ENGI 4430 Advanced Calculus for Engineering
Faculty of Engineering and Applied Science

Problem Set 4 Questions
 [Numerical Methods]

1. Use Simpson's rule with four intervals to estimate $I=\int_{0}^{\pi} \sqrt{\sin \theta} d \theta$
2. Use the trapezoidal rule with six intervals to estimate $I=\int_{0}^{1} \frac{1}{1+x^{2}} d x$.

Use Simpson's rule with six intervals to estimate I.
Find the exact value of I and comment on the accuracy of the two approximations.
3. Use Simpson's rule with eight intervals to estimate $I=\int_{0}^{1} e^{-x^{2}} d x$.
[The "error function" is defined to be erf $(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$. It has multiple uses, including the calculation of probabilities for random quantities that follow a normal distribution. It cannot be evaluated exactly, except for a few special choices of x.]
4. In Problem Set 2 Question 3, the total arc length along any one loop of the curve $r^{2}=4 \cos 3 \theta$ was found to be $L=2 \int_{0}^{\pi / 6} \sqrt{9 \sec 3 \theta-5 \cos 3 \theta} d \theta$. Explain why a simple trapezoidal or Simpson's rule can not be used to estimate this arc length.
5. Use Newton's method (and confirm with a graphical method) to find the value of $\tanh ^{-1}\left(\frac{1}{2}\right)$ to six significant figures, where $\tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\frac{1-e^{-2 x}}{1+e^{-2 x}}$.
6. As seen in Question 5, when Newton's method works well, the convergence can be quite rapid. Now consider the solutions to $2 \cos x=0.3 x$. As seen from the plot below, there are five solutions to this equation.

Let us try to find the largest root.
(a) Use Newton's method with an initial guess of $x_{0}=7$ to find a solution correct to five decimal places.
(b) Use Newton's method with an initial guess of $x_{0}=6$ to find a solution to $5 \mathrm{~d} . \mathrm{p}$.
(c) Use Newton's method with an initial guess of $x_{0}=6.1000$ to find a solution to 5 d.p.
(d) Use Newton's method with an initial guess of $x_{0}=6.0999$ to find a solution to 5 d.p.
(e) Comment briefly on these different results. What is the single greatest factor in the variability of these results?
7. This question provides some practice in algebra and refers to page 5.04 of the lecture notes. From the definition $\sinh x \equiv \frac{e^{x}-e^{-x}}{2}$, verify that

$$
\sinh ^{-1} x \equiv \ln \left(x+\sqrt{1+x^{2}}\right) \equiv-\ln \left(\sqrt{1+x^{2}}-x\right)
$$

