ENGI 4430 Advanced Calculus for Engineering
Faculty of Engineering and Applied Science

Problem Set 6 Questions

[Non-Cartesian coordinates]

1. Convert from Cartesian coordinates to cylindrical polar coordinates the vector

$$
\stackrel{\mathbf{F}}{ }=(x-y) \hat{\mathbf{i}}+(x+y) \hat{\mathbf{j}}+e^{-\left(x^{2}+y^{2}\right)} \hat{\mathbf{k}}
$$

2. The coordinate conversion matrix A for Cartesian coordinates to spherical polar coordinates is

$$
A=\left[\begin{array}{ccc}
s_{\theta} c_{\phi} & s_{\theta} s_{\phi} & c_{\theta} \\
c_{\theta} c_{\phi} & c_{\theta} s_{\phi} & -s_{\theta} \\
-s_{\phi} & c_{\phi} & 0
\end{array}\right], \quad \text { where } \begin{array}{ll}
c_{\theta}=\cos \theta & s_{\theta}=\sin \theta \\
c_{\phi}=\cos \phi & s_{\phi}=\sin \phi
\end{array}
$$

so that $\quad \stackrel{\rightharpoonup}{\mathbf{F}}_{\text {sph }}=A \stackrel{\rightharpoonup}{\mathbf{F}}_{\text {cart }}$, where
$\overrightarrow{\mathbf{F}}_{\text {sph }}=\left[\begin{array}{c}F_{r} \\ F_{\theta} \\ F_{\phi}\end{array}\right]=F_{r} \hat{\mathbf{r}}+F_{\theta} \hat{\boldsymbol{\theta}}+F_{\phi} \hat{\boldsymbol{\phi}} \quad$ and $\quad \overrightarrow{\mathbf{F}}_{\text {cart }}=\left[\begin{array}{c}F_{x} \\ F_{y} \\ F_{z}\end{array}\right]=F_{x} \hat{\mathbf{i}}+F_{y} \hat{\mathbf{j}}+F_{z} \hat{\mathbf{k}}$

Show that the conversion matrix B for the inverse conversion from spherical polar back to Cartesian coordinates, (such that $\overrightarrow{\mathbf{F}}_{\text {cart }}=B \overrightarrow{\mathbf{F}}_{\text {sph }}$), is simply $B=A^{\mathrm{T}}$ (the transpose of matrix A).
3. Convert from spherical polar to Cartesian coordinates the vector field

$$
\overrightarrow{\mathbf{F}}=\cos \theta \hat{\mathbf{r}}-\sin \theta \hat{\boldsymbol{\theta}}
$$

4. For the vector field defined in spherical polar coordinates by

$$
\stackrel{\rightharpoonup}{\mathbf{u}}(r, \theta, \phi)=(\sin \theta \hat{\mathbf{r}}+\cos \theta \hat{\boldsymbol{\theta}}) \sin \phi+\cos \phi \hat{\boldsymbol{\phi}}
$$

find $\frac{d \stackrel{\rightharpoonup}{\mathbf{u}}}{d t}$.
5. Consider the purely radial vector field $\overrightarrow{\mathbf{F}}(r, \theta, \phi)=f(r) \hat{\mathbf{r}}$, where $\hat{\mathbf{r}}$ is the unit radial vector in the spherical polar coordinate system and $f(r)$ is any function of r that is differentiable everywhere in \mathbb{R}^{3} (except possibly at the origin).
(a) Find an expression, in terms of $r, f(r)$ and $f^{\prime}(r)$, for the divergence of $\overrightarrow{\mathbf{F}}$.
(b) Find an expression, in terms of $r, f(r)$ and $f^{\prime}(r)$, for the curl of $\overrightarrow{\mathbf{F}}$.
(c) Of particular interest is the central force law

$$
\stackrel{\rightharpoonup}{\mathbf{F}}=\frac{k}{r^{n}} \hat{\mathbf{r}}, \quad(k>0, r>0)
$$

Show that the divergence of $\overrightarrow{\mathbf{F}}$ vanishes everywhere in \mathbb{R}^{3} (except possibly at the origin) if and only if $n=2$.
[Two of the four fundamental forces of nature, electromagnetism and gravity, both obey this inverse square law.]
6. The displacement vector is $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}=r \hat{\mathbf{r}}$
(a) Find the divergence of $\overrightarrow{\mathbf{r}}$ using the Cartesian form $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$.
(b) Verify the value of div $\overrightarrow{\mathbf{r}}$ using the spherical polar form $\overrightarrow{\mathbf{r}}=r \hat{\mathbf{r}}$.
7. In the evaluation of an area integral $\iint_{A} f(\overrightarrow{\mathbf{r}}) d A$ or a volume integral $\iiint_{V} f(\overrightarrow{\mathbf{r}}) d V$, the Cartesian differentials are related to the differentials of a different parameterization (u, v, w) of the surface or volume by the Jacobian determinant:

$$
d A=d x d y=\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \quad \text { or } \quad d V=d x d y d z=\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w
$$

where the Jacobian is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v}
\end{array}\right] \quad \text { or } \frac{\partial(x, y, z)}{\partial(u, v, w)}=\operatorname{det}\left[\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \\
\frac{\partial x}{\partial w} & \frac{\partial y}{\partial w} & \frac{\partial z}{\partial w}
\end{array}\right]
$$

Evaluate the Jacobian in order to determine the conversion formula from Cartesian differentials $d x d y$ (or $d x d y d z$) to
(a) Plane polar area differentials $d r d \theta$
(b) Cylindrical polar volume differentials $d \rho d \phi d z$
(c) Spherical polar volume differentials $d r d \theta d \phi$
(d) Parabolic area differentials $d u d v$, where $x=u v, y=v^{2}-u^{2}$.
(e) In part (d), sketch on the same $x-y$ plane the coordinate curves $u=\frac{1}{2}, u=1$, $u=2, v=\frac{1}{2}, v=1$ and $v=2$.
(f) Hence find the area in the first quadrant bounded by the parabolas $y=4 x^{2}-\frac{1}{4}$, $y=x^{2}-1, \quad y=\frac{1}{4}-4 x^{2}$ and $y=1-x^{2}$.
8. The displacement vector of a particle, in spherical polar coordinates, is $\overrightarrow{\mathbf{r}}(t)=r \hat{\mathbf{r}}$, with $r(t)=2, \quad \theta(t)=\frac{\pi}{3}, \quad \phi(t)=2 t$.
(a) Find the velocity $\overrightarrow{\mathbf{v}}(t)$.
(b) What path does the particle follow?

