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1. Parametric Vector Functions 
 
The general position vector ( , , )x y zr  has its tail at the origin (0, 0, 0) and its tip at any point 

( ), ,x y z  in .    3

 
One constraint (that is, one equation) connecting  x, y  
and  z  usually causes the loss of one degree of freedom.    
 
The resulting position vector ( ) ( ) ( )( ), , , , ,x u v y u v z u vr  
is free to move only on a two-dimensional surface, 
where  u  and  v  are the independent parameters of that 
surface.   Specifying values of both parameters will 
identify a single point on that surface.   Specifying 
values of one parameter will identify a curve on that 
surface.   This establishes a coordinate grid on the 

rface  S. 

f two degrees of freedom.   Th

su
 
 
Two independent constraints connecting  x, y  and  z  usually 
cause the loss o e resulting 
position vector ( ) ( ) ( )( ), ,x t y t z tr  is free to move only on a 
one-dimensional curve.   Specifying the value of the 

arameter will identify a single point on that curve. 

hat  resulting position vector 

p
 
Similarly, one constraint in 2  results in the loss of one 
degree of freedom, so t  the

( ) ( )( ),x t y tr  is free to move only on a one-dimensional curve.    
Specifying the value of the parameter will identify a single point on that curve.    

 of a family of solutions for a linear system of equations that has infinitely 
any solutions. 

 
A parameter may represent a physical quantity (such as time or angle), or it may be abstract, with 
no apparent physical interpretation.   In MATH 2050 the concept of a parameter was introduced 
in the description
m
 
 
The distance of a particle from the origin at any value of t is given by the scalar function  

( ) ( ) ( )( ) ( )( ) ( )( )2 2
r t t x t y t z t= = + +r  

2

Note the various alternative conventions for a vector and its magnitude:  
 

and r≡ ≡ ≡ ≡r r r r r
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Example 1.01 

 

An obvious parameterization for a path      
T

x y     r  

on the circumference of a circle of radius a centre the origin is  

 

 

 

x

y





 
 

 
 

 

The range of a parameter is assumed to be all real values, unless 

specified otherwise. 

 

 

Example 1.02 

 

Sketch the curve in 2  that is given in parametric form by   

 
 

 

2

3 3

x t t
t

y t t t

   
    

  
r  

 

 

Identify all values of the parameter  t  for which any of  x, y  or their derivatives with respect to  t  

are zero. 
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Example 1.02   (continued) 
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In 2 , horizontal tangents to a curve      
T

t x t y t   r  occur at points where  

 

 

 

 

and vertical tangents occur at points where 

 

 

 

 

At points where 0
dx dy

dt dt
  , the tangent line can have any slope, or no well defined slope at all.   

At such points the slope has to be determined by taking the appropriate limit. 

 

Note that, by the chain rule,  

 

dy

dx
  

 

Therefore, in Example 1.02 above, the slopes of the tangent lines on the curve in its two passes 

through the point (3, 0) are 

 

 3,0

dy
m

dx
   
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Polar Coordinates 

 

The description of the location of an object in 2  relative to 

the observer is not very natural in Cartesian coordinates:  “the 

object is three metres to the east of me and four metres to the 

north of me”, or (x, y) = (3, 4).   It is much more natural to 

state how far away the object is and in what direction:  “the 

object is five metres away from me, in a direction 

approximately 53° north of due east”, or    , 5, 53r    . 

 

This is the polar coordinate system  ,r  . 

 

 

 

 

 

 

 

 

 

 

 

Note that the angle   is undefined at the pole  0r  . 

 

Radar also operates more naturally in plane polar coordinates. 

 

r = range 

 

 = azimuth 

 

O  is the pole 

 

OX  is the polar axis (where  = 0) 

 

Anticlockwise rotations are positive. 
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Every point in 2  has a unique representation (x, y) in Cartesian coordinates. 

This is not true for polar coordinates.  

 

 

Example 1.03    

 

The point P with the polar coordinates    3
, 4,r     

also has the polar coordinates 

 

 

 

 

 

 

         or 
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In general, if the polar coordinates of a point are  ,r  , then  

 

 

 

 

 

(n = any integer)   also describe the same point. 
 

The polar coordinates of the pole are  0,  for any  .  

 

In some situations, we impose restrictions on the range of the polar coordinates, such as 

0 , 0r        for the principal value of a complex number in polar form. 

 

 

Example 1.04    

 

Find the complete set of polar coordinates for the point whose Cartesian coordinates are (3, 4). 
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The principal value of  r  is easy to find:   2 2r x y  . 

Note that if  0x  , then the principal value of  ,       is not arctan
y

x

 
 
 

, because  

arctan
2 2

y

x

  
   

 
  (fourth and first quadrants only, for which  x > 0).    

When (x, y)  is in the second quadrant, arctan
y

x
 

 
  

 
 (as in Example 1.04). 

When (x, y)  is in the third quadrant, arctan
y

x
 

 
  

 
. 

 

 

Example 1.05    

 

Find the Cartesian coordinates for    11
3

, 2, .r     
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Polar Curves    r = f ()    
 

The representation (x, y) of a point in Cartesian coordinates is unique.   For a curve defined 

implicitly or explicitly by an equation in x and y, a point (x, y) is on the curve if and only if its 

coordinates (x, y) satisfy the equation of the curve. 

 

The same is not true for plane polar coordinates.   Each point has infinitely many possible 

representations,  , 2r n    and    , 2 1r n    (where  n  is any integer).   A point 

lies on a curve if and only if at least one pair  ,r   of the infinitely many possible pairs of polar 

coordinates for that point satisfies the polar equation of the curve.   It doesn’t matter if other 

polar coordinates for that same point do not satisfy the equation of the curve. 

 

 

Example 1.06 

 

The curve whose polar equation is   

 r  =  1  +  cos    

is a cardioid  

(literally, a “heart-shaped” curve). 

 

{ r = 2,    = 2n }  

(where n is any integer)  

satisfies the equation  r  =  1 + cos  . 
 

   , 2, 2r n    is on the cardioid curve. 

 

But  2, 2n  is the same point as   2, 2 1n   . 

 

 2 1n         

 

Yet the point whose polar coordinates are   2, 2 1n    is on the curve! 
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Example 1.07    

 

Convert to Cartesian form the equation of the cardioid curve   r  =  1 + cos  . 

 

  

 

 

  

 

    

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Tangents to   r = f      

 

 cos cosx r f      

 sin siny r f     

 

By the chain rule for differentiation: 

dy dy d dy dx

dx d dx d d



  
     

This leads to a general expression for the slope anywhere on a curve   r f  : 

 

sin cos

cos sin

dr
r

dy d
drdx r
d

 


 






 

 

 0 and 0 at ,
dy dx

r
d d


 
     

 

 0 and 0 at ,
dx dy

r
d d


 
     
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At the pole  (r = 0):  

 

 

 

dy

dx
  

 

 

  

 

  

 

 

 

 

 

 

 

 

 

Example 1.08    

 

Sketch the curve whose equation in Cartesian form is 
2 2 2 2 2x y x y y     . 

 

 

First convert the equation to polar form. 

 

   

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Note that there is no restriction on the sign of r ;  it can be negative.  
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Example 1.08   (continued) 

 

  is the parameter. 

 

Method 1 for sketching the polar curve: 

 

cosx r    

and 

siny r    

 

 

 

 

 

 

Therefore the y-axis intercepts are at (x, y) =  

 

 

 

 

 

 

 

Therefore the x-axis intercepts are at (x, y) =  

 

 

1 2sinr     
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Example 1.08   (continued) 

 

Method 2  

 

Sketch the graph of  1 2sinr    as though  r  were Cartesian y  and     were Cartesian x, then 

transfer that Cartesian sketch onto a polar sketch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ENGI 4430 Parametric & Polar Curve Sketching Page 1-14 

 

Example 1.09   

 

Sketch the curve whose equation in polar form is cos2r  . 

 

 

Using Method 2,  

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You can follow a plot of  r = cos n  by Method 2 (for n = 1, 2, 3, 4, 5 and 6) on the web site.   

See the link at "http://www.engr.mun.ca/~ggeorge/4430/demos/". 

 

The distinct polar tangents of cos2r   are  

 

  

 

 

[End of Chapter 1] 
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