ENGI 3424
 Tutorial Example for Series

Find the interval of convergence I for the series

$$
\sum_{n=1}^{\infty} u_{n}=\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{4}{x-3}\right)^{n / 3}
$$

Note that this is not a standard Taylor series, unless one adopts the change of variables

$$
z=\left(\frac{4}{x-3}\right)^{1 / 3}
$$

Ratio test:

$$
\begin{aligned}
& \frac{u_{n+1}}{u_{n}}=\frac{1}{n+1}\left(\frac{4}{x-3}\right)^{\frac{n+1}{3}} \cdot \frac{n}{1}\left(\frac{4}{x-3}\right)^{-\frac{n}{3}}=\frac{n}{n+1}\left(\frac{4}{x-3}\right)^{\frac{1}{3}} \\
& \Rightarrow \lim _{n \rightarrow \infty}\left(\left|\frac{u_{n+1}}{u_{n}}\right|\right)=\left|\frac{4}{x-3}\right|_{n \rightarrow \infty}^{\frac{1}{3}} \lim _{n \rightarrow \infty}\left(\frac{1}{1+\frac{1}{n}}\right)=\left|\frac{4}{x-3}\right|^{\frac{1}{3}} \\
& \lim _{n \rightarrow \infty}\left(\left|\frac{u_{n+1}}{u_{n}}\right|\right)<1 \quad \text { if }\left(\frac{4}{|x-3|}\right)^{1 / 3}<1 \Rightarrow \frac{4}{|x-3|}<1 \Rightarrow|x-3|>4 \\
& \Rightarrow \quad x-3>4 \quad \text { or } \quad x-3<-4 \\
& \Rightarrow x>4+3=7 \quad \text { or } \quad x<-4+3=-1
\end{aligned}
$$

This series converges absolutely for $x<-1$ or $x>7$ and diverges for $-1<x<7$.
Checking the endpoints:
$x=-1 \Rightarrow u_{n}=\frac{1}{n}\left(\frac{4}{-1-3}\right)^{n / 3}=\frac{1}{n}(\sqrt[3]{-1})^{n}=\frac{(-1)^{n}}{n}$
At $x=-1$ we have the alternating harmonic series, which is conditionally convergent.
$x=7 \Rightarrow u_{n}=\frac{1}{n}\left(\frac{4}{7-3}\right)^{n / 3}=\frac{1}{n}(1)^{n}=\frac{1}{n}$
At $x=7$ we have the harmonic series, which is divergent.
Therefore the interval of convergence is

$$
I=(-\infty,-1] \cup(7, \infty)
$$

with conditional convergence at $x=-1$.

