5.1 Subspaces and Spanning

Example 5.1.1

The homogeneous linear system [a homogeneous version of Assignment 2 Question 2]
$\left\{\begin{array}{r}x-2 y+z=0 \\ 2 x-4 y+3 z=0 \\ -5 x+10 y-2 z=0 \\ 3 x-6 y-z=0\end{array}\right\} \quad($ or $A X=O)$
has a reduced row-echelon form
$\left[\begin{array}{rrr|r}1 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
leading to the one-parameter family of solutions
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$
Every solution is a multiple of the basic solution $\left[\begin{array}{ccc}2 & 1 & 0\end{array}\right]^{\mathrm{T}}$.
Geometrically this is a line through the origin in the $x y$-plane.
All solutions can be represented as a simple multiple of the basic solution. This is an example of a one-dimensional subspace of \mathbb{R}^{3}.

The set consisting of the single basic vector $\left\{\left[\begin{array}{lll}2 & 1 & 0\end{array}\right]^{\mathrm{T}}\right\}$ spans this subspace.

Example 5.1.2

A homogeneous linear system has the two-parameter family of solutions
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]+s\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]+t\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
All multiples of the vectors [$\left.\begin{array}{lll}1 & 2 & 0\end{array}\right]^{\mathrm{T}}$ and $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{\mathrm{T}}$ are in this solution set. A vector orthogonal to the solution set is

$$
\stackrel{\mathbf{n}}{ }=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] \times\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left|\begin{array}{lll}
\hat{\mathbf{i}} & 1 & 1 \\
\hat{\mathbf{j}} & 2 & 0 \\
\hat{\mathbf{k}} & 0 & 1
\end{array}\right|=\left|\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right| \hat{\mathbf{i}}-\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right| \hat{\mathbf{j}}+\left|\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right| \hat{\mathbf{k}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}}
$$

A plane through the origin with this normal vector is $-2 x+y+2 z=0$.
Therefore the solution set represents the plane $-2 x+y+2 z=0$.
This is an example of a two-dimensional subspace of \mathbb{R}^{3}.
Every solution can be represented as a linear combination of the basic solutions
$\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.
The set $\left.\left\{\begin{array}{lll}1 & 2 & 0\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{\mathrm{T}}\right\}$ spans this subspace.
The solution set (subspace) U can be defined as

$$
\left.\left.U=\operatorname{span}\left\{\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]^{\mathrm{T}}\right\}=\left\{\begin{array}{lll}
s & {\left[\begin{array}{ll}
1 & 2
\end{array}\right.} & 0
\end{array}\right]^{\mathrm{T}}+t\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]^{\mathrm{T}} \right\rvert\, s, t \in \mathbb{R}\right\}
$$

A set U of vectors in \mathbb{R}^{n} is a subspace of \mathbb{R}^{n} if:

1. The zero vector $\mathbf{0}$ is in U
2. If X and Y are in U, then so is $X+Y$ (closure under addition)
3. If X is in U, then so is $k X$ for all scalars k (closure under scalar multiplication)

The trivial set $U=\{\mathbf{0}\}$ is a subspace of \mathbb{R}^{n} for all n. \mathbb{R}^{n} is a subspace of itself.
Any subspace of \mathbb{R}^{n} other than $\{\mathbf{0}\}$ or \mathbb{R}^{n} is a proper subspace of \mathbb{R}^{n}.
For geometric vectors, lines through the origin are the only proper subspaces of \mathbb{R}^{2}, while lines and planes through the origin are the only proper subspaces of \mathbb{R}^{3}.

For non-zero non-parallel vectors \mathbf{v} and \mathbf{w},
$L=\operatorname{span}\{\mathbf{v}\}$ is the line through the origin parallel to vector \mathbf{v}.
$M=\operatorname{span}\{\mathbf{v}, \mathbf{w}\}$ is the plane through the origin containing vectors \mathbf{v} and \mathbf{w}, with normal vector $\mathbf{n}=\mathbf{v} \times \mathbf{w}$.

Example 5.1.3

Vector \mathbf{a} is in $L=\operatorname{span}\{\mathbf{v}\}$, but vector \mathbf{b} is not.
$\mathbf{a}=k \mathbf{v}$ for some scalar k.

$\mathbf{b} \neq k \mathbf{v}$ for any scalar k.

If A is an ($m \times n$) matrix, then its null space is the set of all solutions to the homogeneous equation $A X=O$:

$$
\operatorname{null} A=\left\{X \text { in } \mathbb{R}^{n} \mid A X=O\right\}
$$

null A is a subspace of \mathbb{R}^{n}.
In Example 5.1.1, null $A=\operatorname{span}\left\{\left[\begin{array}{lll}2 & 1 & 0\end{array}\right]^{\mathrm{T}}\right\}$.

The eigenspace of A is $E_{\lambda}(A)=\operatorname{null}(\lambda I-A)$.
If $E_{\lambda}(A)$ contains more than the zero vector, then λ is an eigenvalue of A with corresponding eigenvectors being all members of the eigenspace except the zero vector. A spanning set for the eigenspace is a set of basic eigenvectors for that eigenvalue.

Example 5.1.4

For the subspace $U=\operatorname{span}\left\{\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}3 & -1 & 1\end{array}\right]^{\mathrm{T}}\right\}$, determine whether the following vectors are in U :
$\mathbf{v}=\left[\begin{array}{lll}5 & 3 & 7\end{array}\right]^{\mathrm{T}}, \mathbf{w}=\left[\begin{array}{lll}4 & 2 & 6\end{array}\right]^{\mathrm{T}}$

If \mathbf{v} is in U, then $\left[\begin{array}{lll}5 & 3 & 7\end{array}\right]^{\mathrm{T}}=s\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{\mathrm{T}}+t\left[\begin{array}{lll}3 & -1 & 1\end{array}\right]^{\mathrm{T}}$ for some scalars s and t.

$$
\Rightarrow\left\{\begin{array}{l}
1 s+3 t=5 \\
2 s-1 t=3 \\
3 s+1 t=7
\end{array}\right\} \Rightarrow\left[\begin{array}{rr|r}
1 & 3 & 5 \\
2 & -1 & 3 \\
3 & 1 & 7
\end{array}\right]
$$

$$
\begin{aligned}
& \xrightarrow[R_{3}-3 R_{1}]{R_{2}-2 R_{1}}\left[\begin{array}{rr|r}
1 & 3 & 5 \\
0 & -7 & -7 \\
0 & -8 & -8
\end{array}\right] \xrightarrow{R_{2} \div(-7)}\left[\begin{array}{rr|r}
1 & 3 & 5 \\
0 & 1 & 1 \\
0 & -8 & -8
\end{array}\right] \\
& \xrightarrow[R_{3}+8 R_{2}]{R_{1}-3 R_{2}}\left[\begin{array}{rr|r}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
s \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\end{aligned}
$$

A unique solution for s and t exists: $\left[\begin{array}{lll}5 & 3 & 7\end{array}\right]^{\mathrm{T}}=2\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{\mathrm{T}}+1\left[\begin{array}{lll}3 & -1 & 1\end{array}\right]^{\mathrm{T}}$ Therefore $\overrightarrow{\mathbf{v}} \in U$.

If \mathbf{w} is in U, then $\left[\begin{array}{lll}4 & 2 & 6\end{array}\right]^{\mathrm{T}}=s\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{\mathrm{T}}+t\left[\begin{array}{lll}3 & -1 & 1\end{array}\right]^{\mathrm{T}}$ for some scalars s and t.

$$
\begin{aligned}
& \Rightarrow\left\{\begin{array}{l}
1 s+3 t=4 \\
2 s-1 t=2 \\
3 s+1 t=6
\end{array}\right\} \Rightarrow\left[\begin{array}{rr|r}
1 & 3 & 4 \\
2 & -1 & 2 \\
3 & 1 & 6
\end{array}\right] \\
& \xrightarrow[R_{3}-3 R_{1}]{R_{2}-2 R_{1}}\left[\begin{array}{rr|r}
1 & 3 & 4 \\
0 & -7 & -6 \\
0 & -8 & -6
\end{array}\right] \xrightarrow{R_{2} \div(-7)}\left[\begin{array}{rr|r}
1 & 3 & 4 \\
0 & 1 & \frac{6}{7} \\
0 & -8 & -6
\end{array}\right] \\
& \xrightarrow[R_{3}+8 R_{2}]{R_{1}-3 R_{2}}\left[\begin{array}{rr|r}
1 & 0 & \frac{10}{7} \\
0 & 1 & \frac{6}{7} \\
0 & 0 & \frac{6}{7}
\end{array}\right] \xrightarrow[R_{3} \div \frac{6}{7}]{R_{1}-3 R_{2}}\left[\begin{array}{rr|r}
1 & 0 & \frac{10}{7} \\
0 & 1 & \frac{6}{7} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

which is an inconsistent system. Therefore \mathbf{w} is not in U.

If $U=\operatorname{span}\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ is in \mathbb{R}^{n} and all the X_{i} are in a subspace W of \mathbb{R}^{n}, then $U \subseteq W$ (U is a subset of [or is the same as] W).

Example 5.1.5 (Textbook, page 201, example 5)

Given that X and Y are in \mathbb{R}^{n}, show that span $\{X+Y, X-Y\}=\operatorname{span}\{X, Y\}$.

Both $X+Y$ and $X-Y$ are clearly linear combinations of X and Y and are therefore in span $\{X, Y\} \Rightarrow \operatorname{span}\{X+Y, X-Y\} \subseteq \operatorname{span}\{X, Y\}$.
$X=\frac{X+Y}{2}+\frac{X-Y}{2}$ and $Y=\frac{X+Y}{2}-\frac{X-Y}{2}$, so that X and Y are clearly linear combinations of $X+Y$ and $X-Y$ are therefore in span $\{X+Y, X-Y\}$
$\Rightarrow \operatorname{span}\{X, Y\} \subseteq \operatorname{span}\{X+Y, X-Y\}$.
If two sets are subsets of each other, then they are identical to each other.
Therefore span $\{X+Y, X-Y\}=\operatorname{span}\{X, Y\}$.

Example 5.1.6

Show that $\mathbf{v}=\left[\begin{array}{lll}3 & 4 & 1\end{array}\right]^{\mathrm{T}}$ is in the subspace $U=\operatorname{span}\left\{\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{\mathrm{T}}\right\}$.

If \mathbf{v} is in U, then $\left[\begin{array}{lll}3 & 4 & 1\end{array}\right]^{\mathrm{T}}=r\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}}+s\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\mathrm{T}}+t\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{\mathrm{T}}$
for some scalars r, s and t.

$$
\Rightarrow\left[\begin{array}{lll|l}
1 & 0 & 1 & 3 \\
1 & 1 & 2 & 4 \\
0 & 1 & 1 & 1
\end{array}\right] \xrightarrow{R_{2}-R_{1}}\left[\begin{array}{lll|l}
1 & 0 & 1 & 3 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right] \xrightarrow[R_{3}-R_{2}]{ }\left[\begin{array}{rrr|r}
1 & 0 & 1 & 3 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This is a one-parameter family of solutions, so \mathbf{v} is definitely in the subspace U.
One solution, setting $t=0$, is [$\left.\begin{array}{lll}3 & 4 & 1\end{array}\right]^{\mathrm{T}}=3\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}}+1\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\mathrm{T}}$.
Another solution, setting $t=1$, is $\left[\begin{array}{lll}3 & 4 & 1\end{array}\right]^{\mathrm{T}}=2\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}}+1\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{\mathrm{T}}$.
Therefore the three vectors $\left\{\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}}\right.$, $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\mathrm{T}}$, $\left.\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{\mathrm{T}}\right\}$ do not provide a unique representation of vectors in the subspace U.

In fact, $\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}}+\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\mathrm{T}}$, so that $U=\operatorname{span}\left\{\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{\mathrm{T}}\right\}=\operatorname{span}\left\{\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\mathrm{T}}\right\}$.
span $\left.\left\{\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\mathrm{T}}\right\}$ is a "better" spanning set for the subspace U.
All members of U can be written as a linear combination of $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}}$ and $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\mathrm{T}}$ in only one way.

A one-dimensional subspace (a line) needs only one non-zero vector in its spanning set. A two-dimensional subspace (a plane) needs only two non-zero non-parallel vectors in its spanning set.
\mathbb{R}^{3} needs only three non-zero vectors (not all in the same plane) in its spanning set.
The standard basis for \mathbb{R}^{3} is $\left\{\hat{\mathbf{i}}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \quad \hat{\mathbf{j}}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \quad \hat{\mathbf{k}}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$.
These are also the columns E_{1}, E_{2}, E_{3} of the identity matrix I_{3}.
Therefore $\mathbb{R}^{3}=\operatorname{span}\left\{E_{1}, E_{2}, E_{3}\right\}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$.

The standard basis for \mathbb{R}^{2} is $\left\{E_{1}, E_{2}\right\}=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$.

5.2 Independence and Dimension

As in Example 5.1.6 above, suppose that two linear combinations of vectors in \mathbb{R}^{n} both represent the same vector Y :

$$
\begin{aligned}
& Y=r_{1} X_{1}+r_{2} X_{2}+\ldots+r_{k} X_{k}=s_{1} X_{1}+s_{2} X_{2}+\ldots+s_{k} X_{k} \\
& \Rightarrow\left(r_{1}-s_{1}\right) X_{1}+\left(r_{2}-s_{2}\right) X_{2}+\ldots+\left(r_{k}-s_{k}\right) X_{k}=0
\end{aligned}
$$

If there is only one possible representation of Y as a linear combination of the $\left\{X_{i}\right\}$, then we must have $s_{i}=r_{i}$ for all i, so that all of the coefficients $\left(r_{i}-s_{i}\right)$ above must be zero. When the linear combination is unique, the set $\left\{X_{i}\right\}$ is independent.

If a set of vectors is independent, then it is impossible to write any of them as a linear combination of the others. This leads to the related test for independence:

The set of vectors $\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ is linearly independent if and only if
the only solution to the equation $c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{k} X_{k}=0$ is the trivial solution $c_{1}=c_{2}=\ldots=c_{k}=0$.

Example 5.2.1

Show that the set $\left\{\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{\mathrm{T}}\right\}$ (from Example 5.1.6) is not independent.

Solve, for r, s, t, the equation $r\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}}+s\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\mathrm{T}}+t\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\mathrm{T}}$:

$$
\left[\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
1 & 1 & 2 & 0 \\
0 & 1 & 1 & 0
\end{array}\right] \xrightarrow{R_{2}-R_{1}}\left[\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right] \xrightarrow[R_{3}-R_{2}]{ }\left[\begin{array}{rrr|r}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Again this is a one-parameter family of solutions.
Non-trivial solutions for r, s, t exist ($r=s=-t$, where t is free to be any real number).
Therefore the set is not independent.
In fact $-1\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}}-1\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\mathrm{T}}+1\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\mathrm{T}}$
$\Rightarrow\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}}+\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\mathrm{T}}$
which clearly establishes that one of the vectors is dependent on the other two.

The standard basis $\left\{E_{1}, E_{2}\right\}$ for \mathbb{R}^{2} is independent.
The standard basis $\left\{E_{1}, E_{2}, E_{3}\right\}$ for \mathbb{R}^{3} is independent.
The zero vector is not a member of any set of independent vectors.
[Reason: $k O+r_{1} X_{1}+r_{2} X_{2}+\ldots+r_{n} X_{n}=O$ clearly has non-trivial solutions $r_{1}=r_{2}=\ldots=r_{n}=0, k=$ any real number.]

A set containing a single vector $\{X\}$ is independent if and only if $X \neq \mathbf{0}$.
Any basis of a subspace is both independent and spans the subspace.
The number of vectors in a basis is the dimension of the subspace ($\operatorname{dim}(U)$).
Any independent set in a subspace U can be enlarged (by adding vectors) to a basis for U. Any set that spans a subspace U can be reduced (by deleting vectors) to a basis for U.

In Example 5.2.1, deletion of $\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{\mathrm{T}}$ leaves a basis $\left\{\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\mathrm{T}}\right\}$ for U.

If the number of vectors m in a set A equals the dimension of the subspace U, then the following are either all true or all false:

- A is independent;
- A spans U;
- A is a basis for U.

Therefore, when $m=\operatorname{dim}(U)$, it is sufficient to test one of independence or spanning to determine whether or not A is a basis for U.

Example 5.2.2

Suppose that $\{X, Y, Z\}$ is a basis for \mathbb{R}^{3}.
Show that $\{X+a Z, Y, Z\}$ is also a basis for \mathbb{R}^{3} for any choice of the scalar a.

Test for independence:
$r(X+a Z)+s Y+t Z=r X+s Y+(t+a) Z=0$
But $\{X, Y, Z\}$ is a basis for $\mathbb{R}^{3} \Rightarrow$ the only solution to $r X+s Y+u Z=0$ is the trivial solution $r=s=u=0$.
Let $u=t+a$, then the only solution to $r(X+a Z)+s Y+t Z=0$ is $r=s=0, t=-a$. Therefore $\{X+a Z, Y, Z\}$ are independent.
$\operatorname{dim}\left(\mathbb{R}^{3}\right)=3=$ number of vectors in the set.
Therefore $\{X+a Z, Y, Z\}$ is also a basis for \mathbb{R}^{3} for any choice of the scalar a.

Example 5.2.3

Determine if this set of vectors is a basis of \mathbb{R}^{3} :
$A=\left\{\left[\begin{array}{lll}1 & 0 & 2\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}1 & 4 & 0\end{array}\right]^{\mathrm{T}}\right\}$
$n(A)=\operatorname{dim}\left(\mathbb{R}^{3}\right)=3$
Testing for independence:

EITHER

$r\left[\begin{array}{lll}1 & 0 & 2\end{array}\right]^{\mathrm{T}}+s\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]^{\mathrm{T}}+t\left[\begin{array}{lll}1 & 4 & 0\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\mathrm{T}}$

$$
\Rightarrow\left[\begin{array}{rrr|r}
1 & 1 & 1 & 0 \\
0 & -2 & 4 & 0 \\
2 & 3 & 0 & 0
\end{array}\right] \xrightarrow{R_{2}-2 R_{1}}\left[\begin{array}{rrr|r}
1 & 1 & 1 & 0 \\
0 & -2 & 4 & 0 \\
0 & 1 & -2 & 0
\end{array}\right]
$$

$$
\xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{rrr|r}
1 & 1 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & -2 & 4 & 0
\end{array}\right] \xrightarrow[R_{3}+2 R_{2}]{R_{1}-R_{2}}\left[\begin{array}{rrr|r}
1 & 0 & 3 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Non-trivial solutions therefore exist for r, s, t.
$\left.t\left(\begin{array}{lll}-3 & {\left[\begin{array}{ll}1 & 0\end{array}\right.}\end{array}\right]^{\mathrm{T}}+2\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]^{\mathrm{T}}+1\left[\begin{array}{ccc}1 & 4 & 0\end{array}\right]^{\mathrm{T}}\right)=\left[\begin{array}{ll}0 & 0\end{array} 0\right]^{\mathrm{T}}$ for all real numbers t
$\Rightarrow\left[\begin{array}{lll}1 & 4 & 0\end{array}\right]^{\mathrm{T}}=3\left[\begin{array}{lll}1 & 0 & 2\end{array}\right]^{\mathrm{T}}-2\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]^{\mathrm{T}}$
Therefore the set A is not independent.

OR

One can spot that $\left[\begin{array}{lll}1 & 4 & 0\end{array}\right]^{\mathrm{T}}=3\left[\begin{array}{lll}1 & 0 & 2\end{array}\right]^{\mathrm{T}}-2\left[\begin{array}{ccc}1 & -2 & 3\end{array}\right]^{\mathrm{T}}$, so that one vector is a linear combination of the others. Immediately we can conclude that set A is not independent.

Therefore set A is not a basis (and does not span \mathbb{R}^{3} either).

The reduced set $\left\{\left[\begin{array}{lll}1 & 0 & 2\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]^{\mathrm{T}}\right\}$ is independent, but does not span \mathbb{R}^{3}.
Adding the vector $E_{1}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\mathrm{T}}$ to the reduced set does generate a basis for \mathbb{R}^{3} : $B=\left\{\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}1 & 0 & 2\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]^{\mathrm{T}}\right\}$

Example 5.2.4

The subspace U of \mathbb{R}^{3} is defined by

$$
U=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
4 \\
2
\end{array}\right],\left[\begin{array}{r}
2 \\
-3 \\
-1
\end{array}\right],\left[\begin{array}{r}
11 \\
0 \\
2
\end{array}\right]\right\}
$$

(a) Is $\left[\begin{array}{lll}3 & 1 & 1\end{array}\right]^{\mathrm{T}}$ in U ?
(b) Is $\left[\begin{array}{lll}3 & 1 & 0\end{array}\right]^{\mathrm{T}}$ in U ?
(c) Find a basis for U.
(d) Write down $\operatorname{dim} U$.
(e) Is $U=\mathbb{R}^{3}$?

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
1 & 2 & 11 & 3 \\
4 & -3 & 0 & 1 \\
2 & -1 & 2 & 1
\end{array}\right] \xrightarrow[R_{3}-2 R_{1}]{R_{2}-4 R_{1}}\left[\begin{array}{rrr|r}
1 & 2 & 11 & 3 \\
0 & -11 & -44 & -11 \\
0 & -5 & -20 & -5
\end{array}\right]} \\
& \xrightarrow{R_{2} \div(-11)}\left[\begin{array}{rrr|r}
1 & 2 & 11 & 3 \\
0 & 1 & 4 & 1 \\
0 & -5 & -20 & -5
\end{array}\right] \xrightarrow[R_{3}+5 R_{2}]{R_{1}-2 R_{2}}\left[\begin{array}{rrr|r}
1 & 0 & 3 & 1 \\
0 & 1 & 4 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

This is a one-parameter family of solutions, $r=1-3 t, s=1-4 t, t \in \mathbb{R}$
One solution (setting $t=0$) is $\left[\begin{array}{lll}3 & 1 & 1\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll}1 & 4 & 2\end{array}\right]^{\mathrm{T}}+\left[\begin{array}{lll}2 & -3 & -1\end{array}\right]^{\mathrm{T}}$.
Another solution (setting $t=1$) is
$\left[\begin{array}{lll}3 & 1 & 1\end{array}\right]^{\mathrm{T}}=-2\left[\begin{array}{lll}1 & 4 & 2\end{array}\right]^{\mathrm{T}}+-3\left[\begin{array}{lll}2 & -3 & -1\end{array}\right]^{\mathrm{T}}+\left[\begin{array}{lll}11 & 0 & 2\end{array}\right]^{\mathrm{T}}$
The representation of $\left[\begin{array}{lll}3 & 1 & 1\end{array}\right]^{\mathrm{T}}$ is not unique.
Therefore $\left\{\left[\begin{array}{l}1 \\ 4 \\ 2\end{array}\right],\left[\begin{array}{r}2 \\ -3 \\ -1\end{array}\right],\left[\begin{array}{r}11 \\ 0 \\ 2\end{array}\right]\right\}$ is not a basis for U and the three vectors are
not independent $\left(\left[\begin{array}{lll}11 & 0 & 2\end{array}\right]^{\mathrm{T}}=3\left[\begin{array}{lll}1 & 4 & 2\end{array}\right]^{\mathrm{T}}+4\left[\begin{array}{lll}2 & -3 & -1\end{array}\right]^{\mathrm{T}}\right)$.
However, $\left[\begin{array}{lll}3 & 1 & 1\end{array}\right]^{\mathrm{T}}$ is in U.

Example 5.2.4 (continued)

(b) Solve $\left[\begin{array}{lll}3 & 1 & 0\end{array}\right]^{\mathrm{T}}=r\left[\begin{array}{lll}1 & 4 & 2\end{array}\right]^{\mathrm{T}}+s\left[\begin{array}{lll}2 & -3 & -1\end{array}\right]^{\mathrm{T}}+t\left[\begin{array}{lll}11 & 0 & 2\end{array}\right]^{\mathrm{T}}$ for r, s, t :

$$
\left[\begin{array}{rrr|r}
1 & 2 & 11 & 3 \\
4 & -3 & 0 & 1 \\
2 & -1 & 2 & 0
\end{array}\right] \xrightarrow[R_{3}-2 R_{1}]{R_{2}-4 R_{1}}\left[\begin{array}{rrr|r}
1 & 2 & 11 & 3 \\
0 & -11 & -44 & -11 \\
0 & -5 & -20 & -6
\end{array}\right]
$$

$$
\xrightarrow{R_{2} \div(-11)}\left[\begin{array}{rrr|r}
1 & 2 & 11 & 3 \\
0 & 1 & 4 & 1 \\
0 & -5 & -20 & -6
\end{array}\right] \xrightarrow[R_{3}+5 R_{2}]{R_{1}-2 R_{2}}\left[\begin{array}{rrr|r}
1 & 0 & 3 & 1 \\
0 & 1 & 4 & 1 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

$$
\xrightarrow[R_{3} \times(-1)]{ }\left[\begin{array}{rrr|r}
1 & 0 & 3 & 1 \\
0 & 1 & 4 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

which is an inconsistent system.
Therefore $\left[\begin{array}{lll}3 & 1 & 0\end{array}\right]^{\mathrm{T}}$ is not in U.
(c) Vectors $\left[\begin{array}{lll}1 & 4 & 2\end{array}\right]^{\mathrm{T}}$ and $\left[\begin{array}{ccc}2 & -3 & -1\end{array}\right]^{\mathrm{T}}$ are clearly independent (neither is a multiple of the other). A basis for a subspace is a set of independent vectors that span that subspace. $U=\operatorname{span}\left\{\left[\begin{array}{lll}1 & 4 & 2\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}2 & -3 & -1\end{array}\right]^{\mathrm{T}}\right\}$. Therefore a basis for U is $\left\{\left[\begin{array}{lll}1 & 4 & 2\end{array}\right]^{\mathrm{T}}\right.$, $\left.\left[\begin{array}{lll}2 & -3 & -1\end{array}\right]^{\mathrm{T}}\right\}$.

In fact, any two of the original three vectors will serve as a basis for U.
(d) The basis for U contains two vectors. Therefore $\operatorname{dim} U=2$.
(e) $\operatorname{dim} U=2$ but $\operatorname{dim} \mathbb{R}^{3}=3$. Therefore $U \neq \mathbb{R}^{3}$.

In fact $U \subset \mathbb{R}^{3}$ (geometrically U is a plane through the origin).

