ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science

 Problem Set 5 Questions

 Problem Set 5 Questions
 [Gradient, divergence and curl (Cartesian coordinates)]

1. Find the divergence and curl of the vector field $\overrightarrow{\mathbf{F}}=x y^{2} \hat{\mathbf{i}}+x^{2} y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$.
2. Find the divergence and curl of the vector field $\overrightarrow{\mathbf{F}}=\frac{x}{y} \hat{\mathbf{i}}+\frac{y}{z} \hat{\mathbf{j}}+\frac{z}{x} \hat{\mathbf{k}}$.
3. A temperature distribution for a region within 75 metres of the origin is given by

$$
T(x, y, z)=\frac{10000-x^{2}-y^{2}}{z+100}
$$

(a) Find the gradient of the temperature function T.
(b) Find the [instantaneous] rate at which the temperature is changing at the point $(50,50,0)$ in the same direction as the vector $\hat{\mathbf{i}}-\hat{\mathbf{j}}$.
(c) Is the field formed by the gradient vector purely radial?
[That is, does the gradient vector point directly towards or directly away from the origin at every point?]
4. Find the equations of the tangent plane and the normal line to the surface

$$
x^{2}+x y+z^{3}=8
$$

at the point $(0,-3,2)$.
5. Find the equations of the tangent plane and the normal line to the sphere $x^{2}+y^{2}+z^{2}=9$ at the point $(-2,1,2)$.
6. Find the angle between the elliptic paraboloid $z=3 x^{2}+2 y^{2}$ and the parabolic cylinder $7 y^{2}=2 x+z$ at the point $(1,1,5)$, to the nearest 0.01 degree.
7. Calculate the directional derivative of $\phi(\overrightarrow{\mathbf{r}})=x \ln y-e^{x / z^{3}}$ at the point $(8,1,-2)$ in the direction of the vector $\stackrel{\rightharpoonup}{\mathbf{a}}=12 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$.
8. Find the family of streamlines associated with the velocity field

$$
\overrightarrow{\mathbf{v}}(x, y)=y \hat{\mathbf{i}}+x \hat{\mathbf{j}}
$$

and find the streamline through the point $(0,-1)$.

- Back to the index of questions On to the solutions to this problem set
\qquad

