5. Parametric Vector Functions

Contents:

5.1 Arc Length (Cartesian parametric and plane polar)
5.2 Surfaces of Revolution
5.3 Area under a Parametric Curve (including area swept out by a polar curve)

Note that any non-zero vector $\overrightarrow{\mathbf{r}}$ can be decomposed into its magnitude r and its direction:

$$
\stackrel{\rightharpoonup}{\mathbf{r}} \equiv r \hat{\mathbf{r}}, \quad \text { where } r \equiv|\overrightarrow{\mathbf{r}}|>0
$$

Tangent Vector:

$$
\stackrel{\mathbf{T}}{ }=\left[\frac{d x}{d t} \frac{d y}{d t} \frac{d z}{d t}\right]^{\mathrm{T}}=\frac{d \stackrel{\rightharpoonup}{\mathbf{r}}}{d t}
$$

If the parameter t is time, then the tangent vector is also the velocity vector, $\overrightarrow{\mathbf{v}}=\frac{d \overrightarrow{\mathbf{r}}}{d t}$, whose magnitude is the speed $v=\left|\frac{d \stackrel{\mathbf{r}}{d}}{d t}\right|$.

The unit tangent is

$$
\left.\mathbf{T}=\frac{d \stackrel{\mathbf{r}}{d t}}{d t} \div \frac{d \mathbf{\mathbf { r }}}{d t} \right\rvert\,
$$

5.1 Arc Length

In \mathbb{R}^{2} :

In \mathbb{R}^{3} :

The vector $\frac{d \stackrel{\mathbf{r}}{\mathbf{r}}}{d t}$ points in the direction of the tangent $\overrightarrow{\mathbf{T}}$ to the curve defined parametrically by $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}(t)$.

Example 5.1.1

(a) Find the arc length along the curve defined by
$\mathbf{r}(t)=\left[\begin{array}{lll}9 t^{2} & 12 t^{2} & 10 t^{3}\end{array}\right]^{\mathrm{T}}$, from the origin to the point $(9,12,10)$.
(b) Find the unit tangent \mathbf{T}.
(c) What happens to \mathbf{T} as the curve passes through the origin?

Arc Length for a Polar Curve

For a polar curve defined by $r=f(\theta), \quad(\alpha \leq \theta \leq \beta)$, the parameter is θ and $x=f(\theta) \cos \theta \quad y=f(\theta) \sin \theta$.
Using the abbreviations $r=f(\theta), \quad r^{\prime}=f^{\prime}(\theta), \quad c=\cos \theta, \quad s=\sin \theta$,

$$
\begin{array}{ll}
\frac{d x}{d \theta}= & \text { and } \frac{d y}{d \theta}= \\
\Rightarrow\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}= &
\end{array}
$$

Therefore the arc length L along the polar curve $r=f(\theta)$ from $\theta=\alpha$ to $\theta=\beta$ is

Example 5.1.2

Find the length L of the perimeter of the cardioid $r=1+\cos \theta$

Example 5.1.2 (continued)

Example 5.1.3

Find the arc length along the spiral curve $r=a e^{\theta}(a>0)$, from $\theta=\alpha$ to $\theta=\beta$.

5.2 Surfaces of Revolution

Consider a curve in the $x-y$ plane, defined by the equation $y=f(x)$.
If it is swept once around the line $y=c$, then it will generate a surface of revolution.

At any particular value of x, a thin cross-section through that surface, parallel to the y - z plane, will be a circular disc of radius r, where

$$
r=
$$

Let us now view the circular disc face-on, (so that the x axis and the axis of rotation are both pointing directly out of the page and the page is parallel to the $y-z$ plane).

Let (x, y, z) be a general point on the surface of revolution.

From this diagram, one can see that

$$
r^{2}=
$$

Therefore, the equation of the surface generated, when the curve $y=f(x)$ is rotated once around the axis $y=c$, is

Special case: When the curve $y=f(x)$ is rotated once around the x axis, the equation of the surface of revolution is

Example 5.2.1

Find the equation of the surface generated, when the parabola $y^{2}=4 a x$ is rotated once around the x axis.
\qquad

A Maple worksheet for this surface is available from the demonstration files section of the ENGI 3425 web site.

The Curved Surface Area of a Surface of Revolution

For a rotation around the x axis,

the curved surface area swept out by the element of arc length Δs is approximately the product of the circumference of a circle of radius y with the length Δs.

Integrating along a section of the curve $y=f(x)$ from $x=a$ to $x=b$, the total curved surface area is

For a rotation of $y=f(x)$ about the axis $y=c$, the curved surface area is

Example 5.2.2

Find the curved surface area of the circular paraboloid generated by rotating the portion of the parabola $y^{2}=4 c x(c>0)$ from $x=a(\geq 0)$ to $x=b$ about the x axis.

$$
A=2 \pi \int_{x=a}^{x=b}|y| d s
$$

The Volume enclosed by a Surface of Revolution

As noted above, a thin slice through a surface of revolution, at right angles to the axis of rotation, is approximately a circular disc of radius $r=|f(x)-c|$ and thickness Δx.

Summing over all such elementary slices from $x=a$ to $x=b$, the total volume enclosed by the surface of revolution is

Example 5.2.3

Find the volume enclosed by the circular paraboloid generated by rotating the portion of the parabola $y^{2}=4 c x(c>0)$ between $x=a(\geq 0)$ and $x=b$ about the x axis.
5.3 Area under a Parametric Curve $(x, y)=(x(t), y(t))$

$$
A=\int_{a}^{b} f(x) d x
$$

With parameterization $(x, y)=(x(t), y(t))$:

$$
A=\int_{t_{a}}^{t_{b}}|y| \frac{d x}{d t} d t
$$

where $x\left(t_{a}\right)=a, x\left(t_{b}\right)=b$ and $a<b$. Note that this does not guarantee $t_{a}<t_{b}$.

Example 5.3.1

Find the area enclosed in the first quadrant by the circle $x^{2}+y^{2}=4$.

Example 5.3.1 (continued)

Area Swept Out by a Polar Curve $r=f(\theta)$
$\Delta A \approx$ Area of triangle

Example 5.3.2
Find the area of a circular sector, radius r, angle θ.

Example 5.3.3

Find the area swept out by the polar curve $r=a e^{\theta}$ over $\alpha<\theta<\beta$, (where $a>0$ and $\alpha<\beta<\alpha+2 \pi$).

The condition ($\alpha<\beta<\alpha+2 \pi$) prevents the same area being swept out more than once.

In general, the area bounded by two polar curves $r=f(\theta)$ and $r=g(\theta)$ and the radius vectors $\theta=\alpha$ and $\theta=\beta$ is

$$
A=\frac{1}{2} \int_{\alpha}^{\beta}\left((f(\theta))^{2}-(g(\theta))^{2}\right) d \theta
$$

[End of Chapter 5]

