ENGI 3425 Mathematics for Civil Engineering I Problem Set 6 Questions

(Sections 7.1 - 7.4 – Partial Derivatives, Differentials, Jacobian)

1. Find
$$\frac{\partial^2 u}{\partial x^2}$$
 and $\frac{\partial^2 u}{\partial z \,\partial t}$ for the function $u(x, y, z, t)$ defined by
 $u^2 = x^2 + y^2 + z^2 - t^2$

2. Given
$$z = \sin(x - ct)$$
, find $\frac{\partial^2 z}{\partial x^2}$ and $\frac{\partial^2 z}{\partial t^2}$.

Hence show that z satisfies the partial differential equation (P.D.E.)

$$\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}$$

This P.D.E. is called the wave equation.

3. A pyramid with a square base of side b and a vertical height h has a total exposed surface area of

$$S = b\sqrt{4h^2 + b^2}$$

and an enclosed volume of

$$V = \frac{1}{3}b^2h$$

- (a) Find the rate and manner (increasing or decreasing) in which S and V are changing at the instant when b = 15 m, h = 10 m, h is increasing at a rate of 2 m s⁻¹ and b is decreasing at a rate of 1 m s⁻¹.
- (b) Use differentials to estimate the percentage change (ΔV / V) × 100% in the enclosed volume when h increases by 3% and b decreases by 2%.
 [Hint: Express dV in terms of db and dh, then divide this equation by V in order to express the relative change ΔV/V (≈ dV/V) in terms of the relative changes db/b and dh/h.]
- (c) Show that the exact relative change in the volume of the pyramid, when the base b decreases by 2% and the height h increases by 3%, is a decrease of 1.0788%.

[Hint: Evaluate
$$100\% \times \frac{V(b + \Delta b, h + \Delta h) - V(b, h)}{V(b, h)}$$
.]

- Page 2 of 3
- 4. The displacement of a uniform beam of length L in a vertical plane is represented by the dependent variable u. For any distance x from one end of the beam and at any time t, the displacement function is

$$u(x,t) = (3\cos\beta x + 5\cosh\beta x)\sin\beta^2 ct$$

(where β and *c* are constants).

(a) Verify that this function satisfies the fourth order partial differential equation

$$\frac{\partial^2 u}{\partial t^2} + c^2 \frac{\partial^4 u}{\partial x^4} = 0$$

- (b) In part (a), what must the dimensions (kg m s) of the constant c be in order for the P.D.E. to be dimensionally consistent?
- 5. Find the Jacobian of the transformation from the (x, y) to the (r, s) system, where $x^2 + y^2 + s^2 + r^4 = 1$ and $x + 2y 4r + 3s^2 = 7$
- 6. Find the Jacobian of the transformation from the (x, y, z) to the (r, s, t) system, where

$$x = rs\cos t$$
, $y = rs\sin t$ and $z = \frac{1}{2}(r^2 - s^2)$

7. Find $\frac{\partial x}{\partial w}$ when x = x(z, w) and y = y(z, w) are defined implicitly by

$$x^{3} + y + z^{2} + w^{-2} = 1$$
 $x^{2} + 2y - 4z^{-1} + 3w^{2} = 7$

- 8. The function s(t) is the distance between two moving particles A at $(x_1(t), y_1(t))$ and B at $(x_2(t), y_2(t))$ in \mathbb{R}^2 .
 - (a) Use the chain rule to deduce that the rate at which the two points are separating from each other is

$$\frac{ds}{dt} = \frac{1}{s} \left(\left(x_2 - x_1 \right) \left(\frac{dx_2}{dt} - \frac{dx_1}{dt} \right) + \left(y_2 - y_1 \right) \left(\frac{dy_2}{dt} - \frac{dy_1}{dt} \right) \right)$$

(b) Particle A is moving east, parallel to the x-axis with constant speed 2 m s⁻¹. Particle B is moving north-east, parallel to the line y = x with constant speed $\sqrt{2}$ ms⁻¹. Find the rate at which the two particles are separating when A is at (1, 3) and B is at (4, -1). 9. The lengths of the sides of a square are quoted to be (5.2 ± 0.1) cm. The height of a prism with this square cross section is quoted to be (10.1 ± 0.1) cm. Use differentials to estimate the maximum relative error in the calculation of the volume V of the prism. Hence estimate the maximum absolute error in V.

10. Find $\frac{\partial u}{\partial y}$ (in terms of x, y and z only), where

$$u = e^{(s^3)} + \ln(rs^2), \qquad r = x^2 + y^3 + z^4, \quad s = x^2 \cos z$$

Back to the index of questions

On to the solutions @