ENGI 4430 Final Examination

2021 Spring

1. Find the rate of change of the function $f(x, y, z)=x^{2}-y^{3}-z$ at the point $P(2,-1,2)$ when one is moving in the direction of the vector $\overrightarrow{\mathbf{v}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-12 \hat{\mathbf{k}}$ (that is, find the directional derivative $\left.D_{\overline{\mathrm{v}}} f\right|_{P}=\left.\vec{\nabla} f\right|_{P} \bullet \hat{\mathbf{v}}$).
2. For the curve whose equation in polar coordinates is

$$
r=\sin (3 \theta)
$$

(a) show that the arc length L along one loop of the curve (as illustrated) can be expressed as

$$
L=\int_{0}^{\pi / 3} \sqrt{1+8 \cos ^{2}(3 \theta)} d \theta
$$

Do not attempt to evaluate this integral for L.

(b) find the exact value of the area A enclosed by one loop.
3. A vector field $\overline{\mathbf{F}}$ in \mathbb{R}^{3} (except on the z axis) is defined in spherical polar coordinates by

$$
\begin{equation*}
\stackrel{\rightharpoonup}{\mathbf{F}}=\frac{1}{r^{2}}(\sin \theta \hat{\mathbf{r}}-\cos \theta \hat{\boldsymbol{\theta}}) \tag{4}
\end{equation*}
$$

(a) Find $\operatorname{div} \stackrel{\rightharpoonup}{\mathbf{F}}$ everywhere (except the z-axis).
(b) Find curl $\stackrel{\rightharpoonup}{\mathbf{F}}$ everywhere (except the z-axis).
(c) For any simply-connected domain Ω in \mathbb{R}^{3} that excludes the z-axis, find a potential function V, such that $\overrightarrow{\mathbf{F}}=\vec{\nabla} V$ everywhere in Ω.
(d) Find the work done by $\overrightarrow{\mathbf{F}}$ in moving from the point $\mathrm{P}(r, \theta, \phi)=\left(2, \frac{\pi}{2}, 0\right)$ to the point $\mathrm{Q}(r, \theta, \phi)=\left(2, \frac{\pi}{6}, 0\right)$.
4. By any valid method, find the flux Φ passing out from the simple closed surface S, which is a right circular cylinder, centred on the z axis, of radius 2 and height 4 (between $z=1$ and $z=5$), (as shown here), due to the vector field $\stackrel{\rightharpoonup}{\mathbf{F}}$, given in cylindrical polar coordinates by

$$
\stackrel{\rightharpoonup}{\mathbf{F}}=\rho \hat{\boldsymbol{\rho}}+(z-5) \hat{\mathbf{k}}
$$

5. The transverse displacement $y(x, t)$ of a point at time t and location x on an ideal wire whose ends are fixed at $x=0$ and $x=1$ is governed by the partial differential equation

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}, \quad \text { with } c=3
$$

At time $t=0$ the displacement of the wire is $y(x, 0)=\sin (\pi x)$ and it is released from rest. Find the displacement $y(x, t)$ at all subsequent times.
[You may quote $\int_{0}^{L} \sin \left(\frac{m \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right) d x=\left\{\begin{array}{cc}\frac{L}{2} & (m=n) \\ 0 & (m \neq n)\end{array}\right.$
for all positive integers m, n.]
6. For the partial differential equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}-4 \frac{\partial^{2} u}{\partial x \partial y}+5 \frac{\partial^{2} u}{\partial y^{2}}=8 y-4 x \tag{2}
\end{equation*}
$$

(a) Classify the partial differential equation as one of elliptic, parabolic or hyperbolic.
(b) Find the general solution.
(c) Find the complete solution, given the additional information

$$
u(0, y)=0, \quad u_{x}(0, y)=-y^{2}
$$

7. A thin sheet of metal of constant surface density σ is in the shape shown.
(a) Show that the centre of mass is at the origin $((\bar{x}, \bar{y})=(0,0))$
(b) Find the second moments of mass I_{x} and I_{y} and hence the moment of inertia I, in terms of the mass m.
[5] [8+5]

