ENGI 3425 Mathematics for Civil Engineering I
 Problem Set 6 Questions

(Sections 7.1-7.4-Partial Derivatives, Differentials, Jacobian)

1. Find $\frac{\partial^{2} u}{\partial x^{2}}$ and $\frac{\partial^{2} u}{\partial z \partial t}$ for the function $u(x, y, z, t)$ defined by

$$
u^{2}=x^{2}+y^{2}+z^{2}-t^{2}
$$

2. Given $z=\sin (x-c t)$, find $\frac{\partial^{2} z}{\partial x^{2}}$ and $\frac{\partial^{2} z}{\partial t^{2}}$.

Hence show that z satisfies the partial differential equation (P.D.E.)

$$
\frac{\partial^{2} z}{\partial t^{2}}=c^{2} \frac{\partial^{2} z}{\partial x^{2}}
$$

This P.D.E. is called the wave equation.
3. A pyramid with a square base of side b and a vertical height h has a total exposed surface area of

$$
S=b \sqrt{4 h^{2}+b^{2}}
$$

and an enclosed volume of

$$
V=\frac{1}{3} b^{2} h
$$

(a) Find the rate and manner (increasing or decreasing) in which S and V are changing at the instant when $b=15 \mathrm{~m}, \quad h=10 \mathrm{~m}, \quad h$ is increasing at a rate of $2 \mathrm{~m} \mathrm{~s}^{-1}$ and b is decreasing at a rate of $1 \mathrm{~m} \mathrm{~s}^{-1}$.
(b) Use differentials to estimate the percentage change $(\Delta V / V) \times 100 \%$ in the enclosed volume when h increases by 3% and b decreases by 2%.
[Hint: Express $d V$ in terms of $d b$ and $d h$, then divide this equation by V in order to express the relative change $\Delta V / V(\approx d V / V)$ in terms of the relative changes $d b / b$ and $d h / h$.
(c) Show that the exact relative change in the volume of the pyramid, when the base b decreases by 2% and the height h increases by 3%, is a decrease of 1.0788%.
[Hint: Evaluate $100 \% \times \frac{V(b+\Delta b, h+\Delta h)-V(b, h)}{V(b, h)}$.]
4. The displacement of a uniform beam of length L in a vertical plane is represented by the dependent variable u. For any distance x from one end of the beam and at any time t, the displacement function is

$$
u(x, t)=(3 \cos \beta x+5 \cosh \beta x) \sin \beta^{2} c t
$$

(where β and c are constants).
(a) Verify that this function satisfies the fourth order partial differential equation

$$
\frac{\partial^{2} u}{\partial t^{2}}+c^{2} \frac{\partial^{4} u}{\partial x^{4}}=0
$$

(b) In part (a), what must the dimensions ($\mathrm{kg}-\mathrm{m}-\mathrm{s}$) of the constant c be in order for the P.D.E. to be dimensionally consistent?
5. Find the Jacobian of the transformation from the (x, y) to the (r, s) system, where

$$
x^{2}+y^{2}+s^{2}+r^{4}=1 \quad \text { and } \quad x+2 y-4 r+3 s^{2}=7
$$

6. Find the Jacobian of the transformation from the (x, y, z) to the (r, s, t) system, where

$$
x=r s \cos t, \quad y=r s \sin t \quad \text { and } \quad z=\frac{1}{2}\left(r^{2}-s^{2}\right)
$$

7. Find $\frac{\partial x}{\partial w}$ when $x=x(z, w)$ and $y=y(z, w)$ are defined implicitly by

$$
x^{3}+y+z^{2}+w^{-2}=1 \quad x^{2}+2 y-4 z^{-1}+3 w^{2}=7
$$

8. The function $s(t)$ is the distance between two moving particles A at $\left(x_{1}(t), y_{1}(t)\right)$ and B at $\left(x_{2}(t), y_{2}(t)\right)$ in \mathbb{R}^{2}.
(a) Use the chain rule to deduce that the rate at which the two points are separating from each other is

$$
\frac{d s}{d t}=\frac{1}{s}\left(\left(x_{2}-x_{1}\right)\left(\frac{d x_{2}}{d t}-\frac{d x_{1}}{d t}\right)+\left(y_{2}-y_{1}\right)\left(\frac{d y_{2}}{d t}-\frac{d y_{1}}{d t}\right)\right)
$$

(b) Particle A is moving east, parallel to the x-axis with constant speed $2 \mathrm{~m} \mathrm{~s}^{-1}$.

Particle B is moving north-east, parallel to the line $y=x$ with constant speed $\sqrt{2} \mathrm{~ms}^{-1}$. Find the rate at which the two particles are separating when A is at $(1,3)$ and B is at $(4,-1)$.
9. The lengths of the sides of a square are quoted to be $(5.2 \pm 0.1) \mathrm{cm}$.

The height of a prism with this square cross section is quoted to be $(10.1 \pm 0.1) \mathrm{cm}$.
Use differentials to estimate the maximum relative error in the calculation of the volume V of the prism. Hence estimate the maximum absolute error in V.
10. Find $\frac{\partial u}{\partial y}$ (in terms of x, y and z only), where

$$
u=e^{\left(s^{3}\right)}+\ln \left(r s^{2}\right), \quad r=x^{2}+y^{3}+z^{4}, \quad s=x^{2} \cos z
$$

[^0]
[^0]: (3) Back to the index of questions

