ENGI 3425 Mathematics for Civil Engineering I Problem Set 5 Questions

(Sections 6.07 - 6.10 - Power Series, Binomial Series \& Fourier Series)

1. Find the radius R and interval I of convergence for the power series

$$
f(x)=\sum_{n=1}^{\infty} \frac{(2 x-6)^{n}}{\sqrt{n}}
$$

2. Find the radius R and interval I of convergence for the power series

$$
f(x)=\sum_{n=0}^{\infty} \frac{n(x-1)^{n}}{2^{n}}
$$

3. Integrate the geometric series $\sum_{n=0}^{\infty} x^{n}$ and its sum with respect to x in order to find the Maclaurin series for $f(x)=\ln (1-x)$ and its radius of convergence.
4. Find the binomial expansion of

$$
f(x)=\sqrt[3]{1+x^{3}}
$$

as far as the term in x^{11} and find its radius of convergence R.
5. Find the binomial expansion of

$$
f(x)=\frac{2 x}{\sqrt{4-9 x^{2}}}
$$

as far as the term in x^{7} and find its radius of convergence R.
6. Find the interval of convergence I for the series

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{n} \cdot\left(\frac{4}{x-3}\right)^{n / 3}
$$

7. Find the power series expansion for $\frac{x}{(1-x)^{2}}$

Hence evaluate $S=\sum_{n=1}^{\infty} \frac{n}{2^{n}}$ exactly.
8. Use the binomial series expansion for $(1-x)^{-3}$ to show that the Maclaurin series for $f(x)=\frac{x+x^{2}}{(1-x)^{3}}$ is $\sum_{n=1}^{\infty} n^{2} x^{n}$ and find its interval of convergence.
Hence evaluate $S=\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$ exactly.
9. Find the fifth partial sum $T_{5}(x)$ of the Taylor series for $f(x)=\sin x$ about a centre $x=\frac{\pi}{4}$ and find an upper bound to the error caused by replacing $\sin x$ by $T_{5}(x)$ for $0<x<\frac{\pi}{2}$.
10. Find the Maclaurin series expansion for $y=\tan x$ as far as the term in x^{4}.
11. Find the Maclaurin series for $f(x)=\ln (1+x)$ and find its interval of convergence.
12. Find the Fourier series for $f(x)=4-x^{2} \quad(-2 \leq x \leq 2)$
13. Find the Fourier sine series for $f(x)=x-x^{2} \quad(0 \leq x \leq 1)$
14. Find the Fourier cosine series for $f(x)=\left\{\begin{array}{cc}1-x & (0 \leq x<1) \\ 0 & (1 \leq x \leq 2)\end{array}\right.$.
(-) Back to the index of questions

