Geometrical derivation of the Cartesian components of the spherical polar basis vectors

Vertical plane containing *z*-axis and radial vector $\vec{\mathbf{r}}$:

$$\hat{\mathbf{r}} = (\hat{\mathbf{r}}\cdot\hat{\mathbf{i}})\hat{\mathbf{i}} + (\hat{\mathbf{r}}\cdot\hat{\mathbf{j}})\hat{\mathbf{j}} + (\hat{\mathbf{r}}\cdot\hat{\mathbf{k}})\hat{\mathbf{k}}$$

The projection of $\hat{\mathbf{r}}$ in the direction of the *z* axis is obvious: the angle between $\hat{\mathbf{r}}$ and $\hat{\mathbf{k}}$ is θ $\Rightarrow \hat{\mathbf{r}} \cdot \hat{\mathbf{k}} = 1 \times 1 \times \cos \theta = \cos \theta$

The angle between
$$\hat{\boldsymbol{\theta}}$$
 and $\hat{\mathbf{k}}$ is $\theta + \frac{\pi}{2}$
 $\Rightarrow \hat{\boldsymbol{\theta}} \cdot \hat{\mathbf{k}} = 1 \times 1 \times \cos\left(\theta + \frac{\pi}{2}\right) = -\sin\theta$

Equatorial plane ($\theta = 0$): The projection of $\hat{\mathbf{r}}$ onto the equatorial plane is $\sin \theta \hat{\boldsymbol{\rho}}$

The component of
$$\sin \theta \hat{\rho}$$
 in the direction of the
x axis is $(\sin \theta \hat{\rho}) \cdot \hat{\mathbf{i}} = (\sin \theta \times 1) \times 1 \times \cos \phi$
 $\Rightarrow \hat{\mathbf{r}} \cdot \hat{\mathbf{i}} = \sin \theta \cos \phi$
Similarly $\hat{\mathbf{r}} \cdot \hat{\mathbf{j}} = \sin \theta \sin \phi$
so that
 $\hat{\mathbf{r}} = \sin \theta \cos \phi \hat{\mathbf{i}} + \sin \theta \sin \phi \hat{\mathbf{j}} + \cos \theta \hat{\mathbf{k}}$

The projection of $\hat{\theta}$ onto the equatorial plane is $\cos\theta \,\hat{\rho}$

The components of this vector in the x and y directions are similar to those for $\sin \theta \hat{\rho}$ It soon follows that

$$\hat{\boldsymbol{\theta}} = \cos\theta\cos\phi\,\hat{\mathbf{i}} + \cos\theta\sin\phi\,\hat{\mathbf{j}} - \sin\theta\,\hat{\mathbf{k}}$$

 $\hat{\phi}$ has an angle of $\left(\phi + \frac{\pi}{2}\right)$ with the *x* axis, an angle of ϕ with the *y* axis and is orthogonal to the *z* axis $\Rightarrow \hat{\phi} \cdot \hat{\mathbf{i}} = \cos\left(\phi + \frac{\pi}{2}\right) = -\sin\phi$, $\hat{\phi} \cdot \hat{\mathbf{j}} = \cos\phi$, $\hat{\phi} \cdot \hat{\mathbf{k}} = 0$ $\Rightarrow \hat{\phi} = -\sin\phi \hat{\mathbf{i}} + \cos\phi \hat{\mathbf{j}}$

This reproduces the three rows of the coordinate conversion matrix on page 7.04:

$$A = \begin{vmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\ -\sin\phi & \cos\phi & 0 \end{vmatrix}$$