4.1 Classification of Quadric Surfaces

We shall consider only the simplest cases, where any planes of symmetry are located on the Cartesian coordinate planes. In nearly all cases, this eliminates "cross-product terms", such as $x y$, from the Cartesian equation of a surface. Except for the paraboloids, the centre is at the origin and the Cartesian equations involve only x^{2}, y^{2}, z^{2} and constants.

The five main types of quadric surface are:
The ellipsoid (axis lengths a, b, c)
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
The axis intercepts are at $(\pm a, 0,0),(0, \pm b, 0)$ and $(0,0, \pm c)$.

All three coordinate planes are planes of symmetry.

The cross-sections in the three coordinate planes are all ellipses.

Special cases (which are surfaces of revolution):
$a=b>c$: oblate spheroid (a "squashed sphere")
$a=b<c$: prolate spheroid (a "stretched sphere" or cigar shape)
$a=b=c$: sphere
Hyperboloid of One Sheet (Ellipse axis lengths a, b; aligned along the z axis)
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
For hyperboloids, the central axis is associated with the "odd sign out".

In the case illustrated, the hyperboloid is aligned along the z axis.

The axis intercepts are at $(\pm a, 0,0)$ and $(0, \pm b, 0)$.
The vertical cross sections in the $x-z$ and planes are hyperbolae.

All horizontal cross sections are ellipses.

Hyperboloid of Two Sheets (Ellipse axis lengths b, c; aligned along the x axis)
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$

For hyperboloids, the central axis is associated with the "odd sign out".

In the case illustrated, the hyperboloid is aligned along the x axis.

The axis intercepts are at $(\pm a, 0,0)$ only.

Vertical cross sections parallel to the $y-z$ plane are either ellipses or null.
All cross sections containing the x axis are hyperbolae.

Elliptic Paraboloid

(Ellipse axis lengths a, b;
aligned along the z axis)
$\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
For paraboloids, the central axis is associated with the "odd exponent out".

In the case illustrated, the paraboloid is aligned along the z axis.

The only axis intercept is at the origin.
The vertical cross sections in the $x-z$ and $y-z$ planes are parabolae.
All horizontal cross sections are ellipses (for $z>0$).

Hyperbolic Paraboloid (Hyperbola axis length a or b; aligned along the z axis)
$\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$
For paraboloids, the central axis is associated with the "odd exponent out".

In the case illustrated, the paraboloid is aligned along the z axis.

The only axis intercept is at the origin.

The vertical cross section in the $x-z$ plane is an upward-opening parabola. The vertical cross section in the $y-z$ plane is a downward-opening parabola. All horizontal cross sections are hyperbolae, (except for a point at $z=0$).

The plots of the five standard quadric surfaces shown here were generated in the software package Maple. The Maple worksheet is available from a link at "http://www.engr.mun.ca/~ggeorge/3425/demos/index.html".

Degenerate Cases:

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=0 \quad:$
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0 \quad:$
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=-1 \quad:$
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$\frac{y}{b}=\frac{x^{2}}{a^{2}}$

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=0 \\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=-1 \\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0 \\
& \frac{x^{2}}{a^{2}}=1 \\
& \frac{x^{2}}{a^{2}}=0 \\
& \frac{x^{2}}{a^{2}}=-1
\end{aligned}
$$

Example 4.1

Classify the quadric surface, whose Cartesian equation is $2 x=3 y^{2}+4 z^{2}$.

Example 4.2

Classify the quadric surface, whose Cartesian equation is $z^{2}=1+x^{2}$.

Example 4.3

Classify the quadric surface, whose Cartesian equation is $x^{2}-y^{2}+z^{2}+1=0$.

More examples are in the problem sets.

[Space for additional notes]
[End of Chapter 4]

