ENGI 4430 Advanced Calculus for Engineering
Faculty of Engineering and Applied Science

Problem Set 9 Questions
 [Theorems of Gauss and Stokes]

1. A flat area A is bounded by the triangle C whose vertices are the points $P(0,0,1), Q(1,0,1)$ and $R(1,1,1)$.
[Note that this triangle is entirely in the plane $z=1$.]
(a) Show that the unit normal $\hat{\mathbf{n}}$ to A that points away from the origin is $\hat{\mathbf{n}}=\hat{\mathbf{k}}$.
(b) A vector field $\overrightarrow{\mathbf{F}}$ is defined in \mathbb{R}^{3} by $\overrightarrow{\mathbf{F}}=y^{2} \hat{\mathbf{i}}+x^{2} \hat{\mathbf{j}}+(z-x) \hat{\mathbf{k}}$.

Show that curl $\overrightarrow{\mathbf{F}}=\hat{\mathbf{j}}+2(x-y) \hat{\mathbf{k}}$.
(c) Find the circulation $I=\oint_{C} \overrightarrow{\mathbf{F}} \cdot \mathbf{d} \overrightarrow{\mathbf{r}}$ of $\overrightarrow{\mathbf{F}}$ around C.
[Hint: you may use Stokes' theorem.]
2. A vector field $\overrightarrow{\mathbf{F}}$ is defined in the cylindrical polar coordinate system in \mathbb{R}^{3} by
$\begin{aligned} \overrightarrow{\mathbf{F}} & =\frac{\rho}{5} \hat{\boldsymbol{\rho}} \\ \text { Find the total flux } \Phi & =\oiint_{S} \overrightarrow{\mathbf{F}} \cdot \mathbf{d} \stackrel{\rightharpoonup}{\mathbf{S}} \text { due to } \overrightarrow{\mathbf{F}} \text { out through }\end{aligned}$ the right circular cylinder S of radius 5 , height 6 , aligned along the z-axis with the top and bottom ends at $z=+3$ and $z=-3$, as shown.

3. An extended source of electric charge has a charge density

$$
\rho(r)=\left\{\begin{array}{cc}
r e^{-r} & (r \leq 2) \\
0 & (r>2)
\end{array}\right.
$$

where $r=$ the distance of the point (x, y, z) from the origin.
(a) Find the total charge Q due to this extended object.
(b) Find the total flux due to the extended charge through the simple closed surface S defined by $(x-3)^{2}+(y-4)^{2}+z^{2}=1$.
4. Calculate the circulation of $\overrightarrow{\mathbf{F}}=\left[\begin{array}{lll}x-y & x^{2} y & x^{3} y^{2} z e^{x y z}\end{array}\right]^{\mathrm{T}}$ counterclockwise around the unit circle in the $x y$-plane. [Hint: Use Stokes' theorem, letting the surface S be any smooth surface that has C as its boundary.]
5. Complete the evaluation (in Example 10.04 of the lecture notes) of the line integral $\oint_{C} \overrightarrow{\mathbf{F}} \cdot \mathbf{d} \overrightarrow{\mathbf{r}}$ around the unit square in the $x-z$ plane for $\stackrel{\rightharpoonup}{\mathbf{F}}=\left[\begin{array}{lll}x y z & x z & e^{x y}\end{array}\right]^{\mathrm{T}}$, (without using Stokes' theorem).
6. A vector field $\stackrel{\rightharpoonup}{\mathbf{F}}$ is defined in the spherical polar coordinate system in \mathbb{R}^{3} by

$$
\overrightarrow{\mathbf{F}}=r e^{-r} \hat{\mathbf{r}}
$$

(a) Find the divergence $\vec{\nabla} \cdot \overrightarrow{\mathbf{F}}$ in spherical polar coordinates.
(b) Find the total flux $\Phi=\oiint_{S} \overrightarrow{\mathbf{F}} \cdot \mathbf{d} \overrightarrow{\mathbf{S}}$ due to $\overrightarrow{\mathbf{F}}$ out through the sphere S of radius 2 , centre at the origin.
() Back to the index of questions
On to the solutions

