Problem Set 2 Questions

[Parametric Vector Functions]

1. For the curve in \mathbb{R}^2 that is given in parametric form by

$$\vec{\mathbf{r}}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} t^2 \\ t^3 \end{bmatrix}$$

- (a) Sketch the curve.
- (b) Find the unit tangent $\hat{\mathbf{T}}$, the unit normal $\hat{\mathbf{N}}$ and the unit binormal $\hat{\mathbf{B}}$.
- (c) Explain why the unit tangent and the unit normal are undefined at the origin. Can the unit binormal be defined at the origin?
- (d) Find the exact distance along the curve from the origin to the point (1, 1).
- 2. In problem set 1 question 1 we found that the curve whose Cartesian equation is $(x^2 + y^2)^{3/2} = 2x^2$

has the much simpler form in polar coordinates $r = 1 + \cos 2\theta$. Find the perimeter of one loop of this curve. Leave your answer in the form of a definite integral.

- 3. For the curve in problem set 1 question 5, whose equation in polar form is $r^{2} = 4\cos 3\theta$
 - (a) Evaluate the area enclosed by any one loop of the curve.
 - (b) Show that the total arc length along any one loop of the curve can be expressed as

$$L = 2 \int_0^{\pi/6} \sqrt{9 \sec 3\theta - 5 \cos 3\theta} \, d\theta$$

4. For the curve, whose equation is expressed in terms of the parameter t by

$$\vec{\mathbf{r}}(t) = 3e^{-t}\cos t\,\hat{\mathbf{i}} + 3e^{-t}\sin t\,\hat{\mathbf{j}} + 4e^{-t}\,\hat{\mathbf{k}}$$

- (a) Find the distance along the curve from the point (3, 0, 4) to the origin.
- (b) Find the curvature $\kappa(t)$ and the radius of curvature $\rho(t)$.
- (c) Describe the behaviour of the curve as the parameter $t \to \infty$.

- 5. There are three formulæ connecting arc length and the unit tangent, unit principal normal and unit binormal vectors, known as the *Frenet-Serret* formulæ.
 - (a) Show that the first Frenet-Serret formula is $\frac{d\hat{\mathbf{T}}}{ds} = \kappa \hat{\mathbf{N}}$, where *s* is arc length and κ is the curvature.
 - (b) Use $\hat{\mathbf{B}} = \hat{\mathbf{T}} \times \hat{\mathbf{N}}$ to show that $\frac{d\hat{\mathbf{B}}}{ds}$ is perpendicular to $\hat{\mathbf{T}}$.

(c) Use
$$\hat{\mathbf{B}} \cdot \hat{\mathbf{B}} = 1$$
 to show that $\frac{d\hat{\mathbf{B}}}{ds}$ is perpendicular to $\hat{\mathbf{B}}$.

- (d) *Hence* prove the second Frenet-Serret formula $\frac{d\hat{\mathbf{B}}}{ds} = -\tau \hat{\mathbf{N}}$, where the torsion, τ , is some scalar function of s. [The torsion is a measure of how much the curve is twisting out of the plane of $\hat{\mathbf{T}}$ and \mathbf{N} .]
- (e) Use the fact that $\hat{\mathbf{T}}$, $\hat{\mathbf{N}}$, $\hat{\mathbf{B}}$ form a mutually orthogonal right-handed triad of unit vectors, (from which it necessarily follows that $\hat{\mathbf{B}} = \hat{\mathbf{T}} \times \hat{\mathbf{N}}$, $\hat{\mathbf{T}} = \hat{\mathbf{N}} \times \hat{\mathbf{B}}$ and

 $\hat{\mathbf{N}} = \hat{\mathbf{B}} \times \hat{\mathbf{T}}$), to establish the third Frenet-Serret formula $\frac{d\hat{\mathbf{N}}}{ds} = \tau \hat{\mathbf{B}} - \kappa \hat{\mathbf{T}}$.

6. The equation of a curve in
$$\mathbb{R}^3$$
 is given parametrically by
 $\vec{\mathbf{r}} = e^t \sin t \, \hat{\mathbf{i}} - \hat{\mathbf{j}} + e^t \cos t \, \mathbf{k}$

Find $\mathbf{\bar{v}}, \mathbf{\bar{a}}, v, a_T, a_N, \kappa, \mathbf{\hat{T}}, \mathbf{\hat{N}}, \mathbf{\hat{B}}$.

Show that the curve lies entirely in one plane and find the equation of that plane.

- 7. For the semi-cubical parabola $y^2 = x^3$,
 - (a) Write down the equation of the surface of revolution generated by rotating the upper half of this curve once about the *x*-axis.
 - (b) Write down a definite integral for the curved surface area of the surface of revolution from the origin to x = c (where c > 0).
- 8. The location of a particle at any time t > 0 is given in plane polar coordinates by $\vec{\mathbf{r}}(t) = r(t)\hat{\mathbf{r}}(t)$

with the distance r(t) and direction $\theta(t)$ given by $r(t)=1-e^{-t}$ and $\theta(t)=t$.

- (a) Find the radial and transverse components of the velocity of the particle.
- (b) Find the radial and transverse components of the acceleration of the particle.
- (c) Describe the path of the particle in the steady state (as $t \to \infty$).
- (d) Find the tangential and normal components of the acceleration of the particle.