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1. Review of Calculus 

 

We begin this course with a refresher on differentiation and integration from MATH 1000 and 

MATH 1001. 

 

1.1 Reminder of some Derivatives (review from MATH 1000) 

 

Product Rule: 

 
d

u v
dx

   

 

 

Quotient Rule: 

d u

dx v

 
 

 
 

 

 

Chain Rule: 

If    y f u    and    u g x    then    

 

 

 

 

 nd
x

dx
     

 

 

 k xd
e

dx
     

 

 

 ln
d

x
dx

      

 

 

 sin
d

x
dx

  

 

 

 cos
d

x
dx

  
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 tan
d

x
dx

  

 

 

 csc
d

x
dx

  

 

 

 sec
d

x
dx

  

 

 

 cot
d

x
dx

  

 

 

 

 

  u xd
e

dx
    

 

 

 

  
nd

u x
dx

   

 

 

 

  sinnd
u x

dx
  

 

 

 

 

  cosnd
u x

dx
  

 

 

 

  u xd
a

dx
    
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   ln
d

u x
dx

  

 

 

 

Algebra of exponents: 

u ve e         
vue   

 

 

Algebra of logarithms: 

 

 ln u v           ln
u

v

 
 

 
     

 

 

 ln nx   

 

 
2 2cos sin    

Double angle formulae: 

 

  sin 2   

 

 cos 2   

 

 

 

Implicit Differentiation  
 

Example 1.1.1  

Show that 
    

 
ln

u x u xd
a u x a a

dx
  
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1.2 Reminder of some Integrals (review from MATH 1001) 

 

    
n

u x u x dx     

 

 

 

Example 1.2.1  

 

4 2tan secx x dx       

 

 

 

 

 

 

u x
dx

u x


    

 

Example 1.2.2  

 

tan x dx      

 

 

Example 1.2.3  

 

1

ln
dx

x x
  

 

 

 

        

 
 u x

u x e dx   

 

Example 1.2.4  

     

 

2 3xx e dx   
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    cosu x u x dx    

 

Example 1.2.5  

 

 cosx xe e dx    

 

 

 

Some trigonometric integrals: 

 

2sin d    

 

 

 

2cos d    

 

 

2sec x dx         

 

 

sec tanx x dx   

 

 

sec x dx   

 

 

2csc x dx   

 

 

csc cotx x dx   

 

 

csc x dx   
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2 2

1
dx

a x    

 

 

 

 

 

 

 

 

 

 

 

 

2 2

1
dx

a x
 

  

 

 

 

 

2 2

1
dx

a x  

 

 

 

 

 

 

 

 

 

 

 

2 2

1
dx

a x
 

  
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Integration by parts (tabular version) – the table terminates in one of three ways: 

 

1. Left column ends in zero (one factor in the integrand must be a polynomial). 

 

Example 1.2.6  

 

 2 1 cos 2x x dx   

  

 

 

 

 

 

2. The last row is easily integrated: 

 

Example 1.2.7  

 

lnnx x dx   

 

          

 

 

 

 

3. The last row is a constant multiple of the original integrand: 

 

Example 1.2.8  

sinaxI e bx dx   

 

 

 

 

 

 

 

 

 

 

 

 

 

ENGI 3425 assumes mastery of the concepts and techniques in MATH 1000, 1001 and 2050. 
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1.3 Hyperbolic Functions  
 

When a uniform inelastic (unstretchable) perfectly flexible cable is suspended between two fixed 

points, it will hang, under its own weight, in the shape of a catenary curve.   The equation of the 

standard catenary curve is most concisely expressed as the hyperbolic cosine function, 

coshy x , where  

cosh
2

x xe e
x


  

The solutions to some differential equations can be expressed conveniently in terms of 

hyperbolic functions. 

 

Another hyperbolic function is  

sinh
2

x xe e
x


   

 

The graphs of these two hyperbolic  

functions are displayed here: 

 

 

 

 

 

 

 

 

 

 

The other four hyperbolic functions are  

 

sinh 1 2
tanh , sech ,

cosh cosh

x x

x x x x

x e e
x x

x e e x e e



 


   

 
 

 

1 1 2
coth and csch .

tanh sinh

x x

x x x x

e e
x x

x e e x e e



 


   

 
 

 

Unlike the trigonometric functions, the hyperbolic functions are not periodic. 

However, parity is preserved:    

Of the six trigonometric function, only  cos   and  sec   are even functions. 

Of the six hyperbolic functions, only  cosh x  and  sech x  are even functions. 

 

The other four trigonometric functions and the other four hyperbolic functions are all odd. 
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Graphs of the other four hyperbolic functions: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The solutions to some ordinary differential equations that model logistic growth (constrained 

growth) of a population resemble the hyperbolic tangent function. 
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There is a close relationship between the hyperbolic and trigonometric functions. 

 

From the Euler form for e
 j

 ,   e
 j

  =  cos   +  j sin  ,    (where 1j   )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Identities:  

 

Let   x = j : 

 sin
2  +  cos

2    ≡   1       

 

 

 

 

 

 

 

 

 1 +  tan
2    ≡   sec

2        
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Derivatives  
 

 sinh
d

x
dx

  

 

 

 

 

 

 

 cosh
d

x
dx

  

 

 

 

 

 

 

 

 tanh
d

x
dx

  

 

 

 



ENGI 3425 Review of Calculus  Page 1.12 

  

 csch
d

x
dx

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

End of Chapter 1 
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