ENGI 4430

Mid Term Test

2020 June 17

1. Part of the hyperbola $y^{2}=x^{2}-16$ in the first quadrant, between $x=4$ and $x=5$, is rotated once around the x-axis to form a surface of revolution (which is part of a surface known as a "hyperboloid of two sheets").
(a) Write down the equation of this surface of revolution.
(b) Show that the curved surface area of this surface of revolution is

$$
A=2 \pi \int_{4}^{5} \sqrt{2 x^{2}-16} d x
$$

(c) Use Simpson's rule with $n=4$ intervals to estimate the value of A to three significant figures.
2. A region D is bounded by the parabola $y^{2}=x$ and the line $x=1$, as shown. The surface density σ at any point $P(x, y)$ in D is directly proportional to the distance of P from the line $x=1$.
Find the exact location (\bar{x}, \bar{y}) of the centre of mass of D.
3. The location $\overrightarrow{\mathbf{r}}(t)$ of a particle at any time t is given (in SI units) by

$$
\stackrel{\rightharpoonup}{\mathbf{r}}(t)=6 t \hat{\mathbf{i}}+8 t \hat{\mathbf{j}}-5 t^{2} \hat{\mathbf{k}}
$$

(a) Show that the magnitude of the acceleration vector is $a=10 \mathrm{~ms}^{-2}$.
(b) Find the radius of curvature $\rho(t)$.
(c) Find the tangential and normal components of the acceleration vector.

4. BONUS QUESTION

Find the location (in either polar or Cartesian coordinates) of all distinct vertical tangents to the curve whose equation in plane polar coordinates is $r=2+\cos \theta$ and sketch the graph. \{A polar grid was provided with the question paper.]

> (back to the index of questions

