1. Review of Calculus

We begin this course with a refresher on differentiation and integration from MATH 1000 and MATH 1001.

1.1 Reminder of some Derivatives (review from MATH 1000)

Product Rule:

$$
\frac{d}{d x}(u \cdot v)=
$$

Quotient Rule:

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=
$$

Chain Rule:

$$
\text { If } y=f(u) \text { and } u=g(x) \text { then }
$$

$\frac{d}{d x}\left(x^{n}\right)=$
$\frac{d}{d x}\left(e^{k x}\right)=$
$\frac{d}{d x}(\ln x)=$
$\frac{d}{d x}(\sin x)=$
$\frac{d}{d x}(\cos x)=$
$\frac{d}{d x}(\tan x)=$
$\frac{d}{d x}(\csc x)=$
$\frac{d}{d x}(\sec x)=$
$\frac{d}{d x}(\cot x)=$

$$
\frac{d}{d x}\left(e^{u(x)}\right)=
$$

$\frac{d}{d x}(u(x))^{n}=$
$\frac{d}{d x} \sin ^{n}(u(x))=$

$$
\frac{d}{d x} \cos ^{n}(u(x))=
$$

$$
\frac{d}{d x}\left(a^{u(x)}\right)=
$$

$\frac{d}{d x}(\ln (u(x)))=$

Algebra of exponents:

$$
e^{u} \cdot e^{v}=\quad\left(e^{u}\right)^{v}=
$$

Algebra of logarithms:
$\ln (u \cdot v)=$
$\ln \left(\frac{u}{v}\right)=$
$\ln \left(x^{n}\right)=$

$$
\cos ^{2} \theta+\sin ^{2} \theta=
$$

Double angle formulae:

$$
\begin{aligned}
& \sin (2 \theta)= \\
& \cos (2 \theta)=
\end{aligned}
$$

Implicit Differentiation

Example 1.1.1
Show that $\frac{d}{d x}\left(a^{u(x)}\right)=u^{\prime}(x) a^{u(x)} \ln a$

1.2 Reminder of some Integrals (review from MATH 1001)

$\int u^{\prime}(x) \cdot(u(x))^{n} d x=$

Example 1.2.1

$$
\int \tan ^{4} x \cdot \sec ^{2} x d x=
$$

$$
\int \frac{u^{\prime}(x)}{u(x)} d x=
$$

Example 1.2.2
$\int \tan x d x=$

Example 1.2.3
$\int \frac{1}{x \ln x} d x=$
$\int u^{\prime}(x) e^{u(x)} d x=$

Example 1.2.4
$\int x^{2} e^{x^{3}} d x=$
$\int u^{\prime}(x) \cos (u(x)) d x=$
Example 1.2.5
$\int e^{x} \cos \left(e^{x}\right) d x=$

Some trigonometric integrals:

$$
\begin{aligned}
& \int \sin ^{2} \theta d \theta= \\
& \int \cos ^{2} \theta d \theta= \\
& \int \sec ^{2} x d x= \\
& \int \sec x \tan x d x= \\
& \int \sec x d x= \\
& \int \csc x d x= \\
& \int \csc x \cot x d x= \\
& \int \csc x d x=
\end{aligned}
$$

$\int \frac{1}{a^{2}+x^{2}} d x$
$\Rightarrow \int \frac{1}{a^{2}+x^{2}} d x=$

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x
$$

$\Rightarrow \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=$

Integration by parts (tabular version) - the table terminates in one of three ways:

1. Left column ends in zero (one factor in the integrand must be a polynomial).

Example 1.2.6
$\int\left(x^{2}-1\right) \cos 2 x d x=$
2. The last row is easily integrated:

Example 1.2.7
$\int x^{n} \ln x d x=$
3. The last row is a constant multiple of the original integrand:

Example 1.2.8
$I=\int e^{a x} \sin b x d x=$

1.3 Hyperbolic Functions

When a uniform inelastic (unstretchable) perfectly flexible cable is suspended between two fixed points, it will hang, under its own weight, in the shape of a catenary curve. The equation of the standard catenary curve is most concisely expressed as the hyperbolic cosine function, $y=\cosh x$, where

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}
$$

The solutions to some differential equations can be expressed conveniently in terms of hyperbolic functions.

Another hyperbolic function is
$\sinh x=\frac{e^{x}-e^{-x}}{2}$
The graphs of these two hyperbolic functions are displayed here:

The other four hyperbolic functions are

$\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}, \quad \operatorname{sech} x=\frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}}$,
$\operatorname{coth} x=\frac{1}{\tanh x}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}} \quad$ and $\quad \operatorname{csch} x=\frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}}$.
Unlike the trigonometric functions, the hyperbolic functions are not periodic.
However, parity is preserved:
Of the six trigonometric function, only $\cos \theta$ and $\sec \theta$ are even functions.
Of the six hyperbolic functions, only $\cosh x$ and $\operatorname{sech} x$ are even functions.
The other four trigonometric functions and the other four hyperbolic functions are all odd.

Graphs of the other four hyperbolic functions:

The solutions to some ordinary differential equations that model logistic growth (constrained growth) of a population resemble the hyperbolic tangent function.

There is a close relationship between the hyperbolic and trigonometric functions.
From the Euler form for $e^{j \theta}, \quad e^{j \theta}=\cos \theta+j \sin \theta, \quad$ (where $j=\sqrt{-1}$)

Identities:

Let $x=j \theta$:

$$
\sin ^{2} \theta+\cos ^{2} \theta \equiv 1 \Rightarrow
$$

$$
1+\tan ^{2} \theta \equiv \sec ^{2} \theta \Rightarrow
$$

Derivatives

$$
\frac{d}{d x}(\sinh x)=
$$

$$
\frac{d}{d x}(\cosh x)=
$$

$$
\frac{d}{d x}(\tanh x)=
$$

$$
\frac{d}{d x}(\operatorname{csch} x)=
$$

