ENGI 4430 Advanced Calculus for Engineering
Faculty of Engineering and Applied Science

Problem Set 10 Questions

[Partial differential equations]

1. Is the function $f(x, y)=3 x^{2} y-y^{3}$ harmonic and, if so, on what domain?
2. Find the subsequent motion of an infinite string that is released from rest with the initial displacement

$$
\phi(x)=\frac{1}{1+8 x^{2}}
$$

3. Classify the partial differential equation $\frac{\partial^{2} u}{\partial x^{2}}-6 \frac{\partial^{2} u}{\partial x \partial y}+8 \frac{\partial^{2} u}{\partial y^{2}}=0$ and find its complete solution, given the additional information $u(x, 0)=8 x^{3}$ and $u_{y}(x, 0)=12 x^{2}$.
4. Classify the partial differential equation $4 \frac{\partial^{2} u}{\partial x^{2}}+12 \frac{\partial^{2} u}{\partial x \partial y}+9 \frac{\partial^{2} u}{\partial y^{2}}=78$ and find its complete solution, given the additional information $u(0, y)=3 y^{2}$ and $u(x, 0)=0$.
5. Classify the partial differential equation $\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}$ and find its complete solution on the interval $0 \leq x \leq 100$ for all positive time t, given the additional information
$u(0, t)=0 \quad$ and $\quad u(100, t)=100 \quad \forall t \geq 0$
and $u(x, 0)=2 x-\left(\frac{x}{10}\right)^{2} \quad \forall x \in[0,100]$
Also write down the steady state solution.
6. Classify the partial differential equation $4 \frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0$ and find its general solution.
7. Classify the partial differential equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0$ and find its general solution.
8. Classify the partial differential equation $\frac{\partial^{2} u}{\partial x^{2}}+3 \frac{\partial^{2} u}{\partial x \partial y}+2 \frac{\partial^{2} u}{\partial y^{2}}=-6$ and find its complete solution, given the additional information $u(x, 0)=-2 x$ and $u_{y}(x, 0)=1-2 x$.
Also verify that your solution satisfies the PDE and both conditions.
9. Classify the partial differential equation $\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=6 y$ and find its complete solution, given the additional information $u(0, y)=y^{3}$ and $u_{x}(0, y)=-3 y^{2}$.
Also verify that your solution satisfies the PDE and both conditions.
10. An ideal perfectly elastic string of length 1 m is fixed at both ends (at $x=0$ and at $x=1$). The string is displaced into the form $y(x, 0)=f(x)=x^{2}(1-x)^{2}$ and is released from rest. Waves travel without friction along the string at a speed of $2 \mathrm{~m} / \mathrm{s}$. Find the displacement $y(x, t)$ at all locations on the string $(0<x<1)$ and at all subsequent times $(t>0)$.

Write down the complete Fourier series solution and the first two non-zero terms.
11. The transverse displacement $y(x, t)$ of a point at time t and location x on an ideal wire whose ends are fixed at $x=0$ and $x=1$ is governed by the partial differential equation

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

At time $t=0$ the displacement of the wire is $y(x, 0)=\sin (3 \pi x)$ and it is released from rest. Find the displacement $y(x, t)$ at all subsequent times.
[You may quote $\int_{0}^{L} \sin \left(\frac{m \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right) d x= \begin{cases}\frac{L}{2} & (m=n) \\ 0 & (m \neq n)\end{cases}$
for all positive integers m, n.]
12. The transverse displacement $y(x, t)$ of a point at time t and location x on an ideal wire whose ends are fixed at $x=0$ and $x=4$ is governed by the partial differential equation

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}, \quad \text { with } c=2 .
$$

At time $t=0$ the displacement of the wire is $y(x, 0)=2 x-\frac{1}{2} x^{2}$ and it is released from rest. Find the displacement $y(x, t)$ at all subsequent times. Write down the general term of the series for $y(x, t)$ and write down the first three non-zero terms.

