1. Find the location (x, y, z) and nature (local minimum, local maximum or saddle point) of all critical points of the function

$$
f(x, y)=x^{3}-6 x y+3 y^{2}
$$

2 (a) Classify the conic section whose Cartesian equation is

$$
9 x^{2}+25 y^{2}=225
$$

(b) Find the eccentricity and find the location (where they exist) of the foci and vertices of this conic section.
(c) Sketch this conic section, showing the locations of the foci and vertices.
(d) This conic section is rotated about the x axis. Write down the equation of the resulting surface of revolution.
(e) The surface of revolution is also a quadric surface. Classify it.
3. Find the minimum value of the function $f(x, y)=x^{2}+y^{2}$ subject to the constraint $g(x, y)=x y=8$.
4. Find the interval of convergence for the power series

$$
f(x)=\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{\sqrt{n}}
$$

5. Find the Fourier sine series on the interval $0<x<2$ for the function

$$
\begin{equation*}
f(x)=2 x-x^{2} \tag{14}
\end{equation*}
$$

6. A T-bar of constant density has a cross section with the dimensions shown.

(a) Show that the centroid of the cross section is at $(\bar{x}, \bar{y})=\left(0, \frac{17}{3}\right)(\mathrm{cm})$
(b) Find the centroidal second moment of area I_{y} for this T-bar cross section.
7. A tank in the shape of a right circular cylinder of cross sectional radius R is lying on its curved side and is filled up to the half-way point with incompressible fluid of density ρ. Find the hydrostatic force on the semi-circular end wall due to the fluid (as a function of ρ, g and R). Use a plane polar coordinate system whose pole (origin) is at the centre of the circle.

