ENGI 4430 Advanced Calculus for Engineering
Faculty of Engineering and Applied Science

Problem Set 7 Questions
 [Line integrals, Green's theorem]

1. Find the work done when an object is moved along the curve of intersection C of the circular paraboloid $z=x^{2}+y^{2}$ and the plane $2 x+y=$ 2 from $(1,0,1)$ to $(0,2,4)$ by a force $\overrightarrow{\mathbf{F}}=\left[\begin{array}{lll}\frac{2}{x} & \frac{1}{x} & 1\end{array}\right]^{\mathrm{T}}$.
2. Find the work done in travelling in \mathbb{R}^{2} once anti-clockwise around the unit circle C, centered on the origin, in the presence of the force $\overrightarrow{\mathbf{F}}=\left[\begin{array}{c}x-y \\ x+y\end{array}\right]$, using both of the following methods:
(a) by direct evaluation of the line integral $\oint_{C} \overrightarrow{\mathbf{F}} \cdot \mathbf{d} \overrightarrow{\mathbf{r}}$ and
(b) by using Green's theorem and evaluating $\iint_{D}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) d A$.
(c) Is the vector field $\overrightarrow{\mathbf{F}}$ conservative?
3. In class we saw that the line integral $\oint_{C} \overrightarrow{\mathbf{F}} \cdot \mathbf{d} \overrightarrow{\mathbf{r}}$ has the value 2π, where $\quad \stackrel{\overrightarrow{\mathbf{F}}}{ }=\left[\begin{array}{ll}\frac{-y}{x^{2}+y^{2}} & \frac{x}{x^{2}+y^{2}}\end{array}\right]^{\mathrm{T}}$ and the path C is one anti-clockwise circuit of the unit circle centered on the origin.
(a) Show that the value of the line integral remains 2π when the vector field is replaced by

$$
\stackrel{\rightharpoonup}{\mathbf{F}}=\left[\begin{array}{ll}
\frac{-y}{\left(\sqrt{x^{2}+y^{2}}\right)^{n}} & \frac{x}{\left(\sqrt{x^{2}+y^{2}}\right)^{n}}
\end{array}\right]^{\mathrm{T}}, \quad(n \in \mathbb{Z}) .
$$

3 (b) Show that the value of $\iint_{D}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) d A$ (where D is the circular area
enclosed by C) is not 2π unless $n<2$.
Hint: transform the area integral into plane polar coordinates, with $x=r \cos \theta, \quad y=r \sin \theta \quad$ and $\quad d A=d x d y=r d r d \theta$.
(c) Parts (a) and (b) clearly show that Green's theorem is not applicable when $n \geq 2$. Why should Green's theorem not be used when $0<n<2$?
4. Find a potential function for the vector
field $\quad \overrightarrow{\mathbf{F}}=\left[\begin{array}{lll}2 x y \cos z & x^{2} \cos z & -x^{2} y \sin z\end{array}\right]^{\mathrm{T}}$.
Use this potential function to evaluate the line integral $\int_{C} \overrightarrow{\mathbf{F}} \cdot \mathbf{d} \overrightarrow{\mathbf{r}}$ for any piecewise smooth simple curve C from the point $(1,1,-1)$ to the point $(2,0,5)$.
5. A thin wire of line density $\rho=(a x+b) e^{z}$ is laid out along a circle, centre the origin, radius r, in the $x-y$ plane, (where a and b are any real constants and r is any positive real constant).
(a) Show that a requirement that all parts of the wire have positive mass leads to the constraint $b>|a| r$.
(b) Find the mass of the wire (as a function of a, b and r).
(c) Show that the centre of mass is at the point $\left(\frac{a r^{2}}{2 b}, 0,0\right)$.
(d) With the requirement of part (a) in place, what are the maximum and minimum possible distances of the centre of mass from the origin?
(e) The moment of inertia I of a body about an axis of rotation L is defined by $\Delta I=r^{2} \Delta m \quad$ (where $\quad r$ is the distance of the element of mass Δm from the axis L). [The moment of inertia is thus a second moment.]
Find the moment of inertia of the thin wire about the z-axis.
(f) The kinetic energy E of a rigid body rotating with angular velocity ω about the axis L is given by $E=\frac{1}{2} I \omega^{2}$. Find the kinetic energy of the thin wire when it rotates about the z-axis with an angular velocity ω.
(g) The angular momentum (or moment of momentum) of a rigid body rotating with angular velocity ω about the axis L is $I \omega$. [In the absence of any friction or externally applied torque, the angular momentum is conserved.] Find the angular momentum of the thin wire when it rotates about the z-axis with an angular velocity ω.
6. Find the mass and centre of mass of a thin wire that is stretched along a straight line between the origin and the point $(6,6,6)$, given that the line density at (x, y, z) is $\frac{x+y+z}{100} \mathrm{~kg} \mathrm{~m}^{-1}$.
7. Find the potential function $V(x, y, z)$ for the vector field

$$
\stackrel{\rightharpoonup}{\mathbf{F}}=x\left(6 x \sin z+2 z e^{-x^{2}}\right) \hat{\mathbf{i}}+4 y \cos z \hat{\mathbf{j}}+\left(2 x^{3} \cos z-2 y^{2} \sin z-e^{-x^{2}}\right) \hat{\mathbf{k}} .
$$

8. Find the work done by the force $\overrightarrow{\mathbf{F}}=x y \hat{\mathbf{i}}+y^{2} \hat{\mathbf{j}}$ in one circuit of the unit square, without using Green's theorem. [This is the lengthier solution to Example 8.08.]
9. A wire is laid on the plane $z=3$ in the shape of the arc of the parabola

$$
y=x^{2}, z=3
$$

between the points $(0,0,3)$ and $(\sqrt{2}, 2,3)$. Its line density is $\rho(x, y, z)=6 x$. Use the parametric form $\overrightarrow{\mathbf{r}}(t)=t \hat{\mathbf{i}}+t^{2} \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \quad(0 \leq t \leq \sqrt{2})$ to find the exact mass of the wire.
10. Evaluate $\oint_{C} \stackrel{\rightharpoonup}{\mathbf{F}} \cdot \mathbf{d} \overrightarrow{\mathbf{r}}$, where $\stackrel{\rightharpoonup}{\mathbf{F}}=\left[\begin{array}{ll}\frac{y}{x^{2}+y^{2}} & \frac{-x}{x^{2}+y^{2}}\end{array}\right]^{\mathrm{T}}$ and C is the unit circle, centre at the origin. [Note that this is a counter-example, to demonstrate that potential functions can be ill-defined on non-simply connected domains]

