Geometrical derivation of the Cartesian components of the spherical polar basis vectors

Vertical plane containing z-axis and radial vector $\overrightarrow{\mathbf{r}}$:

$\hat{\mathbf{r}}=(\hat{\mathbf{r}} \cdot \hat{\mathbf{i}}) \hat{\mathbf{i}}+(\hat{\mathbf{r}} \cdot \hat{\mathbf{j}}) \hat{\mathbf{j}}+(\hat{\mathbf{r}} \cdot \hat{\mathbf{k}}) \hat{\mathbf{k}}$

The projection of $\hat{\mathbf{r}}$ in the direction of the z axis is obvious: the angle between $\hat{\mathbf{r}}$ and $\hat{\mathbf{k}}$ is θ
$\Rightarrow \hat{\mathbf{r}} \cdot \hat{\mathbf{k}}=1 \times 1 \times \cos \theta=\cos \theta$

The angle between $\hat{\boldsymbol{\theta}}$ and $\hat{\mathbf{k}}$ is $\theta+\frac{\pi}{2}$
$\Rightarrow \hat{\boldsymbol{\theta}} \cdot \hat{\mathbf{k}}=1 \times 1 \times \cos \left(\theta+\frac{\pi}{2}\right)=-\sin \theta$

Equatorial plane $(\theta=0)$: The projection of $\hat{\mathbf{r}}$ onto the equatorial plane is $\sin \theta \hat{\boldsymbol{\rho}}$

The component of $\sin \theta \hat{\rho}$ in the direction of the x axis is $(\sin \theta \hat{\boldsymbol{\rho}}) \cdot \hat{\mathbf{i}}=(\sin \theta \times 1) \times 1 \times \cos \phi$
$\Rightarrow \hat{\mathbf{r}} \cdot \hat{\mathbf{i}}=\sin \theta \cos \phi$
Similarly $\hat{\mathbf{r}} \hat{\mathbf{j}}=\sin \theta \sin \phi$
so that
$\hat{\mathbf{r}}=\sin \theta \cos \phi \hat{\mathbf{i}}+\sin \theta \sin \phi \hat{\mathbf{j}}+\cos \theta \hat{\mathbf{k}}$
The projection of $\hat{\boldsymbol{\theta}}$ onto the equatorial plane is $\cos \theta \hat{\boldsymbol{\rho}}$
The components of this vector in the x and y directions are similar to those for $\sin \theta \hat{\rho}$
It soon follows that
$\hat{\boldsymbol{\theta}}=\cos \theta \cos \phi \hat{\mathbf{i}}+\cos \theta \sin \phi \hat{\mathbf{j}}-\sin \theta \hat{\mathbf{k}}$
$\hat{\phi}$ has an angle of $\left(\phi+\frac{\pi}{2}\right)$ with the x axis, an angle of ϕ with the y axis
and is orthogonal to the z axis $\Rightarrow \hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{i}}=\cos \left(\phi+\frac{\pi}{2}\right)=-\sin \phi, \quad \hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{j}}=\cos \phi, \quad \hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{k}}=0$
$\Rightarrow \hat{\boldsymbol{\phi}}=-\sin \phi \hat{\mathbf{i}}+\cos \phi \hat{\mathbf{j}}$
This reproduces the three rows of the coordinate conversion matrix on page 7.04:

$$
\mathrm{A}=\left[\begin{array}{ccc}
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \phi & \cos \phi & 0
\end{array}\right]
$$

