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4. Second Order Linear Ordinary Differential Equations   
 
The general second order linear ordinary differential equation is of the form  

( ) ( ) ( )
2

2

d y dyP x Q x y R x
dx dx

+ + =  

Of the second (and higher) order ordinary differential equations, only linear equations 
with constant coefficients will be considered in this chapter: 
 

( )
2

2

d y dyP Q y R
dx dx

+ + = x  

 
4.1 Complementary Function  
 
The homogeneous equation associated with this ODE is  

02

2

=++ yQ
dx
dyP

dx
yd  

The principle of superposition of solutions of the homogeneous equation is valid because 
it is linear.   That is, if  y = u(x)  and   y = v(x)  are both solutions of the homogeneous 
ODE, then so also is   y = c1 u(x)  +  c2 v(x) , where   c1  and   c2  are any constants. 
Adding any solution of the homogeneous ODE to a particular solution of the original 
ODE generates another solution of the original ODE. 
 
Thus the general solution (abbreviated as G.S.) of  

( )xRyQ
dx
dyP

dx
yd

=++2

2

 

can be partitioned into two parts:  
the complementary function (C.F., which is the general solution of the associated 
homogeneous ODE) and a particular solution (P.S.).  
 
If   y = eλx  is a solution to the homogeneous ODE, then  
 
 λ2 eλx  +  P λ eλx  +  Q eλx  =  0 
 
But eλx   >  0   for all real λ and x. 
 
from which the auxiliary equation (A.E.) follows:  

λ2  +  P λ  +  Q  =  0 
 
[The choice of   y = eλx  as a trial solution to the homogeneous ODE is justified later, on 
page 4-08, when a more general method for finding the complementary function is 
introduced.]
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The solution of the auxiliary equation  λ 2  +  P λ  +  Q  =  0  is  
 

 
2

1 2
4

,
2

P P Q
λ λ λ

− ± −
= =  

 
Distinct roots (λ1 ≠ λ2)  ⇒  the complementary function is  
 

( )C 1 2
1 2x x

y x c e c e
λ λ

= +  
 
[The case of equal roots will be dealt with later, on page 4.07 .] 
 
Example 4.1.1    
 
Solve the differential equation 

y"  +  3y'  −  4y  =  0 
The auxiliary equation is 
 
 λ 2  +  3λ  −  4  =  0   
 
⇒ (λ + 4) (λ − 1)  =  0 
 
⇒ λ  =  −4, +1. 
 
The complementary function (which is also the general solution) is  
 
 y  =  yC  =  c1 e

−4x  +  c2 e
x    

 
Checking the solution:  
 
 y    =         c1 e

−4x  +  c2 e
x    

 
⇒ y'   =   −4 c1 e

−4x  +  c2 e
x   

 
⇒ y"  =  +16 c1 e

−4x  +  c2 e
x   

           ________________ 
 
⇒ y"  +  3y'  −  4y  =  
  c1 e

−4x (16 + 3(−4) − 4(1))  +  c2 e
x (1  +  3  − 4)  ≡  0     
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Example 4.1.2    
 
Solve 

y"  −  2y'  +  2y  =  0 
 
A.E.:  λ 2  −  2λ  +  2  =  0  
 

2 4 8 1
2

jλ ± −
⇒ = = ±  

 
C.F.:  
 
 yC  =  c1 e

(1−j) x  + c2 e
(1+j) x   =  e x (c1 e

−jx  +  c2  e
+jx)    

 
       =  e x (c1 (cos x  −  j sin x) +  c2  (cos x  +  j sin x) )   
 
⇒ yC  =  e x (c3 cos x  +  c4  sin x )  
 
 
 
 
 
In general, when the roots of the auxiliary equation are a complex conjugate pair of 
values,  λ  =  a ± bj ,   then the complementary function is  
 

( ) ( ) ( )1 2 3 4cos sinC
jbx jbxax axy x e c e c e e c bx c bx−= + = +  

(where the arbitrary constants are related by  c3  =  c1  +  c2  and   c4  =  j (c2  −  c1) ) 
or 

yC(x)  =  A eax cos(bx − δ) 

2 2 3 4
3 4 2 2 2 2

3 4 3 4

where , cos and sinc cA c c
c c c c

δ δ
⎛ ⎞−⎜ ⎟= + = =
⎜ ⎟+ +⎝ ⎠

 

or    
yC(x)  =  A eax sin(bx − δ) 

2 2 3 4
3 4 2 2 2 2

3 4 3 4

where , sin and cosc cA c c
c c c c

δ δ
⎛ ⎞
⎜ ⎟= + = =
⎜ ⎟+ +⎝ ⎠

 

 
Note that, for an auxiliary equation of this type, with real coefficients, where the solution 
is constrained to be real, the arbitrary constants c3  and c4  are both real, but c1  and c2  
often are not.   For this reason, the forms involving the trigonometric functions are 
usually preferred. 
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Example 4.1.3    
 
A spring, that is not at its natural length, experiences a restoring force  R  that is 
proportional to the extension  s  beyond the natural length and is directed towards the 
equilibrium position.   In the absence of friction, this would lead to undamped simple 
harmonic motion.   Let us suppose that there is also a friction force  D  that is 
proportional to the speed and acts in the opposite direction to the velocity. 
 

 
Restoring force proportional to displacement   ⇒   
 
 R  =  −c s  
 
Friction (drag) proportional to speed  ⇒  
 
 D  =  −b v  
 
Newton’s second law of motion: 
 

 ( )d dF mv m
dt dt

= =
v  

 
Therefore the ODE governing the motion of the spring is  
 

 dvm cs
dt

= − − bv  

 

But dsv
dt

= ⇒  

 

 
2

2

d s dsm cs
dt dt

= − − b  

Therefore 

0b cs s s
m m

′′ ′+ + =  
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Example 4.1.3   (continued) 
 
Suppose that  m = 1 kg, b = 6 kg s−1 , c = 25 kg s−2  and that the spring begins at its 
equilibrium position, but moving at 2 m s−1 to the right, so that s(0) = 0 and v(0) = 2, then 
the ODE becomes 
 
 s"  +  6s'  +  25s  =  0 
 
A.E.: λ 2  +  6λ  +  25  =  0 
 

6 36 100 3 4
2

jλ − ± −
= = − ±  

        OR   
C.F.: yC  =  s  =  A e−3t sin(4t − δ)      s  =  e−3t (c cos 4t + d sin 4t) 
 
which is damped harmonic motion.    Initial conditions: 
 
Speed:         s(0)  =  0     ⇒   0  =  c 
 
v(t)  =  s'(t)  =  A e−3t (4 cos(4t − δ)   −  3 sin(4t − δ) )   s  =  d e−3t sin 4t 
 
Initial conditions:       v = d e−3t (–3 sin 4t + 4 cos 4t) 
 
s(0)  =  0     ⇒   0  =  A sin(− δ)     v(0)  =  2     ⇒     
 
v(0)  =  2     ⇒   2  =  A (4 cos(− δ)   −  3 sin(− δ) )  2  =  4d   1

2d⇒ =  
 

( )0 or ,n nδ δ π⇒ = = ∈]  
 

2 1
4 2and A = =  

 
The complete solution, in its simplest form, is  
 

( ) 31
2 sin 4ts t e t−=  

 
 
 
Note that if  b = 0  (no friction at all), then the system is totally undamped and exhibits 
simple harmonic motion: 

s(t)  =  A sin (kt − δ) 

.where
m
ck =
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The General Spring Problem 
 

2

2 0d s b ds c s
dt m dt m

+ + =  

Case 1:  
2

4b c
m m

⎛ ⎞ ⎛ ⎞<⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
λ  =  complex conjugate pair 
 
→ damped oscillations. 
 
s(t)  =  A e−at sin(kt − δ) ,   where  
 

21 4,
2 2

b ca k
m m
− ⎛ ⎞= = − ⎜ ⎟

⎝ ⎠
b
m

 

 
This is the under-damped case. 
 
 

Case 2:  
2

4b c
m m

⎛ ⎞ ⎛ ⎞>⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
λ  =  distinct real negative pair 
 

( ) 1 2 , where
t t

s t A e B e
λ λ− −

= +

            or 

 
2

1 2
1 4,

2 2
b b
m m

λ λ ⎛ ⎞= ± −⎜ ⎟
⎝ ⎠

c
m

 

 
This is the over-damped case. 
 
 

Case 3:  
2

4b c
m m

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
λ  =  real negative equal roots 
 
This is the critically damped case.   
[The graphs are similar to those for the over-damped case.] 

The solution is  ( ) ( ) , where
2

t bs t At B e
m

λ λ−= + = .   
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Complementary Function when the Auxiliary Equation has Equal Roots  
 
λ 1  =  λ 2 (=  λ)     ⇒   the ODE becomes 
 
 y"  −  2λ y'  +  λ 2 y  =  0 
 
One solution to this equation is  C1 e

λx   
 
We require another solution that is independent of this one (so that there will be two 
distinct arbitrary constants of integration in the complementary function). 
 
Try   f (x)  =  C2 x eλx    
 
[This second form arises naturally from the operator method, on page 4.08.] 
 
Then f '(x)  =  C2 (λ x + 1) eλx    
 
and f "(x)  =  C2 (λ 2 x + λ + λ  + 0) eλx    
 
⇒ f "(x)  −  2λ f '(x)  +  λ 2 f (x)  =   
 
 C2 (λ 2 x + 2λ − 2λ 2 x − 2λ  + λ 2 x) eλx  =  0 
 
Therefore  f (x)  =  C2 x eλx  is another solution to the homogeneous ODE. 
 
Therefore the C.F. is  
 

( ) ( )C 1 2
xy x C C x eλ= +  

 
Example 4.1.4   
 
Solve  

y"  −  6y'  +  9y  =  0 
 
A.E.: λ 2  −  6λ  +  9  =  0 
 
⇒ (λ − 3)2  =  0     ⇒   λ  =  3, 3 
 
Therefore y  =  yC  =  (Ax + B) e3x   
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The Operator Method  
 
The homogeneous ordinary differential equation with constant coefficients,    

02

2

=++ yQ
dx
dyP

dx
yd  

can also be written, using differential operators, in the form  

021 =⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ + yk

dx
dk

dx
d  

Justification:  
 

1 2 1
d d d dyk k y k k
dx dx dx dx

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛+ + = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

2 y ⎞⎟
⎠

 

 
2

2 1 12

d y dy dyk k k
dx dx dx

⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

2k y  

 

( )
2

1 2 1 22 0d y dyk k k k y
dx dx

= + + + =  

 
⇒     k1 + k2  =  P  and   k1 k2  =  Q .     
 
⇒  −k1  and  −k2   are the solutions to the auxiliary equation  λ 2  +  P λ  +  Q  =  0. 
 
 
 
The second order ODE can therefore be re-written as a linked pair of first order linear 
ordinary differential equations [the method of reduction of order]: 

01 =θ⎟
⎠
⎞

⎜
⎝
⎛ + k

dx
d ,   (A) 

where   

yk
dx
dy

2+=θ  .   (B) 

Solution: 
 
(A) is linear 
 

1 0

P

k

R

θ θ
↑

′ =
↑

+   

1 11h P dx k dx k= = =∫ ∫ x  
 

1k xhe e=  
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Operator Method (continued)  
 

0 0he R dx dx= =∫ ∫  
 

( ) ( ) ( ) 1
1 10k x k xh hx e e R dx C e C C eθ − −−⇒ = + = + =∫  

 
OR  
 
(A) is separable 
 

1 1
d dk k
dx

dxθ θθ
θ

= − ⇒ = −∫ ∫  

 
1ln k x Cθ⇒ = − +  

 

( ) 1
1 1k x C k x k xCx e e e C eθ − + − −⇒ = = = 1

x

 
 
Feed the solution from ODE (A) into ODE (B): 
 

2 1
1k xy k y C e

P R
↑

−′ + = ��	�
  

 

2 21h P dx k dx k= = =∫ ∫  
 

2k xhe e=  
 

( ) ( )
1 1

2 12 1 k k xk x k xhe R dx e C e dx C e dx−−= =∫ ∫ ∫  

 
There are two cases to consider: 
 

( )
( )

( )

2 1
2 1

1

2 1

2 1k k x

h

e k k
k k

e R dx C
x k k

−⎧
⎪ ≠

−⎪
⎪= × ⎨
⎪ =⎪
⎪
⎩

∫  
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Operator Method (continued)  
 
k2  ≠  k1 :   

( )
( )

1
2

2 1

2 1
2 1

k k x
k x k x k xC ey x e C A e B e

k k

−
− −⎛ ⎞

⎜ ⎟= + = +
⎜ ⎟−
⎝ ⎠

2−  

 
k2  =  k1 (= k) :  
 

( ) ( ) ( )1 2
2k x k xy x e C x C Ax B e− −= + = +  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Summary for the Complementary Function: 
 
ODE:  y"  +  P y'  +  Q y  =  0  
 
A.E.:  λ 2  +  P λ  +  Q  =  0  
 

λ  real and distinct      C
1 2x x

y A e B e
λ λ

⇒ = +   
 
λ  real and equal     ( )C

xy Ax B eλ⇒ = +   
 
λ  complex conjugate pair  

( ) ( ) ( )C cos sin , where Re , Imaxy e C bx D bx a bλ λ⇒ = + = =  
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4.2 Particular Solution (Undetermined Coefficients) 
 
The general solution to  

( )xRyQ
dx
dyP

dx
yd

=++2

2

 

is the sum of the complementary function and any one solution (the particular solution) 
that we can find to the original inhomogeneous ODE. 
 
If the function  R(x)  does not contain any part of the complementary function, then 
assume that the particular solution  yP(x)  is of the same form as  R(x). 
 
Example 4.2.1    
 
Find the general solution of the ODE    y"  +  2y'  −  3y  =  x2  +  e2x  . 
 
A.E.: λ 2  +  2λ  −  3  =  0 
 
⇒ (λ + 3) (λ − 1)  =  0    ⇒   λ  =  −3, 1 
 
C.F.: yC  =  A e−3x  +  B ex  
 
P.S.: R(x)  contains neither e−3x nor ex . 
 
R(x)  is the sum of a quadratic function and e2x . 
 
Therefore try the sum of a quadratic function and a multiple of e2x , 
where all four coefficients are to be determined. 
 
 yP  =  a x2  +  b x  +  c  +  d e2x   
 
⇒ yP' =             2a x+  b +  2d e2x   
 
⇒ yP" =                      2a+  4d e2x   
 
⇒ yP"  +  2 yP'   −  3 yP   =    
 

2

2

2

2

2

2

2 4

4 2 4

3 3 3 3

1 0 0 1

x

x

x

x

a d e

a x b d e

a x b x c d e

x x

+

+ + +

+ − − − −

= + + + e
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Example 4.2.1   (continued) 
 
Matching coefficients: 
 

2 1
3: 3 1x a a− = ⇒ = −  

 
( )1 1 4

3 9: 4 3 0x b− − = ⇒ = −b  

 

( ) ( )0 1 4
3 9

2 3 4: 2 2 3 0
3 9

x c c +⎛ ⎞− + − − = ⇒ = − = −⎜ ⎟
⎝ ⎠

14
27  

( )2 1
5: 4 4 3 1xe d+ − = ⇒ =d  

 
G.S.: y(x)  =  yC(x)  +  yP(x)   
 
Therefore  

( ) ( )23 21 1
5 27 9 12 14x x xy x A e B e e x x−= + + − + +  

 
 
General Method:   
 
The general solution to  

( )xRyQ
dx
dyP

dx
yd

=++2

2

 

is the sum of the complementary function and any one solution (the particular solution) 
that we can find to the original inhomogeneous ODE. 
 
If the function  R(x)  does not contain any part of the complementary function, then 
assume that the particular solution  yP(x)  is of the same form as  R(x). 
 
If  R(x) = ekx ,  
  then try   yP = c ekx , with  c  to be determined.  
 
If  R(x) = (a polynomial of degree n),  
  then try yP = (a polynomial of degree n), with all (n + 1) coefficients to be determined. 
 
If  R(x) = (a multiple of  cos kx  and/or  sin kx),  
  then try yP = c cos kx + d sin kx   , with  c  and  d  to be determined.  
 
This method can be extended to cases where  
R(x) =  (a sum and/or product of the functions above). 
 
But: if part (or all) of yP is included in the C.F., then multiply yP by  x. 
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Example 4.2.2  
 
Consider a model of the simple series RLC 
circuit, where the constants  R, L, C  are the 
resistance, inductance and capacitance 
respectively,  E(t)  is the applied electromotive 
force,  t is the time and  I(t)  is the resulting 
current. 
 
Examine the voltage drops around the circuit: 
 

:R RI  
 

:L dIL
dt

 

 

:C Q
C

    and note that .dQI
dt

=  

 
dI QL R I
dt C

⇒ + + = E  

 
2

2

1 1d I R dI dEI
dt L dt LC L dt

⇒ + + =  

 
A.E.:  

2 1 0R
L LC

λ λ+ + =  

 
21 4

2
R R
L L L

λ
⎛ ⎞⎛ ⎞⎜ ⎟⇒ = − ± −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠C

 

 
2 4Let , then

2 2
L RD R j

C L
λ −⎛ ⎞= − − = ±⎜ ⎟

⎝ ⎠
D
L

 

[Note that the numerical value of the capacitance C is usually so minute that it is safe to 
assume that  D > 0.] 
 
C.F.: 

/(2 ) sin cos
2 2C

Rt L D t D ty e A B
L L

− ⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
 

which is the transient term. 
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Example 4.2.2  (continued) 
 
Particular solution 
 
If   E(t)  =  Eo  (constant), then  
 
I (t)  =  yC  +  0   ( )lim 0

t
I t

→∞
⇒ =

 
Suppose that the e.m.f. is sinusoidal, so that   E(t)  =  Eo sin ωt , then 
 

o cos1 E tdE
L dt L

ω ω
=  

 
P.S.: Try 
 yP  =  a sin ωt  +  b cos ωt   
 
⇒ yP' =  −bω sin ωt  +  aω cos ωt    
 
⇒ yP" =  −aω2 sin ωt  −  bω2 cos ωt  
 

P P P

2 2

o

1

sin cos

0 sin cos

Ry y y
L LC

b R a a R ba t b
L LC L LC

Et t
L

ω ω tω ω ω

ωω ω

′′ ′⇒ + + =

⎛ ⎞ ⎛− − + + − + +⎜ ⎟ ⎜
⎝ ⎠ ⎝

= +

ω⎞
⎟
⎠

 

 

( )2 21b R a aa b
L LC RC

LCω ω ω
ω

⇒ = − ⇒ = −  

( )2 2 o11 Ea R a LC
L RC LC L

ωω ω ω
ω
⎛ ⎞⎛ ⎞⇒ + − − + =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

( ) ( )22
o

1a LCa R RC C E
RC LC RC LC L

ωω ω ω
ω ω

⎛ ⎞−⎜ ⎟⇒ +
⎜ ⎟
⎝ ⎠

=  

( ) ( )
( )

( ) ( )
oo

2 22 22 21 1

E C RCE RC LCa
L RC LC RC L

ω ωω ω

ω ω ω ω
⇒ = × =

+ − + − C
 

( )
( ) ( )

( )
( ) ( )

22
oo

2 22 22 2

11

1 1

E C LCE C RCLCb
RC RC LC RC L

ω ωω ωω
ω ω ω ω ω

−−
⇒ = × =

+ − + − C
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Example 4.2.2  (continued) 
 
Therefore the particular solution is  

( ) ( )( )
( ) ( )

2
o

P 22 2

sin 1 cos

1

E C RC t LC t
y

RC LC

ω ω ω ω

ω ω

+ −
⇒ =

+ −

ω
 

which is a steady-state sinusoidal response to the sinusoidal electromotive force, but with 

a phase difference of 
( ) ( )22 2

arccos
1

RC

RC LC

ωδ
ω ω

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟+ −⎝ ⎠

. 

The total current is then  

( ) ( ) ( )( )
( ) ( ) �������� 
�������� 	������� 
������ 	�

D

statesteady
1

cos1sin

transient

2
cos

2
sin 222

2
2

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ω−+ω

ωω−+ωωω
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−

LCRC
tLCtRCCEt

L
DBt

L
DAetI L

Rt

 
As a specific example, if  E(t)  =  17 sin 2t,  R  =  120 Ω,  C  =  1 mF  and  L  =  10 H, 
then it can be shown that  

( ) ( ) ( )6 1sin 8 cos8 sin 2 4cos 2
120

tI t e A t B t t−= + + + t  

The transient current, ( ) ( )C
6 sin8 cos8tI t e A t B t−= + , dies away very quickly.    

Its magnitude falls permanently to under 1% of the total current in less than a second. 
The values of the two arbitrary constants can be found from the initial conditions, but, 
given that the complementary function becomes negligible in a very short time, one often 
does not try to evaluate them.  
 
 
Example 4.2.3  
 
Find the complete solution of the ODE  

y"  +  2 y'  +  y  =  e−x    ,    y(0) = y' (0) = 1 
 
 
A.E.: λ 2  +  2 λ  +  1  =  0    ⇒    λ = −1, −1. 
 
C.F.: yC  =  (Ax + B) e−x . 
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Example 4.2.3   (continued)  
 
P.S.: Both  y =  e−x  and y =  x e−x  are included in the complementary function. 
 
Therefore try   yP =  a x2 e−x: 
 
y"P  +  2 y'P  +  yP   =  e−x    ⇒ 
 
 ((2a − 4ax + a x2) + (4ax − 2a x2) + (a x2) e−x  =  1 e−x 

 
⇒   ((a − 2a + a) x2 + (− 4a + 4a) x + (2a) e−x  =  1 e−x   
 
⇒   a  =  1/2 
 
G.S.:  

( ) ( )21
2

xy x x Ax B e−= + +  
 
Now impose the initial conditions on this general solution: 
 
y(0)  =  (0  +  0  +  B) e0  =  1    ⇒   B  =  1 
 
y' (x)  =  (x + A − ½x2 − Ax − B) e−x 
 
⇒    y' (0)  =  (0 + A − 0 − 0 − 1) e0  =  1    ⇒   A − 1  =  1    ⇒   A = 2 
 
Therefore the complete solution is 

( ) ( )21
2 2 1 xy x x x e−= + +  

 
 
 
 
 
 
 
 
 
 
Note that a complete solution requires additional information (often in the form of 
initial conditions).   Two pieces of information are needed in order to evaluate both 
arbitrary constants of integration.   However, do not substitute these conditions into the 
complementary function; wait until the general solution has been obtained. 
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4.3 Particular Solution (Variation of Parameters)   
 
The method of variation of parameters is a more general method for finding the particular 
solution.   It is successful even in some cases where the method of undetermined 
coefficients fails.   However, where both methods are available, the method of 
undetermined coefficients is generally faster to use. 
 
If the complementary function for the ODE  

( )xRyQ
dx
dyP

dx
yd

=++2

2

 

is   yC(x)  =  C1 y1(x)  +  C2  y2(x) ,  
then the particular solution is  

yP(x)  =  u(x) y1(x)  +   v(x) y2(x) , 
where the functions  u(x) and v(x)  need to be determined. 
 
We need two constraints in order to pin down the functional forms of  u(x) and v(x). 
One constraint is that  u(x) y1(x)  +   v(x) y2(x)  be a particular solution of the ODE. 
We have considerable freedom as to what the other constraint will be. 
 
 yP  =  u y1  +   v y2    
 
⇒ y'P  =  u' y1  +   u y'1  +   v' y2  +   v y'2    
 
Impose our “free” constraint,   u' y1   +   v' y2   =  0, then 
 
  y'P  =  u y'1  +   v y'2    
 
⇒ y"P  =  u' y'1   +    u y"1  +   v' y'2  +   v y"2    
 
⇒ y"P  +  P y'P  +  Q yP  =   
 
 u (y"1  +  P y'1  +  Q y1)  +  v(y"2  +  P y'2  +  Q y2)  +  u' y'1  +   v' y'2  =  R(x)  
 
But y1(x)  and   y2(x)   are both solutions to  y" +  P y'  +  Q y  =  0 
 
Constraint (2) then  resolves to 
 
 u' y'1  +   v' y'2  =  R(x)  
 
The pair of constraints leads to the matrix equation 
 

  1 2

1 2

0y y u
y y v R

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′ ′⎣ ⎦ ⎣ ⎦⎣ ⎦
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Define the Wronskian function  W(x)  to be 
 

 ( )
1 2

1 2

1 2
, dety y

y y
W x

y y
⎡ ⎤

= ⎢ ⎥′ ′⎣ ⎦
 

 
together with the associated determinants 

  2 1
1 2 2

2 1

0 0
det and det

y y
W y R W

R y y R
⎡ ⎤ ⎡ ⎤

= = − = =⎢ ⎥ ⎢ ⎥′ ′⎣ ⎦ ⎣ ⎦
1y R+

 
then Cramer’s rule yields solutions for  u' and v' : 
 

 1 2and .W Wu v
W W

′ ′= =  

Therefore a particular solution is   yP  =  u y1  +   v y2 , where 
 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
21

2112 ,,
yy
yy

xWdx
xW

xRxyxvdx
xW

xRxyxu
′′

=+=−= ∫∫  

 
Note that we can ignore the arbitrary constants of integration in both integrals, because 
A y1  and  B y2  are both solutions of the homogeneous ODE and can therefore be 
absorbed into the complementary function. 
 
Example 4.3.1   (identical to Example 4.2.1)  
 
Find the general solution of the ODE    y"  +  2y'  −  3y  =  x2  +  e2x  . 
 
A.E.: λ 2  +  2λ  −  3  =  0 
 
⇒ (λ + 3) (λ − 1)  =  0    ⇒   λ  =  −3, 1 
 
 y1  =  e−3x  ,     y2  =  ex  ,   R  =   x2  +  e2x  
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Example 4.3.1   (continued)  
 
Particular Solution by Variation of Parameters: 
   

( ) 1 2

1 2

3
2

3
det det 4

3

x x
x

x x
y y e e

W x e
y y e e

−
−

−

⎡ ⎤⎡ ⎤
= = =⎢ ⎥⎢ ⎥′ ′ ⎢ ⎥⎣ ⎦ −⎣ ⎦

 

 

( )2
1 2

2

2 20
det x xy

W y R e
R y

⎡ ⎤
= = − = −⎢ ⎥′⎣ ⎦

x e+  

( )
1

2 23 3 5

2 44

x x x x

x

x e eW xu
W e−

− + ⎛ ⎞+′⇒ = = = −⎜ ⎟⎜ ⎟
⎝ ⎠

e e  

 
D  I   

( )2 3 51
4

x xu x e e⇒ = − +∫ dx  

 
 
 
 
 
 

( )2
3

51 19 6 2
4 27 5

x
xeu x x

⎛ ⎞
⇒ = − − + +⎜ ⎟⎜ ⎟

⎝ ⎠

x2  e3x 
 +  

2x  31
3

xe  

 −  

2  31
9

xe  

 +  

0  31
27

xe  e  

 
 

( )1 2
2 1

1

3 20
det x xy

W y R e
y R

−⎡ ⎤
= = + =⎢ ⎥′⎣ ⎦

x e+  

 

2
2 23

2 44

x x x

x
W xx e e x e ev
W e

− − −

−
+ +′⇒ = = =  D  I  

( )21
4

x xv x e e−⇒ = +∫ dx  

 
 

( )( )21 2 2
4

x xv e x x e−⇒ = − − − +  

x2  e−x 
 +  

2x  −e−x 
 −  

2  +e−x 
 +  

0  −e−x 
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Example 4.3.1   (continued)  
 

P 1 2y u y v y= ⋅ + ⋅ =  
 

( ) ( )( )2 5 2
3

31 1 279 6 2 2 2
4 27 5 27

x
x

x x xe xx x e e e x x e− −⎧⎛ ⎞⎪ − − + − + − + + +⎜ ⎟⎨⎜ ⎟⎪⎝ ⎠⎩
e
⎫⎪
⎬
⎪⎭

 

 
 

( )2 2 21 1 19 6 2 27 54 54 1
4 27 5

xx x x x e⎧ ⎛ ⎞= − + − − − − + − +⎨ ⎜ ⎟
⎝ ⎠⎩

⎫
⎬
⎭

 

 

( )2 21 1 436 48 56
4 27 5

xx x e⎧ ⎫= − − − +⎨ ⎬
⎩ ⎭

 

 
Therefore  
 

( )2
P

21 1 9 12 14
5 27

xy e x x= − + +  

 
and the general solution is 
 

( ) ( )23 21 1 9 12 14
5 27

x x xy x A e B e e x x−= + + − + +  
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Example 4.3.2     
 
Here is a case that cannot be solved by the method of undetermined coefficients:  
 

y" + y  =  tan x 
 
R(x) = tan x  is not one of the standard forms. 
 
A.E.: λ 2  +  1  =  0 
 
⇒ λ  =  ± j   
 
C.F.:  
    N NC

1 2

sin cosy A x B
y y

= + x

 
Let s = sin x  and  c = cos x   
 
then y1  =  s  ,    y2  =  c  ,    y'1  =  c  ,    y'2  =  −s   
 

1 2 2 2

1 2

1
y y s c

W s
y y c s

⇒ = = = − − =
′ ′ −

c −  

 

tan sR x
c

= =  

 
2

1 2
2

0 y sW y R c
R y c

⎛ ⎞= = − = − =⎜ ⎟′ ⎝ ⎠
s−     

 
1

1
W su s
W

−′⇒ = = = +
−

 

 
u s dx⇒ = = −∫ c  

 
2

1
2 1

1

0y s sW y R s
y R c c

⎛ ⎞= = + = =⎜ ⎟′ ⎝ ⎠
    

 
( )22

2
1

cos sec
cW sv x

W c c
− −

′⇒ = = = = −
−

x  

 
( )cos sec sin ln sec tanv x x dx x x⇒ = − = − +∫ x  
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Example 4.3.2    (continued)  
 

( )P 1 2 ln sec tan

ln sec tan

y u y v y cs s x x c

c x x

∴ = ⋅ + ⋅ = − + − + ⋅

= − +
 

[which is clearly of a different form from  R(x). 
It is not a simple linear combination of any trigonometric functions.] 
 
y  =  yC  +  yP   
 
General solution:  

( ) ( )sin cos ln sec tany x A x x B x x= + − +  

 
 
 
 
 
 
 
 
 
 
 
Example 4.3.3     
 
Use the variation of parameters method to find the particular solution, then find the 
general solution of the ODE 
 

y"  −  2y'  +  y  =  ex 
 
A.E.: λ 2  −  2λ  +  1  =  0 
 
⇒ (λ − 1)2  =  0     ⇒   λ = 1, 1 
 
C.F.: yC  =  (Ax + B) ex  
 
P.S.: 

( ) ( )( )1 2

1 2

2 21
1

x x
x x

x x
y y x e e

W x x
y y x e e

= = = − + =
′ ′ +

e e−  



ENGI 2422 Second Order ODEs – Variation of Parameters Page 4-23 

Example 4.3.3    (continued)  
 

2
1 2

2

20 x x xy
W y R e e

R y
= = − = − = −

′
e     

1
2

2 1
x

x
W eu u
W e

−′⇒ = = = + ⇒ =
−

x  

 
1

2 1
1

20 x x xy
W y R x e e

y R
= = + = =

′
x e  

 
2

2
2

2 2

x

x
W x e xv x
W e

′⇒ = = = − ⇒ = −
−

v  

 
P 1 2y u y v y= ⋅ + ⋅ =  

 

( )
2

21
2 2

x x xxx x e e x e
⎛ ⎞

+ − =⎜ ⎟
⎝ ⎠

 

 
G.S.: 
 

( ) ( )21
2

xy x x Ax B e= + +  

 
 
 
 
 
 
 
 
 
 
 
 
Note: 
Using the method of undetermined coefficients,  
 
R(x)  =  ex ,  but  ex  and  x ex  are both in the complementary function. 
 
Therefore the trial function for the particular solution is   yP  =  c x2 ex . 
Upon substituting this into the ODE, we find  c  =  1/2 . 



ENGI 2422 Second Order ODEs – Variation of Parameters Page 4-24 

 
Modified Method of Undetermined Coefficients  
 
If part of the complementary function,  y1, is included in the function  R(x), then try  
yP  =  f (x) y1  as a particular solution.   Substitute into the ODE and solve for f (x). 
 
Example 4.3.3 (again)  
 
y"  −  2y'  +  y  =  ex 
 
yC  =  (Ax + B) ex  
 
Try yP  =  f (x) ex  
 
⇒ y'P  =  (f '  +  f ) ex  
 
⇒ y"P  =  (f " +  2f '  +  f ) ex  
 
⇒ y"P  −  2 y'P  +  y'P  =  (f " +  2 f '  +  f   −  2 f '  −  2 f  +  f ) ex  =   ex  
 
⇒ f "(x)  =  1 
 
⇒ f '(x)  =  x   
 

2
P

1
2

xy x e⇒ =  
 
The general solution then follows,  
  

( ) ( )21
2

xy x x Ax B e= + +  

 
 
Check on the general solution:  
 
( ) ( ) ( )( )21

2
xy x x Ax B x A e′ = + + + +  

( ) ( ) ( )( )21
2 1 xy x x Ax B x A x A e′′ = + + + + + + +  

 

( )( ) ( ) ( )( ) ( ) ( )( ){ }
( ) ( )

21 1 1
2 2 2

2

2 2 2 1 2 1 2

0 0 1

x

x

y y y

x A A A x A B A B B e

e R x

′′ ′⇒ − + =

− + + − + + + + + − + +

= + + =

+  
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4.4 Higher Order Linear Ordinary Differential Equations  
 
The nth order ordinary differential equation  

( )xRya
dx
dya

dx
yda

dx
yda

dx
yda

dx
yd

nnnn

n

n

n

n

n

=++++++ −−−

−

−

−

12

2

22

2

21

1

1 "  

can be solved as follows. 
 
Form the auxiliary equation  
 λn  +  a1λn−1 + ... +  an−2λ2 +   an−1λ1 + an  =  0 
Find all n values for  λ. 
 
Form the complementary function  yC, which will be a linear combination of   

{ }1 2, , , nx x xe e e
λ λ λ…  (except for repeated roots).    

Complex conjugate pairs can be re-written in terms of sine and cosine functions. 
 
Find a particular solution yP (by inspection, undetermined coefficients, or variation of 
parameters, as extended to this higher order equation). 
 
Write down the general solution   y  =  yC  +  yP. 
n  initial and/or boundary conditions will be needed at this stage to evaluate all of the n 
arbitrary constants of integration. 
 
Example 4.4.1   Find the general solution of 

 x
dx
dy

dx
yd

dx
yd

dx
yd

dx
yd 84432 2

2

3

3

4

4

5

5

=+−−+  

 
Auxiliary equation:  
 
 λ 5 + 2λ 4 − 3λ 3 − 4λ 2 + 4λ  =  0 
 
⇒ λ (λ 4 + 2λ 3 − 3λ 2 − 4λ + 4)  =  0 
 
⇒ λ (λ − 1) (λ 3 + 3λ 2 − 4)  =  0 
 
⇒ λ (λ − 1)2 (λ 2 + 4λ + 4)  =  0 
 
⇒ λ (λ − 1)2 (λ + 2) 2  =  0 
 
⇒    λ  =  0, 1, 1, −2, −2. 
 
Complementary function: 
yC  =  A  +  (Bx + C) ex  +  (Dx + E) e−2x   
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Example 4.4.1  (continued)  
 
Particular solution:  
 
Cannot try   yP  =  ax + b  because a constant is included in the complementary function.  
 
Therefore try    yP  =  (ax + b) x  =  ax2 + bx 
 
⇒ y'P  =   2ax + b 
 
⇒ y"P  =   2a  
 
⇒ y'"P  =   y(4)

P  =   y(5)
P  =  0 

 
ODE    ⇒ 0  +  0  −  0  −  8a  +  8ax  +  4b  =  8x   
 
x1:             8a  =  8 
 
x0: −8a  +  4b  =  0 
 
⇒ a = 1 ,  b = 2 . 
 
Therefore the general solution is  
 

( ) ( ) ( ) 22 2x xy x A Bx C e Dx E e x x−= + + + + + +  

 
 
Five initial conditions would be sufficient to evaluate the arbitrary constants  A, B, C, D 
and E.  
 
 
 
Also available: 
Additional tutorial example of a second order ODE 
(at "http://www.engr.mun.ca/~ggeorge/2422/notes/c4tutorl2.html") 
 
 
 
 
 
 
[Cauchy-Euler ODEs will not be covered in this course.] 
 
 

END OF CHAPTER 4 

http://www.engr.mun.ca/%7Eggeorge/2422/notes/c4tutorl2.html

	4. Second Order Linear Ordinary Differential Equations  
	4.1 Complementary Function
	Example 4.1.1
	Example 4.1.2
	Example 4.1.3
	The General Spring Problem
	Equal Roots
	Example 4.1.4
	Operator Method

	4.2 Particular Solution (Undetermined Coefficients)
	Example 4.2.1
	General Method
	Example 4.2.2
	Example 4.2.3

	4.3 Particular Solution (Variation of Parameters)
	Example 4.3.1
	Example 4.3.2
	Example 4.3.3
	Modified Method of Undetermined Coefficients

	4.4 Higher Order Linear Ordinary Differential Equations
	Example 4.4.1

	Additional Web Links


