ENGI 4430

Mid Term Test

2021 June 16

1. A curve in the $x-y$ plane has the equation $y=3 x^{2}$ in Cartesian coordinates.
(a) Show that the arc length L along this curve from the point $(0,0)$ to the point $(2,12)$ is

$$
\begin{equation*}
L=\int_{0}^{2} \sqrt{1+36 x^{2}} d x \tag{8}
\end{equation*}
$$

(b) Use Simpson's rule with $n=4$ intervals to estimate L to two decimal places.
(c) Write down the Cartesian equation of the surface of revolution formed when this curve is rotated about the x-axis.
(d) Find the Cartesian symmetric equations of the normal line to this surface at the point $P(1,0,-3)$.
2. Find the equations of the family of lines of force (streamlines) for the vector field $\overrightarrow{\mathbf{F}}=2 z \hat{\mathbf{j}}+(3+4 y) \hat{\mathbf{k}}$ and find the equation of the line of force that passes through the point $(3,1,-2)$.
3. A thin sheet of metal has the shape of a square of side 2 m , with its left side along the y axis and a line of symmetry along the x axis, as shown.

Its surface density is

$$
\sigma(x, y)=\left(3 x+5 y^{2}\right) \mathrm{kg} \mathrm{~m}^{-2}
$$

Find I_{x}, its second moment of mass about the x axis.

4. BONUS QUESTION

Without the aid of any graphing software, sketch the curve whose equation in parametric form is

$$
\overrightarrow{\mathbf{r}}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\frac{6 t}{1+t^{3}}\left[\begin{array}{l}
1 \\
t
\end{array}\right] \quad(t \in \mathbb{R})
$$

You must show your working.

[^0]
[^0]: (back to the index of questions

