ⎥× − ⎢ ⎥
⎣ ⎦

 

which is an inconsistent system. 
Therefore  [ 3  1  0 ]T  is not in U. 
 

 
    (c) Vectors [ 1  4  2 ]T  and  [ 2  –3  –1 ]T  are clearly independent (neither is a 

multiple of the other).   A basis for a subspace is a set of independent vectors that 
span that subspace.   U  =  span { [ 1  4  2 ]T ,  [ 2  –3  –1 ]T  }.   Therefore a basis 
for  U  is  { [ 1  4  2 ]T ,  [ 2  –3  –1 ]T  }.     

 
 In fact, any two of the original three vectors will serve as a basis for  U . 
 
 
    (d) The basis for  U  contains two vectors.   Therefore  dim U  =  2. 
 
    (e) dim U  =  2  but  dim  =  3.   Therefore  .    3 3U ≠
 In fact   (geometrically  U  is a plane through the origin). 3U ⊂
 
 
 
 
 

END OF CHAPTER 5 
END OF MATH 2050 ! 
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