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5.1 Subspaces and Spanning 
 
Example 5.1.1 
 
The homogeneous linear system [a homogeneous version of Assignment 2 Question 2] 
 

2 0
2 4 3 0

5 10 2 0
3 6 0

x y z
x y z

x y z
x y z

− + =⎧ ⎫
⎪ ⎪− + =⎪ ⎪
⎨ ⎬− + − =⎪ ⎪
⎪ ⎪− − =⎩ ⎭

   (or  AX = O ) 

 
has a reduced row-echelon form  
 

1 2 0 0

0 0 1 0
0 0 0 0
0 0 0 0

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
leading to the one-parameter family of solutions  
 

0 2
0 1
0 0

x
y t
z

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢= +⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 

 
Every solution is a multiple of the basic solution [ ]T2 1 0 . 
Geometrically this is a line through the origin in the xy-plane. 
All solutions can be represented as a simple multiple of the basic solution. 
This is an example of a one-dimensional subspace of 3. \
 
The set consisting of the single basic vector [ ]{ }T2 1 0 spans this subspace. 
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Example 5.1.2 
 
A homogeneous linear system has the two-parameter family of solutions  
 

0 1
0 2
0 0

x
y s t
z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1
0
1

 

 
All multiples of the vectors  [ 1  2  0 ]T  and  [ 1  0  1 ]T  are in this solution set. 
A vector orthogonal to the solution set is  

ˆ 1 11 1
2 0 1 1 1 1ˆ ˆ ˆ ˆˆ ˆ2 0 2 0 2 2
0 1 0 1 2 0

ˆ0 1 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = − + = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

i

n ˆ −j i j k i j k

k

K ×  

A plane through the origin with this normal vector is  –2x + y + 2z  =  0. 
Therefore the solution set represents the plane  –2x + y + 2z  =  0. 
This is an example of a two-dimensional subspace of 3. \
Every solution can be represented as a linear combination of the basic solutions 

1 1
2 and 0
0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

The set  { [ 1  2  0 ]T , [ 1  0  1 ]T } spans this subspace. 
The solution set (subspace)  U  can be defined as  
 U  =  span { [ 1  2  0 ]T , [ 1  0  1 ]T }  =  { s [ 1  2  0 ]T + t [ 1  0  1 ]T |  s, t ∈ } \
 
 
A set U of vectors in n is a subspace of n if: \ \
1. The zero vector 0 is in U  
2. If  X  and  Y  are in U, then so is  X + Y   (closure under addition) 
3. If  X  is in U, then so is  kX  for all scalars k   (closure under scalar multiplication) 
 
 
The trivial set  U = { 0 }  is a subspace of n  for all n. \
\ n  is a subspace of itself. 
Any subspace of n other than { 0 } or n is a proper subspace of n. \ \ \
 
For geometric vectors, lines through the origin are the only proper subspaces of \ 2, 
while lines and planes through the origin are the only proper subspaces of 3. \
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For non-zero non-parallel vectors  v and w, 
L  =  span { v }  is the line through the origin parallel to vector v . 
 
M  =  span { v , w }  is the plane through the origin containing vectors  v and w, 
 with normal vector n = v × w . 
 
 
Example 5.1.3 
 
Vector a is in L  =  span { v } , 
but vector b is not. 
 
a = kv  for some scalar k. 

k≠b v  for any scalar k. 
 
 
If  A  is an (m×n) matrix, then its null space is the set of all solutions to the homogeneous 
equation  AX = O:    
 
  null A  =  { X in n |  AX = O }  \
 
null A  is a subspace of n. \
 
In Example 5.1.1, null A  =  span [ ]{ }T2 1 0 . 

 
The eigenspace of  A  is  ( ) ( )nullE A I Aλ λ= − . 

If ( )E Aλ  contains more than the zero vector, then λ  is an eigenvalue of  A  with 
corresponding eigenvectors being all members of the eigenspace except the zero vector.   
A spanning set for the eigenspace is a set of basic eigenvectors for that eigenvalue. 
 
 
 



MATH 2050 5.1 - Subspaces and Spanning Page 5.04 

 

Example 5.1.4 
 
For the subspace  U = span { [ 1  2  3 ]T,  [ 3  –1  1 ]T },  
determine whether the following vectors are in U: 
v =  [ 5  3  7 ]T ,   w =  [ 4  2  6 ]T 
 
 
If  v  is in U, then  [ 5  3  7 ]T  =  s [ 1  2  3 ]T  +   t [ 3  –1  1 ]T  for some scalars s and t. 
 

1 3 5 1 3 5
2 1 3 2 1 3
3 1 7 3 1 7

s t
s t
s t

+ =⎧ ⎫ ⎡
⎪ ⎪ ⎢ ⎥⇒ − = ⇒ −⎨ ⎬ ⎢ ⎥
⎪ ⎪ ⎢ ⎥+ =⎩ ⎭ ⎣

⎤

⎦

 

 

( )2 1 2

3 1

1 3 5 1 3 5
2 7

0 7 7 0 1 1
3

0 8 8 0 8 8

R R R
R R

⎡ ⎤ ⎡
− ÷ −⎢ ⎥ ⎢⎯⎯⎯⎯⎯→ − − ⎯⎯⎯⎯⎯→⎢ ⎥ ⎢−

⎢ ⎥ ⎢− − − −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 

 

1 2

3 2

1 0 2
3 2

0 1 1
8 1

0 0 0

R R s
R R t

⎡ ⎤
− ⎡ ⎤ ⎡⎢ ⎥⎯⎯⎯⎯⎯→ ⇒

⎤
=⎢ ⎥ ⎢⎢ ⎥+ ⎥

⎣ ⎦ ⎣⎢ ⎥⎣ ⎦
⎦

 

 
A unique solution for s and t exists: [ 5  3  7 ]T  =  2 [ 1  2  3 ]T  +   1 [ 3  –1  1 ]T   
Therefore . U∈vK

 
If  w  is in U, then  [ 4  2  6 ]T  =  s [ 1  2  3 ]T  +   t [ 3  –1  1 ]T  for some scalars s and t. 
 

1 3 4 1 3 4
2 1 2 2 1 2
3 1 6 3 1 6

s t
s t
s t

+ =⎧ ⎫ ⎡
⎪ ⎪ ⎢ ⎥⇒ − = ⇒ −⎨ ⎬ ⎢ ⎥
⎪ ⎪ ⎢ ⎥+ =⎩ ⎭ ⎣

⎤

⎦

 

( )2 1 2

3 1

6
7

1 3 4 1 3 4
2 7

0 7 6 0 1
3

0 8 6 0 8 6

R R R
R R

⎡ ⎤⎡ ⎤
− ÷ − ⎢ ⎥⎢ ⎥⎯⎯⎯⎯⎯→ − − ⎯⎯⎯⎯⎯→ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

 

 

1 2 1 2

3 2 3

10 10
7 7
6 6
7 76

76
7

1 0 1 0
3 3

0 1 0 1
8

0 0 0 0 1

R R R R
R R R

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥− −

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎢ ⎥⎢ ⎥+ ÷ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  

which is an inconsistent system.   Therefore  w  is not in U.  
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If  { }1 2span , , , is ink
nU X X X= …

W⊆
\   and all the  Xi  are in a subspace  W  of  n, 

then U  (U is a subset of [or is the same as] W). 
\

 
 
Example 5.1.5   (Textbook, page 201, example 5) 
 
Given that  X  and  Y  are in n, show that  span { X+Y , X–Y } = span { X, Y }. \
 
 
Both  X+Y and X–Y  are clearly linear combinations of X and Y and are therefore in  
span { X, Y }    ⇒   span { X+Y , X–Y }  span { X, Y }. ⊆

and
2 2 2 2

X Y X Y X Y X YX Y+ − + −
= + = − , so that X and Y are clearly linear 

combinations of   X+Y and X–Y  are therefore in span { X+Y , X–Y }  
⇒   span { X, Y } ⊆  span { X+Y , X–Y }. 
If two sets are subsets of each other, then they are identical to each other. 
Therefore span { X+Y , X–Y } = span { X, Y }. 
 
 
Example 5.1.6 
 
Show that v =  [ 3  4  1 ]T is in the subspace  
U = span { [ 1  1  0 ]T ,  [ 0  1  1 ]T ,  [ 1  2  1 ]T }. 
 
If  v  is in U, then  [ 3  4  1 ]T =  r [ 1  1  0 ]T +  s [ 0  1  1 ]T  +  t [ 1  2  1 ]T   
for some scalars  r, s and t. 

2 1

3 2

1 0 1 31 0 1 3 1 0 1 3
1 1 2 4 0 1 1 1 0 1 1 1
0 1 1 1 0 1 1 1 0 0 0 0

R R
R R

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⇒ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎢ ⎥⎢ ⎥ ⎢ ⎥ − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 
This is a one-parameter family of solutions, so   v  is definitely in the subspace U. 
One solution, setting  t = 0, is [ 3  4  1 ]T =  3 [ 1  1  0 ]T +  1 [ 0  1  1 ]T .  
Another solution, setting  t = 1, is  [ 3  4  1 ]T =  2 [ 1  1  0 ]T +  1 [ 1  2  1 ]T . 
Therefore the three vectors { [ 1  1  0 ]T ,  [ 0  1  1 ]T ,  [ 1  2  1 ]T } do not provide a 
unique representation of vectors in the subspace U. 
 
In fact, [ 1  2  1 ]T = [ 1  1  0 ]T +  [ 0  1  1 ]T , so that  
U = span { [ 1  1  0 ]T ,  [ 0  1  1 ]T ,  [ 1  2  1 ]T } = span { [ 1  1  0 ]T ,  [ 0  1  1 ]T  }. 
 
span { [ 1  1  0 ]T ,  [ 0  1  1 ]T  } is a “better” spanning set for the subspace U. 
All members of U can be written as a linear combination of [ 1  1  0 ]T and [ 0  1  1 ]T in 
only one way. 
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A one-dimensional subspace (a line) needs only one non-zero vector in its spanning set. 
A two-dimensional subspace (a plane) needs only two non-zero non-parallel vectors in its 
spanning set. 
\ 3  needs only three non-zero vectors (not all in the same plane) in its spanning set. 
 

The standard basis for \ 3 is 
1 0 0

ˆ ˆ ˆ0 , 1 , 0
0 0 1

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

i j k . 

These are also the columns  E1, E2, E3  of the identity matrix  I3 . 

Therefore  3  =  span { }\ 1 2 3

1 0 0
, , 0 , 1 , 0

0 0 1
E E E

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

. 

 
 

The standard basis for 2  is  \ { }1 2

1 0
, ,

0 1
E E

⎧ ⎫⎡ ⎤ ⎡ ⎤
= ⎨ ⎬⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎩ ⎭
. 
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5.2 Independence and Dimension 
 
As in Example 5.1.6 above, suppose that two linear combinations of vectors in n both 
represent the same vector Y: 

\

 
1 1 2 2 1 1 2 2k k k kY r X r X r X s X s X s X= + + + = + + +… …  

 
( ) ( ) ( )1 1 1 2 2 2 0k k kr s X r s X r s X⇒ − + − + + − =…  

 
If there is only one possible representation of  Y  as a linear combination of the { }iX , 

then we must have  for all i, so that all of the coefficients is r= i ( )i ir s−  above must be 

zero.   When the linear combination is unique, the set { }iX  is independent. 
 
If a set of vectors is independent, then it is impossible to write any of them as a linear 
combination of the others.   This leads to the related test for independence: 
 
The set of vectors { }1 2, , , kX X X…  is linearly independent if and only if  
 

the only solution to the equation 1 1 2 2 0k kc X c X c X+ + + =…  
is the trivial solution 1 2 0kc c c= = = =… . 

 
 
Example 5.2.1    
 
Show that the set { [ 1  1  0 ]T ,  [ 0  1  1 ]T ,  [ 1  2  1 ]T } (from Example 5.1.6) is  
not independent. 
 
 
Solve, for r, s, t, the equation  r [ 1  1  0 ]T + s [ 0  1  1 ]T + t [ 1  2  1 ]T = [ 0  0  0 ]T : 
 

2 1

3 2

1 0 1 01 0 1 0 1 0 1 0
1 1 2 0 0 1 1 0 0 1 1 0
0 1 1 0 0 1 1 0 0 0 0 0

R R
R R

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎢ ⎥⎢ ⎥ ⎢ ⎥ − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

 

Again this is a one-parameter family of solutions. 
Non-trivial solutions for r, s, t exist (r = s = –t, where t is free to be any real number). 
Therefore the set is not independent. 
In fact    –1 [ 1  1  0 ]T – 1 [ 0  1  1 ]T + 1 [ 1  2  1 ]T = [ 0  0  0 ]T  
⇒   [ 1  2  1 ]T =  [ 1  1  0 ]T +  [ 0  1  1 ]T  
which clearly establishes that one of the vectors is dependent on the other two. 
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The standard basis { E1, E2 } for 2 is independent. \
 
The standard basis { E1, E2, E3 } for 3 is independent. \
 
The zero vector is not a member of any set of independent vectors. 
[Reason:   clearly has non-trivial solutions  1 1 2 2 n nkO r X r X r X O+ + + + =…
r1 = r2 = ... = rn = 0,  k = any real number.] 
 
A set containing a single vector { X } is independent if and only if  X ≠  0. 
 
Any basis of a subspace is both independent and spans the subspace. 
The number of vectors in a basis is the dimension of the subspace (dim(U)). 
 
Any independent set in a subspace U can be enlarged (by adding vectors) to a basis for U. 
Any set that spans a subspace U can be reduced (by deleting vectors) to a basis for U. 
 
In Example 5.2.1, deletion of  [ 1  2  1 ]T leaves a basis { [ 1  1  0 ]T,  [ 0  1  1 ]T } for U. 
 
 
If the number of vectors m in a set A equals the dimension of the subspace U, then the 
following are either all true or all false: 
 

 A is independent; 
 A spans U;  
 A is a basis for U. 

 
Therefore, when m = dim(U), it is sufficient to test one of independence or spanning to 
determine whether or not A is a basis for U. 
 
 
Example 5.2.2    
 
Suppose that { X, Y, Z } is a basis for \ 3.    
Show that { X + aZ, Y, Z } is also a basis for \ 3 for any choice of the scalar a. 
 
 
Test for independence: 
r (X + aZ) + sY  +  tZ  =  rX + sY  +  (t+a)Z  = 0 
But { X, Y, Z } is a basis for 3   ⇒   the only solution to rX + sY  + uZ  =  0  is the 
trivial solution  r = s = u = 0.    

\

Let  u = t+a, then the only solution to  r (X + aZ) + sY  +  tZ  =  0  is   r = s = 0,  t = –a.   
Therefore { X + aZ, Y, Z } are independent. 
dim( 3) = 3 = number of vectors in the set. \
Therefore { X + aZ, Y, Z } is also a basis for 3 for any choice of the scalar a. \
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Example 5.2.3    
 
Determine if this set of vectors is a basis of 3: \
A  =  { [ 1  0  2 ]T,  [ 1  –2  3 ]T,  [ 1  4  0 ]T } 
 
n(A) = dim ( 3) = 3 \
Testing for independence: 
EITHER 
r [ 1  0  2 ]T +  s [ 1  –2  3 ]T +  t [ 1  4  0 ]T = [ 0  0  0 ]T   
 

2 1

1 1 1 0 1 1 1 0
2

0 2 4 0 0 2 4 0
2 3 0 0 0 1 2 0

R R
⎡ ⎤ ⎡

−⎢ ⎥ ⎢⇒ − ⎯⎯⎯⎯⎯→ −⎢ ⎥ ⎢
⎢ ⎥ ⎢ −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 

 

2 3 1 2

3 2

1 0 3 01 1 1 0
0 1 2 0 0 1 2 0

2
0 2 4 0 0 0 0 0

R R R R
R R

⎡ ⎤⎡ ⎤ ⎢ ⎥↔ −⎢ ⎥⎯⎯⎯⎯⎯→ − ⎯⎯⎯⎯⎯→ −⎢ ⎥⎢ ⎥ + ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 
Non-trivial solutions therefore exist for  r, s, t. 
t (–3 [ 1  0  2 ]T +  2 [ 1  –2  3 ]T +  1 [ 1  4  0 ]T) = [ 0  0  0 ]T  for all real numbers t  
⇒   [ 1  4  0 ]T  =  3 [ 1  0  2 ]T –  2 [ 1  –2  3 ]T  
Therefore the set A is not independent. 
 
OR 
 
One can spot that   [ 1  4  0 ]T  =  3 [ 1  0  2 ]T –  2 [ 1  –2  3 ]T , so that one vector is a 
linear combination of the others.   Immediately we can conclude that set A is not 
independent.    
 
Therefore set A is not a basis (and does not span 3 either). \
 
 
The reduced set { [ 1  0  2 ]T, [ 1  –2  3 ]T } is independent, but does not span 3. \
 
Adding the vector  E1 = [ 1  0  0 ]T to the reduced set does generate a basis for 3: \
B  =  { [ 1  0  0 ]T, [ 1  0  2 ]T, [ 1  –2  3 ]T } 
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Example 5.2.4    
 
The subspace U of  is defined by 3\

1 2 11
span 4 , 3 , 0

2 1 2
U

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

 

 
    (a) Is  [ 3  1  1 ]T  in  U ? 
    (b) Is  [ 3  1  0 ]T  in  U ? 
    (c) Find a basis for  U. 
    (d) Write down  dim U. 
    (e) Is  U = ? 3\
 
 
    (a) Solve  [ 3  1  1 ]T  =  r [ 1  4  2 ]T  +  s [ 2  –3  –1 ]T  +  t [ 11  0  2 ]T   for r, s, t: 
 

2 1

3 1

1 2 11 3 1 2 11 3
4

4 3 0 1 0 11 44 11
2

2 1 2 1 0 5 20 5

R R
R R

⎡ ⎤ ⎡
−⎢ ⎥ ⎢− ⎯⎯⎯⎯⎯→ − − −⎢ ⎥ ⎢−

⎢ ⎥ ⎢− −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥− − ⎦

 

 

( )2 1 2

3 2

1 2 11 3 1 0 3 1
11 2

0 1 4 1 0 1 4 1
5

0 5 20 5 0 0 0 0

R R R
R R

⎡ ⎤ ⎡
÷ − −⎢ ⎥ ⎢⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→⎢ ⎥ ⎢+

⎢ ⎥ ⎢− − −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

⎪
⎬

 

This is a one-parameter family of solutions,   
r = 1 – 3t,  s = 1 – 4t,  t  ∈\
One solution (setting  t= 0)  is   [ 3  1  1 ]T  =  [ 1  4  2 ]T  +  [ 2  –3  –1 ]T . 
Another solution (setting  t= 1)  is   
[ 3  1  1 ]T  =  –2 [ 1  4  2 ]T  +  –3 [ 2  –3  –1 ]T  +  [ 11  0  2 ]T    
The representation of  [ 3  1  1 ]T is not unique. 

Therefore  is not a basis for  U  and the three vectors are 

not independent ( [ 11  0  2 ]T  =  3 [ 1  4  2 ]T  +  4 [ 2  –3  –1 ]T ). 

1 2 11
4 , 3 , 0
2 1 2

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎨ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

However, [ 3  1  1 ]T   is in U. 
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Example 5.2.4   (continued) 
 
    (b) Solve  [ 3  1  0 ]T  =  r [ 1  4  2 ]T  +  s [ 2  –3  –1 ]T  +  t [ 11  0  2 ]T   for r, s, t: 
 

2 1

3 1

1 2 11 3 1 2 11 3
4

4 3 0 1 0 11 44 11
2

2 1 2 0 0 5 20 6

R R
R R

⎡ ⎤ ⎡
−⎢ ⎥ ⎢− ⎯⎯⎯⎯⎯→ − − −⎢ ⎥ ⎢−

⎢ ⎥ ⎢− −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥− − ⎦

 

 

( )2 1 2

3 2

1 2 11 3 1 0 3 1
11 2

0 1 4 1 0 1 4 1
5

0 5 20 6 0 0 0 1

R R R
R R

⎡ ⎤ ⎡
÷ − −⎢ ⎥ ⎢⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→⎢ ⎥ ⎢+

⎢ ⎥ ⎢− − − −⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

 

 

( )3

1 0 3 1
0 1 4 1

1
0 0 0 1

R

⎡ ⎤
⎢ ⎥

⎯⎯⎯⎯⎯→ ⎢ ⎥× − ⎢ ⎥
⎣ ⎦

 

which is an inconsistent system. 
Therefore  [ 3  1  0 ]T  is not in U. 
 

 
    (c) Vectors [ 1  4  2 ]T  and  [ 2  –3  –1 ]T  are clearly independent (neither is a 

multiple of the other).   A basis for a subspace is a set of independent vectors that 
span that subspace.   U  =  span { [ 1  4  2 ]T ,  [ 2  –3  –1 ]T  }.   Therefore a basis 
for  U  is  { [ 1  4  2 ]T ,  [ 2  –3  –1 ]T  }.     

 
 In fact, any two of the original three vectors will serve as a basis for  U . 
 
 
    (d) The basis for  U  contains two vectors.   Therefore  dim U  =  2. 
 
    (e) dim U  =  2  but  dim  =  3.   Therefore  .    3\ 3U ≠ \
 In fact   (geometrically  U  is a plane through the origin). 3U ⊂ \
 
 
 
 
 

END OF CHAPTER 5 
END OF MATH 2050 ! 
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