
   

   

ENGI 3424 

Tutorial Example for Series 
 

Find the interval of convergence  I  for the series 
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Note that this is not a standard Taylor series, unless one adopts the change of variables 
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Ratio test:  
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3 4 or 3 4x x       

4 3 7 or 4 3 1x x          

This series converges absolutely for 1x     or  7x    and diverges for  1 7x   . 

 

Checking the endpoints:  
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At  x = –1 we have the alternating harmonic series, which is conditionally convergent. 
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At  x = 7 we have the harmonic series, which is divergent. 

 

Therefore the interval of convergence is 
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with conditional convergence at  x = –1.  


