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6. Series 

 

Contents: 

 

6.01 Sequences; general term, limits, convergence 

6.02 Series; summation notation, convergence, divergence test 

6.03 Standard Series; telescoping series, geometric series,  p-series 

6.04 Tests for Convergence:  comparison and limit comparison tests 

6.05 Tests for Convergence:  alternating series; absolute and conditional convergence 

6.06 Tests for Convergence:  ratio test 

6.07 Power Series, radius and interval of convergence 

6.08 Taylor and Maclaurin Series, remainder term 

6.09 Binomial Series 

6.10 Introduction to Fourier Series 

 

 

Appendix: 

 

6.A Integral Test [not examinable; for reference only] 
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6.01 Sequences; general term, limits, convergence 

 

A sequence is a set of related objects that all follow the same rule.   There is a logical 

progression from current and previous elements to the next element. 

 

 

Example 6.01.1   

 

The alphabet:   { a, b, c, ... , y, z } 

 

The rule is: The n
th

 element  an = (the n
th

 letter of the alphabet) 

 

 

Example 6.01.2   

 

The set of all natural numbers   =  { 1, 2, 3, ... } 

 

Two ways to express the rule are:  

 

 

 

 

 

We are usually interested in two features: 

 An explicit form for the general term  (often from a recurrence relationship); 

 The behaviour of the terms of a sequence as n . 

 

 

Example 6.01.3   

 

The terms of a sequence form an arithmetic progression if consecutive terms differ by a 

common non-zero constant difference  d : 

 

1 1n nn n
a a d a a d

 
     , with an initial term   1a a  

 

Writing down the first few terms of the sequence,  

 

 

 

 

The general term is therefore na   
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Example 6.01.4   

 

The terms of a sequence form a geometric progression if consecutive terms change by a 

common constant ratio  r : 

 

 1
1

0, 1
n

n n
n

a
r a a r r r

a 


     , with an initial term   
1 0a a    

 

Writing down the first few terms of the sequence,  

 

 

 

 

The general term is therefore na    

 

 

The sequence alternates in sign if  r < 0 

 

The sequence converges to a limit of zero if      

 

If  r = –1  then  lim n
n

a

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The power sequence     1 , 2 , 3 , 4 ,r r r r rn   

converges to 0 for  r < 0,  

converges to 1 for  r = 0 and 

diverges for  r > 0. 
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Example 6.01.5    

 

Find the general term of this sequence and determine whether it converges.  

 

1 4 7 10 13
, , , , ,

5 9 13 17 21

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algebra of Sequences: 

 

Given two convergent sequences  na with limit value  A  and  nb with limit value B , 

 n npa qb  is a convergent sequence with limit value (pA + qB)  for all constants  p, q; 

 n na b  is a convergent sequence with limit value AB; 

 /n na b  is a convergent sequence with limit value A/B (provided that 0B  ); 

If  f (x)  is a continuous function with  lim
n

f x L


  and if   na f n n     

then  na  converges with limit value  L ; 

If  n n na c b n     and if  nc  converges with limit value  C  then A C B  . 



ENGI 3425 6.01 – Sequences Page 6-06 

 

Example 6.01.6    

 

Find the limit of the sequence 
sin n

n

 
 
 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The “Race to Infinity” 

 

There is a hierarchy of functional forms that all diverge to infinity with increasing  n:  

     ! 1 0 log 1n n c
b

n n a a n c n b        

for all sufficiently large  n. 

 

 

Example 6.01.7    

!
lim 0nn

n

n
   because  “n

n
  goes to infinity faster than  n ! ” 

OR the sequence is positive and  

  1 2 3 2 1! 1 1
1n

n n nn n n n n n
n

n n n n n n n n n n n n n n

    
          

     
 

Therefore all terms are bounded above by the terms of a sequence that converges to 0. 
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If every term of a sequence is no less than all of its predecessors  1 2 3 4a a a a    , 

then the sequence is an increasing sequence.   

 

If every term of a sequence is no greater than all of its predecessors  1 2 3a a a   , 

then the sequence is a decreasing sequence.   

 

A sequence is monotonic if and only if it is either increasing or decreasing. 

 

 

 

If na U n   for some constant value  U, then the sequence   na  is upper-bounded. 

If na L n   for some constant value  L, then the sequence   na  is lower-bounded. 

A sequence is bounded if it is both upper and lower bounded. 

 

 

Every upper-bounded increasing sequence is convergent. 

 
 

Every lower-bounded decreasing sequence is convergent. 

 

 

 

 

 

 

 

 

 

 

 

Every bounded monotonic sequence is convergent. 
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6.02 Series 

 

The partial sum  Sn  of a sequence is the sum of the first  n  terms of that sequence: 

1 2 3

1

n

n n k
k

S a a a a a



        

This partial sum is also a finite series. 

The sum of an infinite series is the sum of all terms in the associated infinite sequence, 

1 2 3

1

lim nk n
k

S a a a a S






      . 

 

 

Example 6.02.1    

 

Find the first three partial sums of the sequence  
1

, 1, 2, 3,
2n n

 
 

 
 

and find the limit of the sequence of partial sums. 
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Divergence Test  
 

If the general term of a series does not converge to zero, then the series diverges. 

1

lim 0n nn
n

a a





     diverges (the sum does not exist) 

 

 

Example 6.02.2    

 

Prove that all arithmetic series   
1

1
n

a n d




   diverge, (where 0d  ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, the converse of the divergence test is false.   

Some divergent series do have general terms that converge to zero,  

or equivalently:  lim 0nn
a


  does not guarantee that 

1
n

n

a



  converges 

(except for alternating series, section 6.05 below). 
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Example 6.02.3    

 

Show that the harmonic series 

1

1

n
n




  diverges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The divergence of the harmonic series is very slow. 

4 terms are needed for the partial sum to exceed 2. 

31 terms are needed for the partial sum to exceed 4. 

1674 terms are needed for the partial sum to exceed 8. 

The sum of the first billion (10
9
) terms is still well under 25.  

Yet the sum of the complete series does not exist (diverges to infinity)! 
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6.03 Standard Series:  telescoping series, geometric series,  p-series  
 

Example 6.03.1   

Find the exact sum of the series 
2

1

1

5 6
n

S
n n






   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is an example of a telescoping series. 

The simplest such series have general terms similar to     1na f n f n   . 

Such series often involve the use of partial fractions. 
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Example 6.03.2  

Find the exact sum of the series 
3 2

2

8

3 3
n

S
n n n






    . 

 

 

 

 

 

 



ENGI 3425 6.03 – Standard Series Page 6-13 

 

Example 6.03.2   (continued) 

 

 

Sn  =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Collecting the surviving terms from this telescoping series, we find that  
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Geometric Series    

 

Each term in a geometric series is a constant multiple  r  (the common ratio) of the 

immediately preceding term, except for the [non-zero] first term  a .   Quoting the general 

term from the geometric progression on page 6.03, the geometric series is 

 

1

1 0

orn n

n n

S ar ar

 


 

 
 
 
 

   

 

Applying the divergence test: 
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Example 6.03.3 (Example 6.02.1 revisited) 

 

Evaluate  

1

1

2n
n

S





   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 6.03.4   

 

Find the sum of the power series 

  2 3 4f x x x x x      
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p-series   
 

Another important family of standard series is the p-series  

(also known as “hyperharmonic” series):  

1

1
p

n
n




  

The divergence test establishes divergence for  p < 0 . 

 

It can be shown [section 6.A] that p-series  

 converge for all  p > 1  and 

 diverge for all  p < 1 . 

 

The case  p = 1  is the harmonic series, for which Example 6.02.3 established divergence. 

 

In 1741 Leonhard Euler proved that 
2

2

1

1

6
n

n






 . 

 

 

 

 

 

The removal or insertion of a finite number of finite terms does not affect the 

convergence of a series. 

 

If  

3
n

n

S a





   converges, then so does  
1 2 1 2

1 3
n n

n n

a a a a a a S

 

 

       , 

provided that  
1a   and  

2a   are finite. 
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6.04 Tests for Convergence:  comparison and limit comparison tests 
 

If all terms na  in a series are positive, then the sequence of partial sums  nS  is 

necessarily increasing.    

 

If another series  

1
n

n

b




  is convergent with a sum  B  and if n na b n  ,  then   

B  is an upper bound to  nS  

Recall that an increasing sequence that has an upper bound is convergent [page 6.07] 

 

    nS   must converge to a value  <  B   

 

1
n

n

a





   converges to some value  A  <  B . 

 

This is the basis of the comparison test. 

 

 

Example 6.04.1    

 

Is the series 
2

1

1

5 6n n n



    convergent? 

 

[This is Example 6.03.1, for which the exact value of the sum was found by telescoping 

the series.] 
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Example 6.04.2    

 

Is the series 

2

1

lnn n




  convergent? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Put very briefly, the essence of the comparison test is: 

A convergent ceiling forces convergence: 

 0 andn n na b n b     converges na   converges. 

A divergent floor forces divergence: 

 0 andn n na b n b     diverges na   diverges. 
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Limit Comparison Test  
 

All terms na  and nb  must be non-negative and  L  is some finite constant. 

 lim 0 andn
nn

n

a
L b

b
    converges na   converges. 

 lim 0 andn
nn

n

a
b

b
   diverges na   diverges. 

The reference series 

1
n

n

b




  is often the geometric series or a p-series. 

 

 

Example 6.04.3   

 

Is the series 
3

3

ln

8n

n n

n



   convergent? 
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Example 6.04.4   

 

Is the series 
2

3

1

4

9n

n

n n







  convergent? 
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6.05 Tests for Convergence:  alternating series;  

 absolute and conditional convergence 

 

Alternating Series Test 
 

If consecutive terms of a series alternate in sign, then a simpler test for convergence is 

available. 

 

If  1 0n

n

a
n

a

     and  lim 0nn
a


   then  

1
n

n

a




  converges. 

 

 

Example 6.05.1    

 

Is the alternating harmonic series  

  
1

1 1

1 1 1 1
1 1

2 3 4

n
n

n n

a
n

 


 

         

convergent? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that if we take the absolute values of the terms in the alternating harmonic series, 

then we obtain the harmonic series 
1 1 1

1
2 3 4

    , which diverges. 
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Absolute Convergence   
 

If and only if the series 

1
n

n

a




   converges,  

then the series 

1
n

n

a




  is absolutely convergent. 

 

If and only if the series  

1
n

n

a




  converges but the series 

1
n

n

a




   diverges, 

then the series 

1
n

n

a




  is conditionally convergent. 

The alternating harmonic series is an example of a conditionally convergent series. 

 

 

If a series is absolutely convergent, then the alternating series test is a waste of time.   

Another test to establish the convergence of 

1
n

n

a




  automatically establishes that 

1
n

n

a




  is absolutely convergent in one step. 

 

 

If a series is conditionally convergent, then the alternating series test is often required to 

establish convergence of 

1
n

n

a




 , but another test is required on 

1
n

n

a




  to complete the 

proof of conditional convergence.   Therefore test the convergence of 

1
n

n

a




  first! 

 

 

 

Absolute convergence allows the algebra of finite series to be extended to infinite series.   

In particular, the order of an infinite number of terms may be changed without affecting 

the sum of the series.   The derivative of an absolutely convergent series is the sum of the 

derivatives of the individual terms.    

 

This is no longer necessarily true for conditionally convergent series.   For example,  

1 1 1 1 1 1
1 ln 2

2 3 4 5 6 7
          but  

1 1 1 1 1 3
1 ln 2

3 2 5 7 4 2
       . 
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Example 6.05.2 

 

Investigate the convergence of the alternating p-series  

  
1

1 1

1 1 1 1
1 1

2 3 4

n
n p p p p

n n

a
n

 


 

          

 

 

This is obviously an alternating series. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 6.05.3 

 

Is 
 

1

1

1 1 1 1
1

2 3 4

n

n
n






      absolutely convergent, conditionally 

convergent or divergent? 
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Approximation Errors    
 

For any convergent alternating series, the error in approximating the sum  S  of the entire 

series caused by evaluating the partial sum  Sn  of just the first n terms is  

 

1n n
S S a


   

 

 

Example 6.05.4 

 

Estimate  
 

 
0

1

2 !

n

n

S
n






    correct to four decimal places. 

 

 

The signs of the terms of this series are clearly alternating and 
 

 

1
lim 0

2 !

n

n n


  

 this series converges (by the alternating series test). 

 

The error caused by using  Sn  to estimate  S  is 
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6.06 Tests for Convergence:  ratio test 
 

Among the most useful tests for series convergence is the ratio test: 

 

If 1lim 1n

n
n

a

a




  then 

1

n

n

a




  is absolutely convergent. 

If 1lim 1n

n
n

a

a




  then 

1

n

n

a




  is divergent. 

If 1lim 1n

n
n

a

a




  then the test fails and there is no information on series convergence. 

The ratio test is most useful when the general term includes an exponential or factorial 

factor.   The test fails when the general term is an algebraic function (terms of the form 
constantn in the numerator and/or denominator) only. 

 

 

Example 6.06.1 

 

Is the series 

1 1
!

n

n

n n

n
a

n

 

 

   absolutely convergent, conditionally convergent or 

divergent? 
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Note: 

 

Proof that 
1

lim 1

n

n
e

n

 
  

 
: 
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Example 6.06.2 

 

Is the series 

0 0
!

n

n

n n

x
a

n

 

 

   absolutely convergent, conditionally convergent or 

divergent? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There is a test for absolute convergence known as the “root test”, which is a close relative 

of the ratio test.   However, we shall not use the root test in ENGI 3425. 
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6.07 Power series, radius and interval of convergence 
 

A power series with centre  x = c  is of the form 

            0 1 2 3

2 3

0

bn d d b b b
n

n

f x a x c x c a a x c a x c a x c






            

where  b  and  d  are real constants and 0b  . 

 

A common choice of parameters for power series is  b = 1  and  d = 0: 

         0 1 2 3

2 3

0

n
n

n

f x a x c a a x c a x c a x c





           

Let nu  now represent the general term  
bn d

na x c


  and  

let us apply the ratio test for convergence of a power series: 

 

 

 

 1 1 1

bn b d b

n n n
bn d

n nn

u a x c a x c

u aa x c

 

  


 
 


 

 

 1 1lim lim
bn n

n n
n n

u a
x c

u a

 

 
     

 

The series is absolutely convergent whenever  

 

 

 

 

 

 

 

 

 

 

where  R  is the radius of convergence 

 

The interval of convergence  I   includes  

c R x c R      and may include one or both 

endpoints, which must be tested separately. 

I  is also the domain of the function  f (x). 

 

Also note that  f (c)  =  0a  .  

All power series are absolutely convergent at the centre, even if  R = 0. 

If R   , then the power series is absolutely convergent for all x. 
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Example 6.07.1    

 

Determine the radius of convergence and interval of convergence for the power series 

 
 

0

2

3

n

n

x
f x

n








  
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Example 6.07.2 

 

Determine the radius of convergence and interval of convergence for the power series 

 
 

1

1

3

n

n
n

x
f x

n n






      

 

 

  



ENGI 3425 6.08 – Taylor and Maclaurin series Page 6-31 

 

6.08 Taylor and Maclaurin Series   
 

A function  f (x)  that is represented by a power series (using only non-negative integer 

powers of  x c ) is a Taylor series:  

 

   
0

n
n

n

f x a x c





   

 

   0 00 0f c a a f c       

 

Assuming that the series exists and is absolutely convergent, then  

 

   
1

0

n
n

n

f x a n x c






    

 
 

1 10 1 0 0
1

f c
f c a a


         

 

    
2

0

1
n

n
n

f x a n n x c






     

 
 

2 20 0 2 1 0
2 1

f c
f c a a


        


 

 

     
3

0

1 2
n

n
n

f x a n n n x c






      

 
 

3 30 0 0 3 2 1
3 2 1

f c
f c a a


         

 
 

and so on, so that the general term is   

 
 
!

n

n

f c
a

n
   and the Taylor series for  f (x) is 

 
 
 

 
0

!

n
n

n

f c
f x x c

n





   

 

The ratio test can determine the radius of convergence  R . 
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Example 6.08.1    

 

Find the Taylor series for   lnf x x  about  x = 1. 
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Example 6.08.2   

 

Prove L’Hôpital’s rule for the case of a (0/0) indeterminacy. 

 

Let functions  f (x)  and  g (x)  be such that  f (a) = g (a) = 0. 

Then  
 

 

f a

g a
  is a 

0

0
 type of indeterminacy. 

Represent both functions by their Taylor series about  x = a, then  
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Maclaurin Series    
 

A Taylor series with a centre at  x = c = 0  is a Maclaurin series. 

 

 

Example 6.08.3   

 

Find the Maclaurin series for   xf x e   and find its interval of convergence. 
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Example 6.08.4   

 

Find the Maclaurin series for   cosf x x  and find its interval of convergence. 
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Example 6.08.4  (Alternative Solution) 

 

Use the Euler expression for the cosine function in terms of the exponential function: 

 

 

cos sin
j

e j


     and   

 

 

cos   

 

 

 

 

   

 



ENGI 3425 6.08 – Taylor and Maclaurin series Page 6-37 

 

Example 6.08.5   

 

Use the Maclaurin series for the cosine function to find the Maclaurin series for the sine 

function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Maclaurin series for  f (x) = sin x  may also be found directly, through repeated 

differentiations, or via the Euler equation and the Maclaurin series for the exponential 

function (as in Example 6.08.4 for the cosine function) or by differentiation of  –cos x . 
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Remainder Term  
 

The practical use of Taylor (and Maclaurin) series arises when the partial sum of the first 

few terms of the series  nT x  is used to approximate the value of a non-linear function.   

The error caused by truncating the series at the n
th

 term is the n
th

 remainder term  nR x : 

 

     
 

 

 

1
1

1 !

n
n

n n

f
R x f x T x x c

n





   


 

where     is some number between  x  and  c . 

 

The Taylor series is well-defined only if    lim 0nn
R x c R x c R


     . 

 

 

Example 6.08.6   

 

The Maclaurin series for the exponential function   xf x e  is  

 

2 3

0

1
! 2! 3!

k
x

k

x x x
e x

k





       

 

 
 

 

   
 

1
1

1
0 0

1 ! 1 !

n
n

n
n

f e x
R x x x

n n








    

 
 

Because factorial functions diverge to infinity faster than exponential functions,  

 
 

1

lim lim 0
1 !

n

nn n

x
R x e

n




 
 


 

and the Maclaurin series is therefore well-defined. 

 

The error caused by approximating   xf x e  by the quadratic   
2

2 1
2!

x
T x x    on 

the interval (0 < x < a)  is at most 
3

6

aa e
. 

For  a = 0.1, this maximum error is less than 2×10
–4

, with a maximum relative error of 

under 0.03%. 

However, for a = 10, the maximum error is substantial:  more than 3×10
6
.   Many more 

terms need to be taken to maintain accuracy, the further away from the centre one goes. 

 

Note that   1y T x   is the equation of the tangent line to  y f x  at  x = c. 
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6.09 Binomial Series 
 

A special case of Maclaurin series arises for     1
n

f x x  . 
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Summary: 

 

 
     

1

1 2 1
1 1

!

n k

k

n n n n k
x x

k





   
     

 

Interval of convergence: 

I   for   n = 0  or  n   [ the series terminates at  k = n ] 

I  =  [ –1, 1 ]  for  n > 0 and not an integer, with absolute convergence at   x = ±1. 

I  =  ( –1, 1 ]  for  –1 < n < 0  with conditional convergence at  x = +1. 

I  =  ( –1, 1 )  for   n < –1   with divergence at  x = ±1. 
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Example 6.09.1   

 

Find the Maclaurin series for    1 2f x x   and its interval of convergence. 

 

 

In the binomial expansion, for "x" read "2x" and for "n" read "½". 
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6.10 Fourier Series 

 

This section offers a very brief overview of [discrete] Fourier series.   Some majors will 

explore Fourier series and transforms in much greater detail in subsequent semesters. 

 

 

The Fourier series of  f x  on the interval (–L, L) is 

 

  0

1

cos sin
2

n n
n

a n x n x
f x a b

L L

 



     
      

    
  

where 

   
1

cos , 0,1, 2, 3,
L

L
n

n x
a f x dx n

L L





 
  

   

and 

   
1

sin , 1, 2, 3,
L

n
L

n x
b f x dx n

L L





 
  

   

 

 

The  ,n na b  are the Fourier coefficients of  f x . 

 

Note that the cosine functions (and the function 1) are even, while the sine functions are 

odd.    

 

If  f x  is even (    f x f x    for all x), then 0nb    

for all n, leaving a Fourier cosine series (and perhaps a 

constant term) only for  f x . 

 

 

If  f x  is odd (    f x f x    for all x), then 0na   

for all n, leaving a Fourier sine series only for  f x . 

 

Note that   
 

   
0

0 if is odd

2 if is even

a
a

a

g x

g x dx
g x dx g x




 



 
 

 

with the multiplication table     × | odd function even function 

   odd function        |      even        odd  

even function        |      odd          even 
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Example 6.10.1   

 

Expand   
 

 

0 0

0

x
f x

x x



 

  
 

   
  in a Fourier series. 
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Example 6.10.1    (Additional Notes – also see  

   "www.engr.mun.ca/~ggeorge/3425/demos/") 

The first few partial sums in the Fourier series  

 

 
 

 2

1

1 1 1
cos sin

4
n

n

f x nx nx x
n n


 




   
       

 
 

  

are  

0
4

S


  

1

2
cos sin

4
S x x




    

2

2 1
cos sin sin 2

4 2
S x x x




     

3

2 1 2 1
cos sin sin 2 cos3 sin3

4 2 9 3
S x x x x x



 
       

and so on. 

 

The graphs of successive partial sums approach  f (x)  more closely, except in the vicinity 

of any discontinuities, (where a systematic overshoot occurs, the Gibbs phenomenon). 
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Example 6.10.2    

 

Find the Fourier series expansion for the standard square wave,  

 
 

 

1 1 0

1 0 1

x
f x

x

   
 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The graphs of the third and ninth partial sums (containing two and five non-zero terms 

respectively) are displayed here, together with the exact form for  f (x), with a periodic 

extension beyond the interval (–1, +1) that is appropriate for the square wave. 

 

 
 

y  =  S3(x) 
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Example 6.10.2   (continued) 

 

 9y S x   

 

 
 

 

 

 

Convergence   
 

At all points ox x  in (–L, L) where   f x  is continuous and is either differentiable or the 

limits  
o

lim
x x

f x


  and  
o

lim
x x

f x


  both exist, the Fourier series converges to  f x . 

 

At finite discontinuities, (where the limits  
o

lim
x x

f x


  and  
o

lim
x x

f x


  both exist), the 

Fourier series converges to 
   o o

2

f x f x  
, 

(using the abbreviations        o o
o o

lim and lim
x x x x

f x f x f x f x
  

    ). 

 

 
  f (x) not continuous      continuous but       continuous and 

        at ox x                not differentiable      differentiable     

In all cases, the Fourier series at ox x  converges to 
   o o

2

f x f x  
 (the red dot). 
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Half-Range Fourier Series 

 

A Fourier series for  f (x), valid on [0, L], may be constructed by extension of the domain 

to [–L, L]. 

 

An odd extension leads to a Fourier sine series:  

 
 

 
1

sinn

n

n x
f x b

L






 

  
   

where 

   
0

2
sin , 1, 2, 3,n

L
n x

b f x dx n
L L

 
  

   

 

 

 

An even extension leads to a Fourier cosine series:  

 

  0

1

cos
2

n

n

a n x
f x a

L






 

   
   

where 

   
0

2
cos , 0,1, 2, 3,

L

n
n x

a f x dx n
L L

 
  

   

and there is automatic continuity of the Fourier cosine series at x = 0 and at x =  L. 
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Example 6.10.3    

 

Find the Fourier sine series and the Fourier cosine series for  f (x) = x  on [0, 1]. 
 

 

f (x) = x  happens to be an odd function of x for any domain centred on x = 0.   The odd 

extension of  f (x)  to the interval  [–1, 1]  is  f (x)  itself. 

 

Evaluating the Fourier sine coefficients,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This function happens to be continuous and differentiable at x = 0, but is clearly 

discontinuous at the endpoints of the interval (x = 1). 
 

Fifth order partial sum of the Fourier sine series for  f (x) = x  on [0, 1] 
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Example 6.10.3   (continued) 

 

The even extension of  f (x)  to the interval  [–1, 1]  is  f (x) = | x |. 

   

Evaluating the Fourier cosine coefficients,  
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Example 6.10.3   (continued) 

 

 

Third order partial sum of the Fourier cosine series for  f (x) = x  on [0, 1] 

 
Note how rapid the convergence is for the cosine series compared to the sine series. 

 

 3y S x  for cosine series and  5y S x  for sine series for  f (x) = x  on [0, 1] 
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6.A Integral Test [for reference only – not examinable in this course] 

 

If  f (x)  is a continuous function with positive values that are decreasing for all  x > k ,  

   , 1, 2,na f n n k k k      and the improper integral  lim
L

L x k
f x dx

    

exists as a finite real number, then the series n
n k

a




  converges and 

   n kk k
n k

f x dx a a f x dx

 



     

 

If the improper integral does not have a finite value, then the series diverges. 

 

 

Proof:  
 

Examine the area between  x = i – 1  and  x = i   under the curve  y = f (x) : 

 

 

 

 

 

 

 

 

Both rectangles have width one unit. 

The smaller rectangle has height  f (i)  and area smaller than that under the curve. 

The larger rectangle has height  f (i – 1)  and area larger than that under the curve. 

Therefore 

     
1

1 1 1
i

i
f i f x dx f i


      

This inequality is true for all areas from  i – 1 = k  onwards. 

Adding all of these areas together, we find  

     
1 1

1
i k i k

k
f i f x dx f i

   

 
     

The left side can be re-arranged as 

           
i k i k

k k
f x dx f i f k f i f k f x dx

 

  
        

The right side can be re-arranged as 

         
1

1
i k i k i k

k k
f i f i f x dx f x dx f i

   

   
         
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Also note that the i
th

 term of the series is  ia f i .   It then follows that 

   n kk k
n k

f x dx a a f x dx

 



     

 

The convergence or divergence of the series is therefore linked completely to the 

convergence or divergence of the improper integral. 

 

The double inequality also allows upper and lower bounds to be evaluated for the sum of 

a convergent series whose terms form a sequence drawn from a positive, continuous and 

decreasing function  f (x). 

 

 

The convergence of the p-series can be established by a combination of the divergence 

and integral tests: 

 

 

 

 

0
1

lim 1 0

0 0

pn

p

p
n

p


 


 
 

   the p-series diverges for  p < 0. 

 

When  p > 0  the function   
1
pf x

x
   is positive, continuous and decreasing on  [1, )  

so that we may use the integral test. 

 

 

 

 

 
1

1

1

1
1lim 1 11 1

0 1
lim ln 1

n
p

np

n

n

x
p pp px dx

p
x p

 






  
            

          

  

Therefore the p-series 

1

1
p

n
n




  converges for  p > 1 and diverges otherwise. 

 

Another example of the integral test arises in showing that 

 
2

1

ln
p

n
n n




  converges if and only if  p > 1  [– details omitted]. 
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