Arc Length, Surfaces of Revolution, Area

1. The position $\overrightarrow{\mathbf{r}}(t)(\mathrm{m})$ at any time $t(\mathrm{~s})$ of a particle travelling along a curve C is

$$
\overrightarrow{\mathbf{r}}(t)=6 t \hat{\mathbf{i}}+5 t^{2} \hat{\mathbf{j}}-8 t \hat{\mathbf{k}}
$$

(a) Find the velocity $\overrightarrow{\mathbf{v}}(t)$ and the speed $v(t)$. Hence find the unit tangent vector $\hat{\mathbf{T}}(t)$.
(b) Find the distance that the particle travels along the curve between the origin and the point $P(12,20,-16)$. You may quote the standard integral
$\int \sqrt{a^{2}+x^{2}} d x=\frac{1}{2}\left(x \sqrt{a^{2}+x^{2}}+a^{2} \ln \left(x+\sqrt{a^{2}+x^{2}}\right)\right)+C$
2. Find the length of the arc of the curve $r=\theta^{2}$ from the pole to the point $(r, \theta)=\left(\left(\frac{\pi}{2}\right)^{2}, \frac{\pi}{2}\right)$ and find the area swept out by this polar curve between these two points. Assume SI units.
3. Find the arc length along the curve defined parametrically by $\overrightarrow{\mathbf{r}}=\left(t^{3}+2\right) \hat{\mathbf{i}}+\left(3 t^{2}+1\right) \hat{\mathbf{j}}$ from the point where $t=0$ to the point where $t=2 \sqrt{3}$. Assume SI units.
4. For the curve C in the $x y$ plane whose Cartesian equation is

$$
y=3 \sqrt{1-\frac{x^{2}}{16}}
$$

(a) Classify and sketch the curve.
(b) Write down the equation of the surface of revolution formed by rotating this curve once around the x axis.
(c) Classify this surface of revolution; what type of quadric surface is it?
(d) Find and simplify (but do not evaluate) an integral expression for the total surface area of this surface of revolution.
(e) Find the volume enclosed by this surface of revolution.
(f) Use the parameterization $x=4 \cos t, \quad y=3 \sin t, \quad 0 \leq t \leq \pi$ to find the area between the curve $y=f(x)=3 \sqrt{1-\frac{x^{2}}{16}}$ and the x axis.
5. By rotating the circle $x^{2}+y^{2}=a^{2}$ about the x axis, verify the equation of a sphere of radius a and the formulae for its surface area and for the volume enclosed by it.

[^0]
[^0]: (Back to the index of questions

