ENGI 3425 Mathematics for Civil Engineering 1
 Problem Set 8 Questions

(Sections 8.1-8.3-Multiple Integration)

1. Evaluate

$$
\iint_{D} x^{3} y^{2} d A
$$

over the triangular region D that is bounded by the lines $y=x, y=-x$ and $x=2$.
2. Evaluate

$$
\iint_{R} y d A
$$

over the region R that is bounded by the lines $y=1+x, y=1-x$ and $y=0$.
3. Evaluate

$$
\iint_{R}(x-3 y) d A
$$

over the region R that is bounded by the triangle whose vertices are the points
$(0,0),(2,1)$ and $(1,2)$:
(a) directly
(b) using the transformation of variables $x=2 u+v, \quad y=u+2 v$.
4. Find the mass and the location of the centre of mass of the lamina D defined by $\{0 \leq x \leq 2,-1 \leq y \leq 1\}$ and whose surface density is $\sigma=x y^{2}$.
5. Find the location of the centre of mass of the lamina D defined by the part of $x^{2}+y^{2} \leq 1$ that lies in the first quadrant and whose surface density is directly proportional to the distance from the x-axis.
6. Evaluate

$$
\iiint_{R} z d V
$$

where R is the region in the first octant that is between 1 and 2 units away from the origin.
7. Use the transformation of variables $x=u / v, y=v$ to evaluate

$$
\iint_{R} x y d A
$$

over the region R (in the first quadrant) that is bounded by the lines $y=x / 3$, $y=3 x$ and the hyperbolae $x y=1$ and $x y=3$.
8. Find the centre of mass for a plate of surface density $\sigma=\frac{k}{x^{2}+y^{2}}$, whose boundary is the portion of the annulus $a^{2}<x^{2}+y^{2}<b^{2}$ that is inside the first quadrant. k, a and b are positive constants.
9. Find the net hydrostatic force F on each end wall of the trough shown, due to the weight of the water that it contains. The end walls have the shape of a regular trapezium.

Note that the pressure p at depth h below the surface of the water is $p=\rho g h$, where $\rho \approx 1000 \mathrm{~kg} \mathrm{~m}^{-3}$ is the density of water and $g \approx 9.81 \mathrm{~ms}^{-2}$ is the [approximately constant] acceleration due to gravity. The element of force ΔF on an element of area ΔA due to the pressure p is $\Delta F=p \cdot \Delta A$.

[^0]
[^0]: - Back to the index of questions

