ENGI 4430
 Mid Term Test

2019 June 19

1. The equation $f(x)=0$, where $f(x)=e^{x}-2 x^{2}$, has three real roots (solutions), as illustrated in this graph.

(a) Use Newton's method, with an appropriate initial estimate x_{0}, to determine the value of the middle root, correct to four significant figures.
(b) Why should an initial estimate near $x_{0}=2.2$ not be used?
2. A particle is following a path given by

$$
\overrightarrow{\mathbf{r}}(t)=\left[\begin{array}{c}
4 \cos t \\
3 \\
4 \sin t
\end{array}\right]
$$

where t is the time $(t \geq 0)$ in seconds and distances are measured in metres.
(a) By any valid method, find all of the following

- the tangential component of acceleration a_{T}
- the normal component of acceleration a_{N}
- the curvature κ
- the unit principal normal vector $\hat{\mathbf{N}}$
(b) Describe geometrically the path that the particle is following.

3. For the curve whose equation in polar coordinates is $r=1+3 \cos \theta$
(a) Find the values of θ (in the range $-\pi<\theta \leq \pi$) at which r attains its maximum and minimum values.
(b) To the nearest degree, find the acute angle α that the polar tangents make with the horizontal axis.
(c) Sketch the curve. Identify the region where $r<0$.
[Cartesian and polar grids were provided with the question paper.]

BONUS QUESTION

4. A thin plate D has the shape of a triangle on the $x-y$ plane whose vertices are the points $(-1,0),(0,1)$ and $(1,0)(\mathrm{m})$. [This is the same region as in Quiz \#2.]
The surface density everywhere on D is now

$$
\sigma(x, y)=a y+b\left(\mathrm{~kg} \mathrm{~m}^{-2}\right)
$$

where a, b are constants, such that the density is non-negative everywhere on D.

Find the maximum and minimum possible values of \bar{y} (the y coordinate of the centre of mass).

[^0]On to the solutions

[^0]: (Back to the index of questions

