ENGI 3425 Mathematics for Civil Engineering 1 Problem Set 10 Questions

(Chapter 9 - Introduction to Ordinary Differential Equations)

1. Which of the following ordinary differential equations are linear?
(a) $x^{2} \frac{d^{4} y}{d x^{4}}-3 \frac{d^{3} y}{d x^{3}}+4 x \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+e^{x} y=e^{-3 x} \sin 4 x$
(b) $(y-3) \frac{d y}{d x}=x\left(3 y-y^{2}\right)$
(c) $2 \frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}$
(d) $\frac{d^{2} y}{d x^{2}}=\frac{x}{y}$
2. The location $x(t)$ of an object moving under the influence of a restoring force and friction only (such as a spring) is modelled by the initial value problem

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+26 x=0
$$

with the additional information that the object is released from rest at the location $x=10$.
Verify that $x(t)=2 e^{-t}(5 \cos 5 t+\sin 5 t)$ is the solution to this initial value problem.
3. Verify that $y(x)=\cos (2 x)-2 \cosh x$ is a solution to the fourth-order linear ordinary differential equation

$$
\frac{d^{4} y}{d x^{4}}+3 \frac{d^{2} y}{d x^{2}}-4 y=0
$$

4. Verify the following feature of a linear homogeneous [right side $=0$] second order ordinary differential equation: Given that $y(x)=u(x)$ and $y(x)=v(x)$ are both solutions of

$$
\frac{d^{2} y}{d x^{2}}+p(x) \frac{d y}{d x}+q(x) y=0
$$

show that $y(x)=A u(x)+B v(x)$ is also a solution for any values of the constants A, B.

This key feature distinguishes linear homogeneous ODEs from non-linear ODEs.
Any linear combination of solutions to a linear homogeneous ODE is also a solution of that ODE.
(Back to the index of questions
On to the solutions

