5. <u>Parametric Vector Functions</u>

Contents:

- 5.1 Arc Length (Cartesian parametric and plane polar)
- 5.2 Surfaces of Revolution
- 5.3 Area under a Parametric Curve (including area swept out by a polar curve)

Note that any non-zero vector $\vec{\mathbf{r}}$ can be decomposed into its magnitude r and its direction: $\vec{\mathbf{r}} \equiv r\hat{\mathbf{r}}$, where $r \equiv |\vec{\mathbf{r}}| > 0$

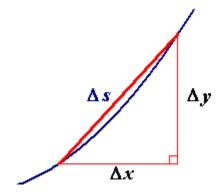
If the parameter t is time, then the tangent vector is also the **velocity vector**, $\vec{\mathbf{v}} = \frac{d\vec{\mathbf{r}}}{dt}$, whose magnitude is the **speed** $v = \left| \frac{d\vec{\mathbf{r}}}{dt} \right|$.

The unit tangent is

$$\mathbf{T} = \frac{d\,\mathbf{\bar{r}}}{dt} \div \left| \frac{d\,\mathbf{\bar{r}}}{dt} \right|$$

5.1 Arc Length

In \mathbb{R}^2 :



In \mathbb{R}^3 :

The vector $\frac{d\mathbf{\vec{r}}}{dt}$ points in the direction of the tangent $\mathbf{\vec{T}}$ to the curve defined parametrically by $\mathbf{\vec{r}} = \mathbf{\vec{r}}(t)$.

Example 5.1.1

- (a) Find the arc length along the curve defined by $\vec{\mathbf{r}}(t) = \begin{bmatrix} 9t^2 & 12t^2 & 10t^3 \end{bmatrix}^{\mathrm{T}}$, from the origin to the point (9, 12, 10).
- (b) Find the unit tangent **T**.
- (c) What happens to \mathbf{T} as the curve passes through the origin?

Arc Length for a Polar Curve

For a polar curve defined by $r = f(\theta)$, $(\alpha \le \theta \le \beta)$, the parameter is θ and $x = f(\theta)\cos\theta$ $y = f(\theta)\sin\theta$. Using the abbreviations $r = f(\theta)$, $r' = f'(\theta)$, $c = \cos\theta$, $s = \sin\theta$,

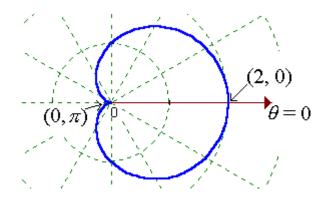
$$\frac{dx}{d\theta} =$$
 and $\frac{dy}{d\theta} =$

$$\Rightarrow \left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 =$$

Therefore the arc length L along the polar curve $r = f(\theta)$ from $\theta = \alpha$ to $\theta = \beta$ is

Example 5.1.2

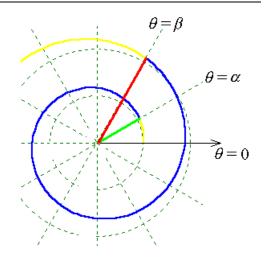
Find the length L of the perimeter of the cardioid $r = 1 + \cos \theta$



Example 5.1.2 (continued)

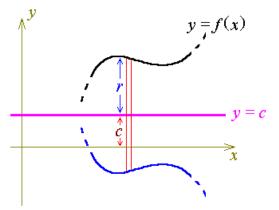
Example 5.1.3

Find the arc length along the spiral curve $r = ae^{\theta} (a > 0)$, from $\theta = \alpha$ to $\theta = \beta$.



5.2 <u>Surfaces of Revolution</u>

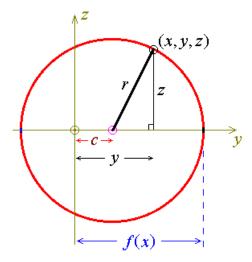
Consider a curve in the x-y plane, defined by the equation y = f(x). If it is swept once around the line y = c, then it will generate a surface of revolution.



At any particular value of x, a thin cross-section through that surface, parallel to the y-z plane, will be a circular disc of radius r, where

r =

Let us now view the circular disc face-on, (so that the x axis and the axis of rotation are both pointing directly out of the page and the page is parallel to the y-z plane).



Let (x, y, z) be a general point on the surface of revolution.

From this diagram, one can see that

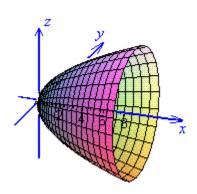
 $r^{2} =$

Therefore, the equation of the surface generated, when the curve y = f(x) is rotated once around the axis y = c, is

Special case: When the curve y = f(x) is rotated once around the x axis, the equation of the surface of revolution is

Example 5.2.1

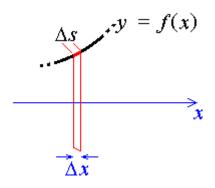
Find the equation of the surface generated, when the parabola $y^2 = 4ax$ is rotated once around the *x* axis.



A Maple worksheet for this surface is available from the demonstration files section of the ENGI 3425 web site.

The Curved Surface Area of a Surface of Revolution

For a rotation around the *x* axis,



the curved surface area swept out by the element of arc length Δs is approximately the product of the circumference of a circle of radius *y* with the length Δs .

Integrating along a section of the curve y = f(x) from x = a to x = b, the total curved surface area is

For a rotation of y = f(x) about the axis y = c, the curved surface area is

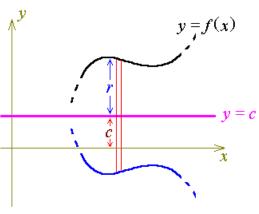
Example 5.2.2

Find the curved surface area of the circular paraboloid generated by rotating the portion of the parabola $y^2 = 4cx$ (c > 0) from x = a (≥ 0) to x = b about the *x* axis.

$$A = 2\pi \int_{x=a}^{x=b} |y| \, ds$$

The Volume enclosed by a Surface of Revolution

As noted above, a thin slice through a surface of revolution, at right angles to the axis of rotation, is approximately a circular disc of radius r = |f(x) - c| and thickness Δx .



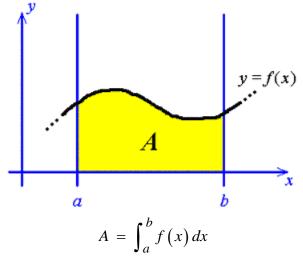
The volume of this very short circular cylinder is

Summing over all such elementary slices from x = ato x = b, the total volume enclosed by the surface of revolution is

Example 5.2.3

Find the volume enclosed by the circular paraboloid generated by rotating the portion of the parabola $y^2 = 4cx$ (c > 0) between x = a (≥ 0) and x = b about the x axis.

5.3 <u>Area under a Parametric Curve</u> (x, y) = (x(t), y(t))



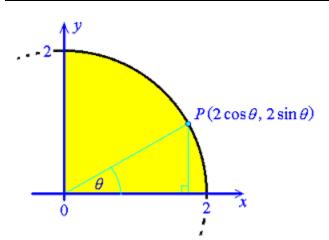
With parameterization (x, y) = (x(t), y(t)):

$$A = \int_{t_a}^{t_b} |y| \frac{dx}{dt} dt$$

where $x(t_a) = a$, $x(t_b) = b$ and a < b. Note that this does *not* guarantee $t_a < t_b$.

Example 5.3.1

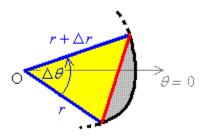
Find the area enclosed in the first quadrant by the circle $x^2 + y^2 = 4$.



Example 5.3.1 (continued)

Area Swept Out by a Polar Curve $r = f(\theta)$

 $\Delta A \approx$ Area of triangle



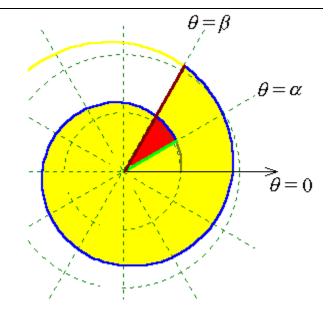
Example 5.3.2

Find the area of a circular sector, radius r, angle θ .

Example 5.3.3

Find the area swept out by the polar curve $r = a e^{\theta}$ over $\alpha < \theta < \beta$, (where a > 0 and $\alpha < \beta < \alpha + 2\pi$).

The condition ($\alpha < \beta < \alpha + 2\pi$) prevents the same area being swept out more than once.



In general, the area bounded by two polar curves $r = f(\theta)$ and $r = g(\theta)$ and the radius vectors $\theta = \alpha$ and $\theta = \beta$ is

$$A = \frac{1}{2} \int_{\alpha}^{\beta} \left(\left(f(\theta) \right)^{2} - \left(g(\theta) \right)^{2} \right) d\theta$$

[End of Chapter 5]