ENGI 3425 Mathematics for Civil Engineering I Practice Questions for the Mid Term Test

1. Evaluate the integral

$$I(x) = \int x^3 \ln(x^4) dx$$

2. A curve in the *x*-*y* plane is defined by the parametric equations

$$x = (t-1)^2$$
, $y = t(t-2)^2$

- (a) Find all values of t and the corresponding values of y at which x = 0.
- (b) Find all values of t and the corresponding values of x at which y = 0.
- (c) Find all values of t at which the tangent line to the curve is horizontal.
- (d) Show that the curve is concave up if and only if t > 1.
- (e) Sketch the curve. Label the coordinates of all axis intercepts on your sketch.
- 3. A thin cable is suspended by its ends from the points $(x, y) = (-1, \cosh 1)$ and $(x, y) = (+1, \cosh 1)$. It hangs under its own weight along the curve $y = \cosh x$.
 - (a) Find the length of the cable. Assume SI units.
 - (b) Find the area between the cable, the ground (at y=0), x=-1 and x=1.

4. Find the exact value of the sum *S* of the series

$$S = \sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$

- 5. The equation of a curve, in polar coordinates, is given by $r = 1 + 2\sin\theta$, $(-\pi < \theta \le \pi)$
 - (a) Show that r < 0 for $-\frac{5\pi}{6} < \theta < -\frac{\pi}{6}$.
 - (b) Sketch the curve. Show your work (either a preliminary Cartesian sketch or a table of values).
 - (c) Show that the total area enclosed by the outer loop (r > 0) of the curve is

$$A = \int_{-\pi/6}^{+\pi/2} (3 + 4\sin\theta - 2\cos 2\theta) d\theta$$

and find the exact value of this integral.

6. Find the exact value of the sum S of the series

$$S = 8 + 4 + 2 + 1 + \frac{1}{2} + \dots$$

7. Evaluate the integral

$$I = \int_0^1 x^3 \sinh 2x \, dx$$

You may leave your answer in terms of sinh 2 and cosh 2.

- 8. A curve *C* in \mathbb{R}^3 is defined parametrically by $\vec{\mathbf{r}} = 72t^2\hat{\mathbf{i}} - 21t^2\hat{\mathbf{j}} + 50t^3\hat{\mathbf{k}}$ (where the parameter *t* is any real number).
 - (a) Find the arc length L along the curve from the origin to the point (72, -21, 50).
 - (b) Show that the unit tangent vector is

$$\hat{\mathbf{T}} = \frac{+1}{25\sqrt{1+t^2}} \begin{bmatrix} 24\\ -7\\ 25t \end{bmatrix}$$
 when $t > 0$, but is $\hat{\mathbf{T}} = \frac{-1}{25\sqrt{1+t^2}} \begin{bmatrix} 24\\ -7\\ 25t \end{bmatrix}$ when $t < 0$.

- (c) What happens to the unit tangent $\hat{\mathbf{T}}$ as the curve passes through the origin?
- 9. A curve is defined by the polar equation

$$r = 2 - \cos \theta$$

- (a) Find the values of θ in the interval $0 \le \theta < 2\pi$ at which the tangent line is vertical.
- (b) Sketch this curve.
- 10. Find the Cartesian equation of the ellipse of eccentricity $e = \frac{12}{13}$ whose foci are at the points (±12, 0). Sketch the ellipse, showing the locations of the foci, centre, vertices, directrices and the ends of the minor axis.

11. Express the recurring decimal $1.\dot{63}$ as an exact fraction, reduced to its lowest terms.

- 12. A conic section has the Cartesian equation $4x + y^2 = 8$
 - (a) Classify this conic section.
 - (b) Sketch the conic section, identifying the location of its focus, vertex and directrix.
 - (c) Find the equation of the surface of revolution formed when the conic section is rotated around the *x*-axis.
 - (d) Classify the quadric surface formed by this surface of revolution.
 - (e) Find the volume enclosed by this surface of revolution and the y-z plane.
 - (f) Find the curved surface area of this surface of revolution to the right of the y-z plane.
- 13. Classify the following quadric surfaces:
 - (a) $x + 2y^2 + 3z^2 = 1$
 - (b) $x 2y^2 + 3z^2 = 1$
 - (c) $x + 2y^2 = 1$
 - (d) $2y^2 3z^2 = 1$
- 14. Find the sum of the series $S = \frac{4}{3 \times 1} + \frac{4}{4 \times 2} + \frac{4}{5 \times 3} + \frac{4}{6 \times 4} + \dots$

Return to the index of questions

On to the solutions